1
|
Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, Li X, Yang Z. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med 2023; 21:598. [PMID: 37674169 PMCID: PMC10481579 DOI: 10.1186/s12967-023-04437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
The advent of immunotherapy, a groundbreaking advancement in cancer treatment, has given rise to the prominence of the tumor microenvironment (TME) as a critical area of research. The clinical implications of an improved understanding of the TME are significant and far-reaching. Radiomics has been increasingly utilized in the comprehensive assessment of the TME and cancer prognosis. Similarly, the advancement of pathomics, which is based on pathological images, can offer additional insights into the panoramic view and microscopic information of tumors. The combination of pathomics and radiomics has revolutionized the concept of a "digital biopsy". As genomics and transcriptomics continue to evolve, integrating radiomics with genomic and transcriptomic datasets can offer further insights into tumor and microenvironment heterogeneity and establish correlations with biological significance. Therefore, the synergistic analysis of digital image features (radiomics, pathomics) and genetic phenotypes (genomics) can comprehensively decode and characterize the heterogeneity of the TME as well as predict cancer prognosis. This review presents a comprehensive summary of the research on important radiomics biomarkers for predicting the TME, emphasizing the interplay between radiomics, genomics, transcriptomics, and pathomics, as well as the application of multiomics in decoding the TME and predicting cancer prognosis. Finally, we discuss the challenges and opportunities in multiomics research. In conclusion, this review highlights the crucial role of radiomics and multiomics associations in the assessment of the TME and cancer prognosis. The combined analysis of radiomics, pathomics, genomics, and transcriptomics is a promising research direction with substantial research significance and value for comprehensive TME evaluation and cancer prognosis assessment.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of, Fudan University, Shanghai, 200011, China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Jianwei Luo
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junqing Xi
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
2
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
3
|
[Advances in the Study of Tissue-resident Memory T Cells in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:862-869. [PMID: 36617472 PMCID: PMC9845087 DOI: 10.3779/j.issn.1009-3419.2022.102.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have been widely used in the treatment of lung cancer, but the benefit population is limited and there is a lack of effective predictive markers of efficacy. Tissue-resident memory T cells (TRM) reside in tissues and exert anti-tumor effects by expressing the integrins CD103, CD49a or C-type lectin CD69 and immune checkpoint receptors. TRM expressing programmed cell death 1 (PD-1) is enriched with transcriptional products associated with cytotoxicity and enhances T cell (antigen) receptor (TCR)-mediated cytotoxicity. TRM is a promising biomarker for predicting the efficacy and prognosis of immunotherapy in lung cancer patients. This review will describe the progress of TRM research in lung cancer.
.
Collapse
|
4
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Radiomic Signatures Associated with CD8+ Tumour-Infiltrating Lymphocytes: A Systematic Review and Quality Assessment Study. Cancers (Basel) 2022; 14:cancers14153656. [PMID: 35954318 PMCID: PMC9367613 DOI: 10.3390/cancers14153656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The tumour immune microenvironment influences the efficacy of immune checkpoint inhibitors. Within this microenvironment are CD8-expressing tumour-infiltrating lymphocytes (CD8+ TILs), which are an important mediator and marker of anti-tumour response. In practice, the assessment of CD8+ TILs via tissue sampling involves logistical challenges. Radiomics, the high-throughput extraction of features from medical images, may offer a novel and non-invasive alternative. We performed a systematic review of the available literature reporting radiomic signatures associated with CD8+ TILs. We also aimed to evaluate the methodological quality of the identified studies using the Radiomics Quality Score (RQS) tool, and the risk of bias and applicability with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Articles were searched from inception until 31 December 2021, in three electronic databases, and screened against eligibility criteria. Twenty-seven articles were included. A wide variety of cancers have been studied. The reported radiomic signatures were heterogeneous, with very limited reproducibility between studies of the same cancer group. The overall quality of studies was found to be less than desirable (mean RQS = 33.3%), indicating a need for technical maturation. Some potential avenues for further investigation are also discussed.
Collapse
|