1
|
Fathi N, Mojtahedi H, Nasiri M, Abolhassani H, Yousefpour Marzbali M, Esmaeili M, Salami F, Biglari F, Rezaei N. How do nuclear factor kappa B (NF-κB)1 and NF-κB2 defects lead to the incidence of clinical and immunological manifestations of inborn errors of immunity? Expert Rev Clin Immunol 2023; 19:329-339. [PMID: 36706462 DOI: 10.1080/1744666x.2023.2174105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Genetic defects affect the manner of the immune system's development, activation, and function. Nuclear factor-kappa B subunit 1 (NF-κB1) and NF-κB2 are involved in different biological processes, and deficiency in these transcription factors may reveal clinical and immunological difficulties. AREAS COVERED This review article gathers the most frequent clinical and immunological remarkable characteristics of NF-κB1 and NF-κB2 deficiencies. Afterward, an effort is made to describe the biological mechanism, which is likely to be the cause of these clinical and immunological abnormalities. EXPERT OPINION The present review article has explained the mechanism of contributions of the NF-κB1 and NF-κB2 deficiency in revealing immunodeficiency symptoms, specifically immunological and clinical manifestations. These mechanisms demonstrate the importance of NF-κB1 and NF-κB2 signaling pathways for B and T cell development, activation, antibody production, and immunotolerance. The manifestation of a mutation can range from no symptoms to severe complications in a family.
Collapse
Affiliation(s)
- Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Mojtahedi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Nasiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Mahsa Yousefpour Marzbali
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Furozan Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fafián‐Labora JA, O’Loghlen A. NF-κB/IKK activation by small extracellular vesicles within the SASP. Aging Cell 2021; 20:e13426. [PMID: 34187082 PMCID: PMC8282244 DOI: 10.1111/acel.13426] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence plays an important role in different biological and pathological conditions. Senescent cells communicate with their microenvironment through a plethora of soluble factors, metalloproteases and extracellular vesicles (EV). Although much is known about the role that soluble factors play in senescence, the downstream signalling pathways activated by EV in senescence is unknown. To address this, we performed a small molecule inhibitor screen and have identified the IκB kinases IKKε, IKKα and IKKβ as essential for senescence mediated by EV (evSASP). By using pharmacological inhibitors of IKKε, IKKα and IKKβ, in addition to CRISPR/Cas9 targeting their respective genes, we find these pathways are important in mediating senescence. In addition, we find that senescence activation is dependent on canonical NF‐κB transcription factors where siRNA targeting p65 prevent senescence. Importantly, these IKK pathways are also relevant to ageing as knockout of IKKA, IKKB and IKKE avoid the activation of senescence. Altogether, these findings open a new potential line of investigation in the field of senescence by targeting the negative effects of the evSASP independent of particular EV contents.
Collapse
Affiliation(s)
- Juan Antonio Fafián‐Labora
- Epigenetics & Cellular Senescence Group Blizard Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group Blizard Institute Barts and The London School of Medicine and Dentistry Queen Mary University of London London UK
| |
Collapse
|
3
|
Mukherjee T, Behl T, Sehgal A, Bhatia S, Singh H, Bungau S. Exploring the molecular role of endostatin in diabetic neuropathy. Mol Biol Rep 2021; 48:1819-1836. [PMID: 33559819 DOI: 10.1007/s11033-021-06205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
4
|
Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21145002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host’s immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
|
5
|
Biological Effects of EF24, a Curcumin Derivative, Alone or Combined with Mitotane in Adrenocortical Tumor Cell Lines. Molecules 2019; 24:molecules24122202. [PMID: 31212829 PMCID: PMC6630722 DOI: 10.3390/molecules24122202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Curcumin has numerous properties and is used in many preclinical conditions, including cancer. It has low bioavailability, while its derivative EF24 shows enhanced solubility. However, its effects have never been explored in adrenocortical tumor cell models. The efficacy of EF24 alone or combined with mitotane (reference drug for adrenocortical cancer) was evaluated in two adrenocortical tumor cell lines, SW13 and H295R. METHOD AND RESULTS EF24 reduced cell viability with an IC50 (half maximal inhibitory concentration) of 6.5 ± 2.4 μM and 4.9 ± 2.8 μM for SW13 and H295R cells, respectively. Combination index (EF24 associated with mitotane) suggested an additivity effect in both cell lines. Cell cycle analysis revealed an increase in subG0/G1 phase, while motility assay showed a decrease in migratory cell capacity, and similarly, clonogenic assay indicated that EF24 could reduce colony numbers. Furthermore, Wnt/β-catenin, NF-κB, MAPK, and PI3k/Akt pathways were modulated by Western blot analysis when treating cells with EF24 alone or combined with mitotane. In addition, intracellular reactive oxygen species levels increased in both cell lines. CONCLUSION This work analyzed EF24 in adrenocortical tumor cell lines for the first time. These results suggest that EF24 could potentially impact on adrenocortical tumors, laying the foundation for further research in animal models.
Collapse
|
6
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
7
|
Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22:264-89. [PMID: 25386819 PMCID: PMC6690202 DOI: 10.2174/0929867321666141106124315] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022]
Abstract
The activation of nuclear factor-kappaB (NFκB), a proinflammatory transcription factor, is a commonly observed phenomenon in breast cancer. It facilitates the development of a hormone-independent, invasive, high-grade, and late-stage tumor phenotype. Moreover, the commonly used cancer chemotherapy and radiotherapy approaches activate NFκB, leading to the development of invasive breast cancers that show resistance to chemotherapy, radiotherapy, and endocrine therapy. Inhibition of NFκB results in an increase in the sensitivity of cancer cells to the apoptotic effects of chemotherapeutic agents and radiation and restoring hormone sensitivity, which is correlated with increased disease-free survival in patients with breast cancer. In this review article, we focus on the role of the NFκB signaling pathways in the development and progression of breast cancer and the validity of NFκB as a potential target for breast cancer prevention and therapy. We also discuss the recent findings that NFκB may have tumor suppressing activity in certain cancer types. Finally, this review also covers the state-of-the-art development of NFκB inhibitors for cancer therapy and prevention, the challenges in targeting validation, and pharmacology and toxicology evaluations of these agents from the bench to the bedside.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree A. Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
8
|
Zhang HM, Zhao L, Li H, Xu H, Chen WW, Tao L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 2014; 11:92-100. [PMID: 25009751 PMCID: PMC4069806 DOI: 10.7497/j.issn.2095-3941.2014.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/03/2014] [Indexed: 01/15/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Cancer treatments by chemotherapeutic agents, surgery, and radiation have not been highly effective in reducing the incidence of cancers and increasing the survival rate of cancer patients. In recent years, plant-derived compounds have attracted considerable attention as alternative cancer remedies for enhancing cancer prevention and treatment because of their low toxicities, low costs, and low side effects. Ellagic acid (EA) is a natural phenolic constituent. Recent in vitro and in vivo experiments have revealed that EA elicits anticarcinogenic effects by inhibiting tumor cell proliferation, inducing apoptosis, breaking DNA binding to carcinogens, blocking virus infection, and disturbing inflammation, angiogenesis, and drug-resistance processes required for tumor growth and metastasis. This review enumerates the anticarcinogenic actions and mechanisms of EA. It also discusses future directions on the applications of EA.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Lei Zhao
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Hao Li
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Hao Xu
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Wen-Wen Chen
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| | - Lin Tao
- 1 Medical Sciences Research Center, 2 Department of Pharmacy, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China ; 3 Nanjing Longyuan Natural Polyphenol Synthesis Institute, Nanjing 210042, China
| |
Collapse
|