1
|
Gao Y, Xu S, Qiao J, Wang C, Wang K, Sun J, Liu L, Li L, Liang M, Hu K. AZIN2 is associated with apoptosis of germ cells in undescended testis. Cells Dev 2024; 179:203925. [PMID: 38797332 DOI: 10.1016/j.cdev.2024.203925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Undescended testis (UDT), known as cryptorchidism (CRY), is a common congenital disorder in which one or both testicles do not descend normally into the scrotum. A unilateral UDT model was established by inducing UDT in mice through surgery. The results showed that the testis in the UDT model group was abnormal; the lumen of the seminiferous tubule was atrophic; apoptosis, necrosis and shedding were observed in many of the germ cells; the level of sex hormones was abnormal; and mature sperm was reduced. Subsequently, transcriptome sequencing was conducted on the testicular tissue of UDT model mice. Through analysis and verification of differential genes, AZIN2 was identified as playing a key role in the decline in male fertility caused by cryptorchidism. AZIN2 expression and spermine content was down-regulated in the testis of the UDT group. We then used a combination of hypoxanthine and xanthine to create a GC-1 cell damage model. In this model, AZIN2 expression and spermine content was down-regulated. When si-Azin2 transfected GC-1 cells, cell viability and proliferation were decreased. However, in the GC-1 cell damage model transfected with Azin2 over-expressed plasmid, AZIN2 expression and spermine content was up-regulated, reversing the cell damage caused by hypoxanthine and xanthine, and restoring the proliferation ability of GC-1 cells. These results indicate that in UDT, down-regulated AZIN2 expression is a factor in testicular damage. This discussion of the connection between AZIN2 and germ cells has important clinical significance as it provides an important reference for the diagnosis and treatment of cryptorchidism.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Shumin Xu
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Jiajun Qiao
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Chen Wang
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Junpei Sun
- First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Lei Liu
- First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Leina Li
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Meng Liang
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China.
| | - Ke Hu
- School of Life Science, Bengbu Medical University, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Jung YY, Son NT, Mohan CD, Bastos JK, Luyen ND, Huong LM, Ahn KS. Kaempferide triggers apoptosis and paraptosis in pancreatic tumor cells by modulating the ROS production, SHP-1 expression, and the STAT3 pathway. IUBMB Life 2024; 76:745-759. [PMID: 38708996 DOI: 10.1002/iub.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/07/2024] [Indexed: 05/07/2024]
Abstract
Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil
| | | | - Jairo Kenupp Bastos
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil
| | - Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, VAST, Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Le Mai Huong
- Institute of Natural Products Chemistry, VAST, Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
3
|
Long J, Zhao W, Xiang Y, Wang Y, Xiang W, Liu X, Jiang M, Song Y, Hu J. STAT3 promotes cytoplasmic-nuclear translocation of RNA-binding protein HuR to inhibit IL-1β-induced IL-8 production. Int Immunopharmacol 2024; 133:112065. [PMID: 38608448 DOI: 10.1016/j.intimp.2024.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1β-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1β-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1β induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1β-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1β-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1β-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1β. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1β-induced IL-8 production through this non-transcriptional mechanism.
Collapse
Affiliation(s)
- Jiangwen Long
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wang Zhao
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yangen Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yufei Wang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Xueting Liu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Manli Jiang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Jinyue Hu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
4
|
左 志, 孟 庆, 崔 家, 郭 克, 卞 华. [An artificial neural network diagnostic model for scleroderma and immune cell infiltration analysis based on mitochondria-associated genes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:920-929. [PMID: 38862450 PMCID: PMC11166723 DOI: 10.12122/j.issn.1673-4254.2024.05.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To establish a diagnostic model for scleroderma by combining machine learning and artificial neural network based on mitochondria-related genes. METHODS The GSE95065 and GSE59785 datasets of scleroderma from GEO database were used for analyzing expressions of mitochondria-related genes, and the differential genes were identified by Random forest, LASSO regression and SVM algorithms. Based on these differential genes, an artificial neural network model was constructed, and its diagnostic accuracy was evaluated by 10-fold crossover verification and ROC curve analysis using the verification dataset GSE76807. The mRNA expressions of the key genes were verified by RT-qPCR in a mouse model of scleroderma. The CIBERSORT algorithm was used to estimate the bioinformatic association between scleroderma and the screened biomarkers. RESULTS A total of 24 differential genes were obtained, including 11 up-regulated and 13 down-regulated genes. Seven most relevant mitochondria-related genes (POLB, GSR, KRAS, NT5DC2, NOX4, IGF1, and TGM2) were screened using 3 machine learning algorithms, and the artificial neural network diagnostic model was constructed. The model showed an area under the ROC curves of 0.984 for scleroderma diagnosis (0.740 for the verification dataset and 0.980 for cross-over validation). RT-qPCR detected significant up-regulation of POLB, GSR, KRAS, NOX4, IGF1 and TGM2 mRNAs and significant down-regulation of NT5DC2 in the mouse models of scleroderma. Immune cell infiltration analysis showed that the differential genes in scleroderma were associated with follicular helper T cells, immature B cells, resting dendritic cells, memory activated CD4+T cells, M0 macrophages, monocytes, resting memory CD4+T cells and mast cell activation. CONCLUSION The artificial neural network diagnostic model for scleroderma established in this study provides a new perspective for exploring the pathogenesis of scleroderma.
Collapse
|
5
|
Li J, Zhang L, Ge T, Liu J, Wang C, Yu Q. Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Des Devel Ther 2024; 18:829-843. [PMID: 38524877 PMCID: PMC10959117 DOI: 10.2147/dddt.s443107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been recognized as crucial agents for treating various tumors, and one of their key targets is the intracellular site of the vascular endothelial growth factor receptor (VEGFR). While TKIs have demonstrated their effectiveness in solid tumor patients and increased life expectancy, they can also lead to adverse cardiovascular effects including hypertension, thromboembolism, cardiac ischemia, and left ventricular dysfunction. Among the TKIs, sorafenib was the first approved agent and it exerts anti-tumor effects on hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) by inhibiting angiogenesis and tumor cell proliferation through targeting VEGFR and RAF. Unfortunately, the adverse cardiovascular effects caused by sorafenib not only affect solid tumor patients but also limit its application in curing other diseases. This review explores the mechanisms underlying sorafenib-induced cardiovascular adverse effects, including endothelial dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, dysregulated autophagy, and ferroptosis. It also discusses potential treatment strategies, such as antioxidants and renin-angiotensin system inhibitors, and highlights the association between sorafenib-induced hypertension and treatment efficacy in cancer patients. Furthermore, emerging research suggests a link between sorafenib-induced glycolysis, drug resistance, and cardiovascular toxicity, necessitating further investigation. Overall, understanding these mechanisms is crucial for optimizing sorafenib therapy and minimizing cardiovascular risks in cancer patients.
Collapse
Affiliation(s)
- Jue Li
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Teng Ge
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Jiping Liu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Chuan Wang
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Qi Yu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
6
|
Thakur K, Janjua D, Aggarwal N, Chhokar A, Yadav J, Tripathi T, Chaudhary A, Senrung A, Shrivastav A, Bharti AC. Physical interaction between STAT3 and AP1 in cervical carcinogenesis: Implications in HPV transcription control. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166817. [PMID: 37532113 DOI: 10.1016/j.bbadis.2023.166817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The constitutive activation and aberrant expression of Signal Transducer and Activator of Transcription 3 (STAT3) plays a key role in initiation and progression of cervical cancer (CaCx). How STAT3 influences HPV transcription is poorly defined. In the present study, we probed direct and indirect interactions of STAT3 with HPV16/18 LCR. In silico assessment of cis-elements present on LCR revealed the presence of potential STAT3 binding motifs. However, experimental validation by ChIP-PCR could not confirm any specific STAT3 binding on HPV16 LCR. Protein-protein interaction (PPI) network analysis of STAT3 with other host transcription factors that bind LCR, highlighted the physical association of STAT3 with c-FOS and c-JUN. This was further confirmed in vitro by co-immunoprecipitation, where STAT3 co-immunoprecipitated with c-FOS and c-JUN in CaCx cells. The result was supported by immunocytochemical analysis and colocalization of STAT3 with c-FOS and c-JUN. Positive signals in proximity ligation assay validated physical interaction and colocalization of STAT3 with AP1. Colocalization of STAT3 with c-FOS and c-JUN increased upon IL-6 treatment and decreased post-Stattic treatment. Alteration of STAT3 expression affected the subcellular localization of c-FOS and c-JUN, along with the expression of viral oncoproteins (E6 and E7) in CaCx cells. High expression of c-JUN in tumor tissues correlated with poor prognosis in both HPV16 and HPV18 CaCx cohort whereas high expression of STAT3 correlated with poor prognosis in HPV18 CaCx lesions only. Overall, the data suggest an indirect interaction of STAT3 with HPV LCR via c-FOS and c-JUN and potentiate transcription of viral oncoproteins.
Collapse
Affiliation(s)
- Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anuraag Shrivastav
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada; Paul Albrechtsen Research Institute CCMB, 675 McDermot Ave, Winnipeg, Manitoba, Canada
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
7
|
Jaradat NJ, Hatmal M, Alqudah D, Taha MO. Computational workflow for discovering small molecular binders for shallow binding sites by integrating molecular dynamics simulation, pharmacophore modeling, and machine learning: STAT3 as case study. J Comput Aided Mol Des 2023; 37:659-678. [PMID: 37597062 DOI: 10.1007/s10822-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
STAT3 belongs to a family of seven transcription factors. It plays an important role in activating the transcription of various genes involved in a variety of cellular processes. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. However, since STAT3 inhibitors bind to the shallow SH2 domain of the protein, it is expected that hydration water molecules play significant role in ligand-binding complicating the discovery of potent binders. To remedy this issue, we herein propose to extract pharmacophores from molecular dynamics (MD) frames of a potent co-crystallized ligand complexed within STAT3 SH2 domain. Subsequently, we employ genetic function algorithm coupled with machine learning (GFA-ML) to explore the optimal combination of MD-derived pharmacophores that can account for the variations in bioactivity among a list of inhibitors. To enhance the dataset, the training and testing lists were augmented nearly a 100-fold by considering multiple conformers of the ligands. A single significant pharmacophore emerged after 188 ns of MD simulation to represent STAT3-ligand binding. Screening the National Cancer Institute (NCI) database with this model identified one low micromolar inhibitor most likely binds to the SH2 domain of STAT3 and inhibits this pathway.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Dana Alqudah
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
8
|
Hwang JR, Cho YJ, Ryu JY, Choi JY, Choi JJ, Sa JK, Kim HS, Lee JW. Ulipristal acetate, a selective progesterone receptor modulator, induces cell death via inhibition of STAT3/CCL2 signaling pathway in uterine sarcoma. Biomed Pharmacother 2023; 168:115792. [PMID: 37924789 DOI: 10.1016/j.biopha.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Ulipristal acetate (UPA) is a selective progesterone receptor modulator and is used for the treatment of uterine leiomyoma (a benign tumor). Uterine sarcoma which is highly malignant cancer with a poor prognosis is clinically resembled with uterine leiomyoma. There has been no experimental research on the effect of UPA on uterine sarcoma. In this study, we examined the efficacy of UPA in uterine sarcoma with in vitro and in vivo animal models. Cytotoxicity of UPA was determined in uterine sarcoma cell lines (MES-SA, SK-UT-1, and SK-LMS-1). Apoptotic genes and signaling pathways affected by UPA were analyzed by complementary DNA (cDNA) microarray of uterine sarcoma cell lines and western blot, respectively. An in vivo efficacy of UPA was examined with uterine sarcoma cell line- and patient-derived xenograft (PDX) mice models. UPA inhibited cell growth in uterine sarcoma cell lines and primary culture cells from a PDX mouse (PDX-C). cDNA microarray analysis revealed that CCL2 was highly down-regulated by UPA. Phosphorylation and the total expression of STAT3 were inhibited by UPA. UPA also inhibited CCL2 and STAT3 in PDX-C. The inhibitory effect of UPA had not changed in the overexpression of PR and treatment of progesterone. In vivo efficacy studies with cell line-derived xenografts and a PDX model with leiomyosarcoma, a typical uterine sarcoma, demonstrated that UPA significantly decreased tumor growth. UPA had significant anti-tumor effects in uterine sarcoma through the inhibition of STAT3/CCL2 signaling pathway and might be a potential therapeutic agent to treat this disease.
Collapse
Affiliation(s)
- Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Jeong-Won Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
10
|
Nemeikaitė-Čėnienė A, Misevičienė L, Marozienė A, Jonušienė V, Čėnas N. Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells. Int J Mol Sci 2023; 24:12460. [PMID: 37569833 PMCID: PMC10419047 DOI: 10.3390/ijms241512460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
NADPH:thioredoxin reductase (TrxR) is considered a potential target for anticancer agents. Several nitroheterocyclic sulfones, such as Stattic and Tri-1, irreversibly inhibit TrxR, which presumably accounts for their antitumor activity. However, it is necessary to distinguish the roles of enzymatic redox cycling, an inherent property of nitroaromatics (ArNO2), and the inhibition of TrxR in their cytotoxicity. In this study, we calculated the previously unavailable values of single-electron reduction potentials of known inhibitors of TrxR (Stattic, Tri-1, and 1-chloro-2,4-dinitrobenzene (CDNB)) and inhibitors identified (nitrofuran NSC697923 and nitrobenzene BTB06584). These calculations were according to the rates of their enzymatic single-electron reduction (PMID: 34098820). This enabled us to compare their cytotoxicity with that of model redox cycling ArNO2. In MH22a and HCT-116 cells, Tri-1, Stattic, CDNB, and NSC697023 possessed at least 10-fold greater cytotoxicity than can be expected from their redox cycling activity. This may be related to TrxR inhibition. The absence of enhanced cytotoxicity in BTB06548 may be attributed to its instability. Another known inhibitor of TrxR, tetryl, also did not possess enhanced cytotoxicity, probably because of its detoxification by DT-diaphorase (NQO1). Apart from the reactions with NQO1, the additional mechanisms influencing the cytotoxicity of the examined inhibitors of TrxR are their reactions with cytochromes P-450. Furthermore, some inhibitors, such as Stattic and NSC697923, may also inhibit glutathione reductase. We suggest that these data may be instrumental in the search for TrxR inhibitors with enhanced cytotoxic/anticancer activity.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- Department of Immunology of State Research Institute Center for Innovative Medicine, Santariškiu˛ St. 5, LT-08406 Vilnius, Lithuania;
| | - Lina Misevičienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.)
| | - Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.)
| | - Violeta Jonušienė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania;
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania; (L.M.); (A.M.)
| |
Collapse
|
11
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:cancers15092485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
12
|
Jaradat NJ, Alshaer W, Hatmal M, Taha MO. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv 2023; 13:4623-4640. [PMID: 36760267 PMCID: PMC9896621 DOI: 10.1039/d2ra07007c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
STAT3 belongs to a family of seven vital transcription factors. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. In this work, we used multiple docked poses of STAT3 inhibitors to augment training data for machine learning QSAR modeling. Ligand-Receptor Contact Fingerprints and scoring values were implemented as descriptor variables. Escalating docking-scoring consensus levels were scanned against orthogonal machine learners, and the best learners (Random Forests and XGBoost) were coupled with genetic algorithm and Shapley additive explanations (SHAP) to identify critical descriptors that determine anti-STAT3 bioactivity to be translated into pharmacophore model(s). Two successful pharmacophores were deduced and subsequently used for in silico screening against the National Cancer Institute (NCI) database. A total of 26 hits were evaluated in vitro for their anti-STAT3 bioactivities. Out of which, three hits of novel chemotypes, showed cytotoxic IC50 values in the nanomolar range (35 nM to 6.7 μM). However, two are potent dihydrofolate reductase (DHFR) inhibitors and therefore should have significant indirect STAT3 inhibitory effects. The third hit (cytotoxic IC50 = 0.44 μM) is purely direct STAT3 inhibitor (devoid of DHFR activity) and caused, at its cytotoxic IC50, more than two-fold reduction in the expression of STAT3 downstream genes (c-Myc and Bcl-xL). The presented work indicates that the concept of data augmentation using multiple docked poses is a promising strategy for generating valid machine learning models capable of discriminating active from inactive compounds.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University P.O. Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| |
Collapse
|
13
|
Xu FL, Wu XH, Chen C, Wang K, Huang LY, Xia J, Liu Y, Shan XF, Tang N. SLC27A5 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by downregulating glutathione reductase. Cell Death Dis 2023; 14:22. [PMID: 36635256 PMCID: PMC9837139 DOI: 10.1038/s41419-023-05558-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Sorafenib, a first-line drug for advanced hepatocellular carcinoma (HCC), shows a favorable anti-tumor effect while resistance is a barrier impeding patients from benefiting from it. Thus, more efforts are needed to lift this restriction. Herein, we first find that solute carrier family 27 member 5 (SLC27A5/FATP5), an enzyme involved in the metabolism of fatty acid and bile acid, is downregulated in sorafenib-resistant HCC. SLC27A5 deficiency facilitates the resistance towards sorafenib in HCC cells, which is mediated by suppressing ferroptosis. Further mechanism studies reveal that the loss of SLC27A5 enhances the glutathione reductase (GSR) expression in a nuclear factor erythroid 2-related factor 2 (NRF2)-dependent manner, which maintains glutathione (GSH) homeostasis and renders insensitive to sorafenib-induced ferroptosis. Notably, SLC27A5 negatively correlates with GSR, and genetic or pharmacological inhibition of GSR strengthens the efficacy of sorafenib through GSH depletion and the accumulation of lipid peroxide products in SLC27A5-knockout and sorafenib-resistant HCC cells. Based on our results, the combination of sorafenib and carmustine (BCNU), a selective inhibitor of GSR, remarkably hamper tumor growth by enhancing ferroptotic cell death in vivo. In conclusion, we describe that SLC27A5 serves as a suppressor in sorafenib resistance and promotes sorafenib-triggered ferroptosis via restraining the NRF2/GSR pathway in HCC, providing a potential therapeutic strategy for overcoming sorafenib resistance.
Collapse
Affiliation(s)
- Feng-Li Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Hong Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu-Yi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xue-Feng Shan
- Department of Pharmacy, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Luo J, Cao D, Hu C, Liang Z, Zhang Y, Lai J. Lymphatic metastasis-associated circRNA‒miRNA‒mRNA network for exploring the pathogenesis and therapeutic target of triple negative breast cancer based on whole-transcriptome sequencing analysis: an experimental verification study. J Transl Med 2022; 20:508. [PMID: 36335337 PMCID: PMC9636725 DOI: 10.1186/s12967-022-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The metastatic mechanisms of axillary lymph nodes (ALNs) in triple-negative breast cancer (TNBC) remain unclear. We aimed to identify the potential circRNA regulatory network in ALN metastasis. METHODS We performed whole transcriptome sequencing (WTS) to determine the expression profiles of RNAs and screen out differentially expressed messenger RNAs (DEMs), microRNAs (DEMis), and circRNAs (DECs) between ALN-positive and ALN-negative TNBC patients. Functional enrichment analysis and Kaplan-Meier survival analysis were utilized to unearth the potential regulatory mechanisms of the DEMs. A competing endogenous RNA (ceRNA) network was constructed using computational biology. The expression levels of DECs in cell lines were confirmed by real-time polymerase chain reaction (RT‒PCR). RESULTS Following WTS and differential expression analysis, 739 DEMs, 110 DEMis, and 206 DECs were identified between ALN-positive and ALN-negative TNBC patients. Functional analysis indicated that the DEMs mainly functioned in carcinogenesis and tumor progression-related pathways. ceRNA networks containing eight circRNAs, six miRNAs, and eighteen mRNAs were developed. In the ceRNA network, two mRNAs (RAB3D and EDARADD) that were significantly associated with better overall survival and one mRNA (GSR) that predicted favorable recurrence-free survival in TNBC patients were chosen for further analysis. Then, a survival-related ceRNA network containing two DECs (hsa_circ_0061260 and hsa_circ_0060876), two DEMis (hsa-miR-5000-3p and hsa-miR-4792), and three mRNAs (GSR, RAB3D, and EDARADD) was identified. Then, two candidate DECs were validated by real-time PCR. CONCLUSION Our research constructed a ceRNA network that provides novel insights into the molecular mechanism of ALN metastasis and potential therapeutic targets in TNBC.
Collapse
Affiliation(s)
- Jiayue Luo
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dong Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Chuwen Hu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Zhen Liang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yuanping Zhang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jianguo Lai
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
15
|
Wu Y, Cai Y, Ma L, Li F, Zhang M, Wang Y, Zheng F, Pi Z, Yue H. Identification and chemical profiling of anti-alcoholic liver disease biomarkers of ginseng Huang jiu using UPLC-Q-Orbitrap-HRMS and network pharmacology-based analyses. Front Nutr 2022; 9:978122. [PMID: 36034901 PMCID: PMC9412739 DOI: 10.3389/fnut.2022.978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
This study investigated the mechanism of characteristic non-volatile organic compounds (NVOCs) from ginseng Huang jiu (GH) in the treatment of alcoholic liver disease through UPLC-Q-Orbitrap-HRMS and network pharmacological analyses. Changes in NVOC contents in ginseng Huang jiu and ginseng-soaked wine fermented by different processing technologies were analyzed through liquid chromatography–mass spectrometry (LC-MS). A total of 96 ginsenosides were identified in ginseng Huang jiu throughout the fermentation process, which included 37 protopanaxadiol-type ginsenosides, 47 protopanaxatriol-type ginsenosides, and 4 oleanolic acid-type ginsenosides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that 20(R)-Rg2, Gypenoside XVII, 20(S)-Rf3, CK, Rg5, Rh2, and other rare ginsenosides in ginseng Huang jiu could be the potential index for determining ginseng Huang jiu. In addition, ginseng Huang jiu could improve alcoholic liver disease by regulating the GSTP1, HRAS, AKR1B1, GSTA1, Androgen receptor (AR), GSR, and LDHB genes through bioinformatics analysis. This study provides new insights into improving the industrial production of ginseng Huang jiu and treating alcoholic liver disease with medicinal and food products.
Collapse
Affiliation(s)
- Yongxi Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Yongyu Cai
- Changchun University of Chinese Medicine, Changchun, China
| | - Liting Ma
- Changchun University of Chinese Medicine, Changchun, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yizhu Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Ling M, Liu Q, Wang Y, Liu X, Jiang M, Hu J. LCS-1 inhibition of superoxide dismutase 1 induces ROS-dependent death of glioma cells and degradates PARP and BRCA1. Front Oncol 2022; 12:937444. [PMID: 35978820 PMCID: PMC9376264 DOI: 10.3389/fonc.2022.937444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Gliomas are characterized by high morbidity and mortality, and have only slightly increased survival with recent considerable improvements for treatment. An innovative therapeutic strategy had been developed via inducing ROS-dependent cell death by targeting antioxidant proteins. In this study, we found that glioma tissues expressed high levels of superoxide dismutase 1 (SOD1). The expression of SOD1 was upregulated in glioma grade III and V tissues compared with that in normal brain tissues or glioma grade I tissues. U251 and U87 glioma cells expressed high levels of SOD1, low levels of SOD2 and very low levels of SOD3. LCS-1, an inhibitor of SOD1, increased the expression SOD1 at both mRNA and protein levels slightly but significantly. As expected, LCS-1 caused ROS production in a dose- and time-dependent manner. SOD1 inhibition also induced the gene expression of HO-1, GCLC, GCLM and NQO1 which are targeting genes of nuclear factor erythroid 2-related factor 2, suggesting the activation of ROS signal pathway. Importantly, LCS-1 induced death of U251 and U87 cells dose- and time-dependently. The cell death was reversed by the pretreatment of cells with ROS scavenges NAC or GSH. Furthermore, LCS-1 decreased the growth of xenograft tumors formed by U87 glioma cells in nude mice. Mechanistically, the inhibition of P53, caspases did not reverse LCS-1-induced cell death, indicating the failure of these molecules involving in cell death. Moreover, we found that LCS-1 treatment induced the degradation of both PARP and BRCA1 simultaneously, suggesting that LCS-1-induced cell death may be associated with the failure of DNA damage repair. Taking together, these results suggest that the degradation of both PARP and BRCA1 may contribute to cell death induced by SOD1 inhibition, and SOD1 may be a target for glioma therapy.
Collapse
Affiliation(s)
- Min Ling
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yufei Wang
- Department of Clinical Laboratory, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- *Correspondence: Jinyue Hu,
| |
Collapse
|
17
|
Zhou C, Wang L, Hu W, Tang L, Zhang P, Gao Y, Du J, Li Y, Wang Y. CDC25C is a prognostic biomarker and correlated with mitochondrial homeostasis in pancreatic adenocarcinoma. Bioengineered 2022; 13:13089-13107. [PMID: 35615982 PMCID: PMC9275923 DOI: 10.1080/21655979.2022.2078940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive tract malignant tumor with an extremely poor prognosis. The survival and prognosis may significantly improve if it is diagnosed early. Therefore, identifying biomarkers for early diagnosis is still considered a great clinical challenge in PAAD. Cell Division Cycle 25C (CDC25C), a cardinal cell cycle regulatory protein, directly mediates the G2/M phase and is intimately implicated in tumor development. In the current study, we aim to explore the possible functions of CDC25C and determine the potential role of CDC25C in the early diagnosis and prognosis of PAAD. Expression analysis indicated that CDC25C was overexpressed in PAAD . In addition, survival analysis revealed a strong correlation between the enhanced expression of CDC25C and poor survival in PAAD. Furthermore, pathway analysis showed that CDC25C is related to TP53 signaling pathways, glutathione metabolism, and glycolysis. Mechanically, our in vitro experiments verified that CDC25C was capable of promoting cell viability and proliferation. CDC25C inhibition increases the accumulation of ROS, inhibits mitochondrial respiration, suppresses glycolysis metabolism and reduces GSH levels. To summarize, CDC25C may be involved in energy metabolism by maintaining mitochondrial homeostasis. Our results suggested that CDC25C is a potential biological marker and promising therapeutic target of PAAD.
Collapse
Affiliation(s)
- Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Lusheng Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Bogani G, Chiappa V, Bini M, Ronzulli D, Indini A, Conca E, Raspagliesi F. BYL719 (alpelisib) for the treatment of PIK3CA-mutated, recurrent/advanced cervical cancer. TUMORI JOURNAL 2022; 109:244-248. [PMID: 35311394 DOI: 10.1177/03008916211073621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Advanced/recurrent cervical cancer has limited therapeutic options, with a median progression-free survival after the failure of systemic treatments ranging between 3.5 and 4.5 months. Here, we reported our preliminary experience in the use of BYL719 (alpelisib) in advanced/recurrent cervical cancer after failure of at least 2 lines of treatment. The Istituto Nazionale dei Tumori di Milano approved this investigation. METHODS From April 2020 to September 2020, 17 consecutive patients with recurrent cervical cancer had Next Generation Sequencing (NGS). Of these, six patients harboring the PIK3CA mutation were included in the study. All patients had been treated with at least 2 previous lines of systemic treatment: 3 patients received >2 prior lines of treatment in the recurrent or metastatic setting; 60% had received prior bevacizumab in combination with chemotherapy. All patients started alpelisib at the daily dosage of 300 mg. RESULTS Investigator-assessed confirmed objective response rate (ORR) was 33%. The disease control rate (DCR) was 100%. According to RECIST 1.1, two patients had a partial response (PR), and four patients had stable disease (SD). No complete response was observed. The mean duration of response (DOR) was 11.5 (SD 3.75) months; five patients had PR lasting for >9 months. One patient stopped the treatment at 0.82 months due to the onset of a grade 2 adverse event (AE) (skin rash). Grade 3 treatment-related AEs included: lymphoedema (n = 1, 17%) and rash (n = 1, 17%). No treatment-related grade 4-5 AEs occurred. CONCLUSIONS Our preliminary data highlighted a high level of efficacy in this setting of patients. Further trials are needed to assess the safety and effectiveness of alpelisib in PIK3CA-mutated recurrent/advanced cervical cancer.
Collapse
Affiliation(s)
- Giorgio Bogani
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Department of Maternal and Child Health and Urological Sciences, Sapienza University, Umberto I Hospital, Rome, Italy
| | - Valentina Chiappa
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Bini
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Dominique Ronzulli
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alice Indini
- Medical Oncology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Elena Conca
- Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Francesco Raspagliesi
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|