1
|
Zhang J, Li Z, Xie Z, You S, Chen Y, Zhang Y, Zhang J, Zhao N, Deng X, Sun S. Building of CuO 2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells. Pharmaceutics 2024; 16:1614. [PMID: 39771592 PMCID: PMC11680075 DOI: 10.3390/pharmaceutics16121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Methods: Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO2) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO2@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs). In response to the tumor microenvironment, DHA interacts with copper ion (Cu2+) to produce ROS, and a double (diethylthiocarbamate)-copper (II) (CuET) is generated by the complexation of DSF and Cu2+, which consumes GSH and inhibits antioxidant system. Meanwhile, utilizing the Fenton-like effect induced by the multi-copper mode can achieve ROS storm, activate the MAPK pathway, and achieve chemotherapy (CT) and chemodynamic (CDT). Results: Taking pancreatic cancer cell lines PANC-1 and BxPC-3 as the research objects, cell line experiments in vitro proved that CCTDD NPs exhibit efficient cytotoxicity on cancer cells. Conclusions: The CCTDD NPs show great potential in resisting pancreatic cancer cells and provides a simple strategy for designing powerful metal matrix composites.
Collapse
Affiliation(s)
- Jiaru Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Zuoping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Zhenzhen Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Shiwan You
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Yanbing Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Yuling Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Jing Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Na Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Xiling Deng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Shenzhen Research Institute, Northwest Agriculture and Forestry University, Shenzhen 518000, China
| |
Collapse
|
2
|
Ou A, Zhao X, Lu Z. Autophagy is involved in Ficus carica fruit extract-induced anti-tumor effects on pancreatic cancer. Biomed Pharmacother 2022; 150:112966. [PMID: 35427822 DOI: 10.1016/j.biopha.2022.112966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer (PaCa), a common and highly lethal malignant cancer, is often insensitive to radio- and/or chemotherapy. Therefore, effective treatment regiments are still lacking. Herein, we found that an extract of Ficus carica fruit (EFCF) exerted anti-tumor effects on PaCa cells. EFCF induced cell viability inhibition and apoptotic cell death in two PaCa cell lines in a dose- and time dependent manner. EFCF effectively suppressed the migration, metastasis, invasion, and colony formation of PaCa cells. Mechanistically, EFCF stimulated an increase in intracellular ROS to promote cell death and senescence. EFCF treatment also triggered autophagy, and autophagy inhibition enhanced EFCF-induced cell death. We found that EFCF decreased mitochondrial membrane potential and promoted lipid peroxidation. Moreover, intragastric administration of EFCF effectively suppressed xenograft PaCa growth inhibition by activating cell death. EFCF had no apparent toxicity to normal pancreatic epithelial cells. Together, these findings suggest that EFCF may be a potential treatment for PaCa.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
3
|
Ou A, Zhao X, Lu Z. Autophagy is involved in Ficus carica fruit extract-induced anti-tumor effects on pancreatic cancer. Biomed Pharmacother 2022; 150:112966. [DOI: doi10.1016/j.biopha.2022.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
4
|
Seo DW, Oh D, Song T, Park D, Lee S, Kim MH. Clinical outcomes of EUS-guided radiofrequency ablation for unresectable pancreatic cancer: A prospective observational study. Endosc Ultrasound 2022; 11:68-74. [PMID: 35083978 PMCID: PMC8887047 DOI: 10.4103/eus-d-21-00049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background and Objectives: EUS-guided radiofrequency ablation (EUS-RFA) has been increasingly used for the treatment of pancreatic neoplasms. The role of EUS-RFA in the management of pancreatic cancer has not yet been elucidated. This study aimed to evaluate the survival impact of EUS-RFA in unresectable pancreatic cancer. Methods: Twenty-two patients (n = 14, locally advanced unresectable; n = 8, metastatic) with unresectable pancreatic cancer underwent EUS-RFA combined with subsequent chemotherapy between May 2016 and June 2019. Survival outcomes including overall survival (OS) and progression-free survival (PFS) were evaluated. Results: EUS-RFA was successful in all patients. The median number of RFA sessions was 5 (interquartile range, [IQR], 3.25–5.75). After successful EUS-RFA, subsequent gemcitabine-based chemotherapy was performed. Early procedure-related adverse events occurred in 4 out of 107 sessions (3.74%), including peritonitis (n = 1) and abdominal pain (n = 3). During follow-up over a median of 21.23 months (IQR, 10.73–27.1), the median OS and PFS were 24.03 months (95% confidence interval [CI], 16–35.8) and 16.37 months (95% CI, 8.87–19), respectively. Conclusions: EUS-RFA is technically feasible and safe for the management of unresectable pancreatic cancer. EUS-RFA combined with systemic chemotherapy may be associated with favorable survival outcomes. Further larger-scale prospective comparative study is required to confirm these findings.
Collapse
|
5
|
Zhang H, Kong L, Zhang Y, Wang C, Sun L. Transcriptome and proteome analysis of the antitumor activity of maslinic acid against pancreatic cancer cells. Aging (Albany NY) 2021; 13:23308-23327. [PMID: 34637398 PMCID: PMC8544341 DOI: 10.18632/aging.203623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Maslinic acid (MA) is a triterpenoid compound of natural abundance in olive plants possessing numerous biological activities. The effect and molecular mechanism of MA on pancreatic cancer cells remain elusive. Here, we explored the anti-tumor activity of MA on human pancreatic cancer cells and the potential underlying molecular mechanism. The anti-cancer effects of MA on whole-cell processes, including proliferation, migration, and invasion in pancreatic cancer cells, were systematically assessed by colony formation, transwell, and migration assays. The search for potential therapeutic targets was achieved via transcriptomics and proteomics analyses. MA was demonstrated to inhibit the proliferation, migration, and invasion of PANC-1 and Patu-8988 cells, but induced apoptosis of these cells. Several key candidate genes and proteins of functional relevance for the anti-tumor activity of MA were identified through the association analysis of transcriptomics and proteomics. To our knowledge, this is the first transcription and proteomics-based comprehensive analysis of the mechanism of MA against pancreatic cancer. The findings demonstrate that MA holds promise as a therapeutic drug for managing pancreatic cancer.
Collapse
Affiliation(s)
- Hewei Zhang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lijun Kong
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yan Zhang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Cheng Wang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Linxiao Sun
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
6
|
Wang G, Wang H, Zhuang H, Yang R. An Investigation of Non-Coplanar Volumetric Modulated Radiation Therapy for Locally Advanced Unresectable Pancreatic Cancer Using a Trajectory Optimization Method. Front Oncol 2021; 11:717634. [PMID: 34604054 PMCID: PMC8485751 DOI: 10.3389/fonc.2021.717634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study was conducted in order to develop a trajectory optimization algorithm for non-coplanar volumetric modulated arc therapy (VMAT) and investigate the potential of organs at risk (OARs) sparing in locally advanced pancreatic cancer patients using non-coplanar VMAT. METHODS AND MATERIALS Firstly, a cost map that represents the ray-OAR voxel intersections at each source position was generated using a ray-tracing algorithm. A graph search algorithm was then used to determine the least-cost path from the cost map. Lastly, full arcs or partial arcs were selected based on the least-cost path to generate the non-coplanar VMAT (ncVMAT) trajectories. Clinical coplanar VMAT (coVMAT) plans for 11 patients diagnosed with locally advanced unresectable pancreatic cancer (LAPC) receiving 45 to 70 Gy in 25 fractions were replanned using non-coplanar VMAT trajectories. Both coplanar and non-coplanar plans were normalized to cover 95% of the PTV45 Gy volume with a prescription dose of 45 Gy. The conformity index (CI), homogeneity index (HI), PTV coverage, and dose to the OARs were compared between coVMAT and ncVMAT plans. RESULTS With ncVMAT, the mean coverage of PTV50 Gy, PTV54 Gy, PTV60 Gy, and PTV70 Gy increased significantly. The mean conformity index of PTV45 Gy, PTV54 Gy, and PTV70 Gy was also improved in the ncVMAT plans. Compared with coVMAT plans, the ncVMAT plans resulted in significantly lower doses to the spinal cord, bilateral kidneys, stomach, and duodenum. The maximum dose to the spinal cord decreased by 6.11%. The mean dose to the left and right kidneys decreased by an average of 5.52% and 11.71%, respectively. The D max, D mean, and D 15% of the stomach were reduced by an average of 7.45%, 15.82%, and 16.79%, separately. The D 15% and D mean of the duodenum decreased 6.38% and 5.64%, respectively. CONCLUSION A trajectory optimization algorithm was developed for non-coplanar VMAT. Compared with conventional coplanar VMAT, non-coplanar VMAT resulted in improved coverage and conformity to the targets. The sparing of OARs was significantly improved in non-coplanar VMAT compared with coVMAT plans for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
miR-522 regulates cell proliferation, migration, invasion capacities and acts as a potential biomarker to predict prognosis in triple-negative breast cancer. Clin Exp Med 2021; 22:385-392. [PMID: 34518949 DOI: 10.1007/s10238-021-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to explore the cell functions and prognostic significance of miR-522 in triple-negative breast cancer. The expression levels of miR-522 in triple-negative breast cancer tissues and cell lines were detected by quantitative real-time PCR analysis. Kaplan-Meier curve and Cox regression analysis were used to investigate the relationship between miR-522 expression and prognosis of patients, and to evaluate the possibility of miR-522 as a potential indicator for predicting the prognosis of triple-negative breast cancer. The CCK-8 and transwell assays were used to assess cell proliferation, migration, and invasion abilities. The expression of miR-522 in triple-negative breast cancer tissues was significantly higher than that in adjacent tissues and its high expression was closely associated with the high incidence of lymph node metastasis, advanced TNM stage, and BRCA1/2 mutation status. High expression of miR-522 is correlated with poor overall survival in patients with triple-negative breast cancer. Besides, functional studies in two triple-negative breast cancer cell lines showed that overexpression of miR-522 significantly promoted cell proliferation, migration, and invasion in vitro. BRCA1 was a potential direct target of miR-522. Our findings indicated that miR-522 was highly expressed in triple-negative breast cancer and was associated with poor prognosis of patients. The upregulation of miR-522 accelerated the progression of triple-negative breast cancer by targeting BRCA1. Therefore, miR-522 provides valuable information for the development of prevention and treatment strategies.
Collapse
|
8
|
Xu J, Wu KJ, Jia QJ, Ding XF. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B 2021; 21:673-689. [PMID: 32893525 PMCID: PMC7519626 DOI: 10.1631/jzus.b1900709] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.
Collapse
|
9
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
10
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Ghaedi K. Increased expression of MUSASHI1 in epithelial breast cancer cells is due to down regulation of miR-125b. BMC Mol Cell Biol 2021; 22:10. [PMID: 33541259 PMCID: PMC7863248 DOI: 10.1186/s12860-021-00348-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Musashi1 (MSI1) is an oncogenic protein with a crucial role in the proliferation and characteristics of the epithelial cells in breast cancer. The change in expression of MSI1 has a role in solid tumor progression. There are different factors that regulate MSI1 expression in various cancer tissues including microRNAs which are considered as one of the most important of these factors. The aim of our study is identification of the molecular cause of maximal expression of MSI1 in epithelial breast cancer cell lines. Results Among predicted microRNAs, miR-125b, miR-637 and miR-802 were able to significantly reduce the luciferase activity. In addition, the relative expression of these three miRNAs were measured in the cancerous cell lines that results showed a significant reduction in expression of all microRNAs. On the other hand, only the overexpression of miR-125b caused a change in the expression pattern of MSI1 in breast epithelial cancer cell lines. Accordingly, our results demonstrated that the exogenous expression of miR-125b decreased not only the MSI1 protein but also expression of epithelial markers in breast cancer cells. Conclusions The results of luciferase reporter assay showed that MSI1 is a direct target for miR-125b in epithelial breast cancer cells. Moreover, higher amount of MSI1 in those cell lines seems due to the reduced amount of miR-125b, which is responsible for epithelial features of those kinds of cancer cells. Therefore, the modulation of miR-125b may be a potential approach to help to combat against epithelial breast tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00348-8.
Collapse
Affiliation(s)
- Mahboobeh Forouzanfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran.
| |
Collapse
|
12
|
Zuo L, Tao H, Xu H, Li C, Qiao G, Guo M, Cao S, Liu M, Lin X. Exosomes-Coated miR-34a Displays Potent Antitumor Activity in Pancreatic Cancer Both in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3495-3507. [PMID: 32921986 PMCID: PMC7457762 DOI: 10.2147/dddt.s265423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Purpose MiR-34a, which acts as an important tumor suppressor gene, plays an important role in pancreatic cancer. However, the therapeutic application of miR-34a is limited by the lack of an effective delivery system. In the present study, we synthesize exosomes-coated miR-34a (exomiR-34a), and the anticancer effect of exomiR-34a was evaluated in pancreatic cancer. Materials and Methods An ultrasound approach was used to synthesize exomiR-34a, and its transfection efficiency was examined by confocal microscopy and flow cytometry. The level of miR-34a and its targeted gene Bcl-2 was detected by real-time quantitative PCR (qRT-PCR). MTT analysis was performed to determine the effect of exomiR-34a on the growth of pancreatic cancer cells. Annexin-V/PI double staining and Western blot analysis were carried out to determine the apoptosis of the pancreatic cancer cells. The xenograft nude mice model bearing human pancreatic cancer Panc28 cells was used to determine the antitumor effect of exomiR-34a in vivo. Results The exomiR-34a could cross the cell membrane efficiently, and downregulated the expression of the targeted gene Bcl-2. Treatment with exomiR-34a inhibited the growth of the pancreatic cancer cells significantly and the nanoparticles also induced apoptosis in cancer cells via affecting the expression of apoptotic-related genes. In vivo study using xenograft nude mice bearing Panc28 cancer cells revealed that exomiR-34a suppressed the growth of tumors significantly. Conclusion ExomiR-34a can inhibit the growth of pancreatic cancer both in vitro and in vivo. Targeting miR-34a is a promising strategy for the treatment of pancreatic cancer. ExomiR-34a has the potential to be developed as a novel anticancer agent for the treatment of human pancreatic malignancy.
Collapse
Affiliation(s)
- Ling Zuo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hongyu Tao
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Cong Li
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Mingyue Guo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
13
|
|
14
|
Tang Q, Ouyang H, He D, Yu C, Tang G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2800-2809. [PMID: 31284781 DOI: 10.1080/21691401.2019.1638791] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a distinct subtype of breast cancer characterized by high recurrence rates and poor prognosis compared to other breast cancers. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of various post-transcriptional gene and silence a broad set of target genes. Many recent studies have demonstrated that miRNAs play an important role in the initiation, promotion, malignant conversion, progression, and metastasis of TNBC. Therefore, the aim of this review is to focus on recent advancements of microRNAs-based potential applications in diagnosis, treatment and prognosis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Qian Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Hu Ouyang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China
| | - Dongxiu He
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Cuiyun Yu
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| | - Guotao Tang
- a Institute of Pharmacy and Pharmacology, University of South China , Hengyang , Hunan , China.,b Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , Hengyang , Hunan , China
| |
Collapse
|
15
|
Palta M, Godfrey D, Goodman KA, Hoffe S, Dawson LA, Dessert D, Hall WA, Herman JM, Khorana AA, Merchant N, Parekh A, Patton C, Pepek JM, Salama JK, Tuli R, Koong AC. Radiation Therapy for Pancreatic Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2019; 9:322-332. [PMID: 31474330 DOI: 10.1016/j.prro.2019.06.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE This guideline systematically reviews the evidence for treatment of pancreatic cancer with radiation in the adjuvant, neoadjuvant, definitive, and palliative settings and provides recommendations on indications and technical considerations. METHODS AND MATERIALS The American Society for Radiation Oncology convened a task force to address 7 key questions focused on radiation therapy, including dose fractionation and treatment volumes, simulation and treatment planning, and prevention of radiation-associated toxicities. Recommendations were based on a systematic literature review and created using a predefined consensus-building methodology and system for grading evidence quality and recommendation strength. RESULTS The guideline conditionally recommends conventionally fractionated or stereotactic body radiation for neoadjuvant and definitive therapy in certain patients and conventionally fractionated regimens for adjuvant therapy. The task force suggests a range of appropriate dose-fractionation schemes and provides recommendations on target volumes and sequencing of radiation and chemotherapy. Motion management, daily image guidance, use of contrast, and treatment with modulated techniques are all recommended. The task force supported prophylactic antiemetic medication, and patients may also benefit from medications to reduce acid secretion. CONCLUSIONS The role of radiation in the management of pancreatic cancer is evolving, with many ongoing areas of active investigation. Radiation therapy is likely to become even more important as new systemic therapies are developed and there is increased focus on controlling local disease. It is important that the nuances of available data are discussed with patients and families and that care be coordinated in a multidisciplinary fashion.
Collapse
Affiliation(s)
- Manisha Palta
- Department of Radiation Oncology, Duke University, Durham, North Carolina.
| | - Devon Godfrey
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology University of Toronto, Toronto, Ontario, Canada
| | | | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph M Herman
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Alok A Khorana
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Nipun Merchant
- Division of Surgical Oncology University of Miami, Miami, Florida
| | - Arti Parekh
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Phoenix, Arizona
| | - Caroline Patton
- American Society for Radiation Oncology, Arlington, Virginia
| | | | - Joseph K Salama
- Department of Radiation Oncology, Duke University, Durham, North Carolina; Department of Radiation Oncology, Durham VA Medical Center, Durham, North Carolina
| | - Richard Tuli
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Wei DM, Jiang MT, Lin P, Yang H, Dang YW, Yu Q, Liao DY, Luo DZ, Chen G. Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs. Int J Oncol 2019; 54:600-626. [PMID: 30570107 PMCID: PMC6317664 DOI: 10.3892/ijo.2018.4660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Loginov VI, Filippova EA, Kurevlev SV, Fridman MV, Burdennyy AM, Braga EA. Suppressive and Hypermethylated MicroRNAs in the Pathogenesis of Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Tian Y, Xu H, Farooq AA, Nie B, Chen X, Su S, Yuan R, Qiao G, Li C, Li X, Liu X, Lin X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother Res 2018. [PMID: 29516568 DOI: 10.1002/ptr.6064] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maslinic acid (MA), a natural pentacyclictriterpene, displays cytotoxic activity on various types of cancer cells. However, its underlying mechanism is unclear. In this study, we assessed the effect of MA on autophagy of human pancreatic cancer cells, and the potential autophagic pathway was presented. MA inhibited the proliferation and induced autophagy of Panc-28 cells by altering the expressions of autophagy related proteins. SDS-PAGE analysis revealed that one protein band was significantly down-regulated in cells treated with MA, and the band was identified as heat shock protein HSPA8 as analyzed using Western blot and MS, MS/MS approaches. HSPA8 knockdown could significantly inhibit cell viability and enhance the cytotoxic effects of MA, whereas HSPA8 overexpression was able to enhance cell viability, diminishing the effects of MA. Western blot analysis indicated that the effect of MA on the expression of autophagy related genes was increased significantly in cells treated with HSPA8 inhibitor VER-155008, whereas HSPA8 inducer geranylgeranylacetone antagonized the effects of MA. Our study provides evidence that MA is able to induce of autophagy via down-regulation of HSPA8 in Panc-28 cells.
Collapse
Affiliation(s)
- Ye Tian
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Zibo Biomedicinal Institute, Zibo, 255000, Shandong, China
| | - Ammad Ahmad Farooq
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Baozeng Nie
- Rizhao Tranditional Chinese Medical Hospital, Rizhao, 276800, Shandong, China
| | - Xiaoliang Chen
- Basic Medical School, Datong Univeristy, Datong, 037009, Shanxi, China
| | - Shuonan Su
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ru Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Gan Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
19
|
Jin WH, Mellon EA, Frakes JM, Murimwa GZ, Hodul PJ, Pimiento JM, Malafa MP, Hoffe SE. Impact of sarcopenia in borderline resectable and locally advanced pancreatic cancer patients receiving stereotactic body radiation therapy. J Gastrointest Oncol 2018; 9:24-34. [PMID: 29564168 DOI: 10.21037/jgo.2017.09.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Total psoas area (TPA), a marker of sarcopenia, has been used as an independent predictor of clinical outcomes in gastrointestinal (GI) cancers as a proxy for frailty and nutritional status. Our study aimed to evaluate whether TPA, in contrast to traditional measurements of nutrition like body mass index (BMI) and body surface area (BSA), was predictive of outcomes in borderline resectable pancreatic cancer (BRPC) and locally advanced pancreatic cancer (LAPC) patients receiving stereotactic body radiation therapy (SBRT). Methods Retrospective analysis of an institutional review board approved database of 222 BRPC and LAPC treated with SBRT from 2009-2016 yielded 183 patients that met our selection criteria of pre-SBRT computed tomography (CT) imaging with an identifiable L4 vertebra. Once the L4 vertebral level was identified, the bilateral psoas muscles were manually contoured. This area was normalized by patient height, with units described in mm2/m2. Receiver operating characteristic (ROC) curves were generated for TPA, BMI, and BSA to elicit clinically relevant cutoffs. Regression and Kaplan-Meier analyses were used to correlate toxicity with survival functions. Results Low TPA (OR =1.903, P=0.036) was predictive of acute toxicities, and only TPA was predictive of Grade 3 or higher acute toxicities (OR =10.24, P=0.007). Both findings were independent of tumor resectability. Pain (P=0.003), fatigue (P=0.040), and nausea (P=0.039) were significantly associated with low TPA. No association was identified between any measurement of nutritional status and the development of late toxicities, overall survival, local progression or local recurrence. However, BRPC patients survived longer (median =21.98 months) than their LAPC (median =16.2 months) counterparts (P=0.002), independent of nutritional status. Conclusions TPA measurement is readily available and more specific than BMI or BSA as a predictor of acute radiotoxic complications following SBRT in BRPC/LAPC patients. A TPA of <500 mm2/m2 is a clinically relevant cutoff that can direct physicians to address expected complications of pain, fatigue, and nausea. However, tumor resectability remains as the only predictor of overall survival in this cohort.
Collapse
Affiliation(s)
- William H Jin
- University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Gilbert Z Murimwa
- University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
20
|
MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 2018; 9:14. [PMID: 29323124 PMCID: PMC5849036 DOI: 10.1038/s41419-017-0030-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/08/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Chemo-resistance and metastasis of triple negative breast cancer (TNBC) contributed the most of treatment failure in the clinic. MicroRNAs (miRNAs) have been proved to be involved in many biological processes and diseases. In this study, we aimed to determine the role of miR-770 in the regulation of chemo-resistance and metastasis of TNBC. Clinically, miR-770 was highly expressed in chemo-sensitive tissues and predicted a better prognosis of TNBC. Functionally, ectopic expression of miR-770 suppressed the doxorubicin-resistance of TNBC cell lines via regulation of apoptosis and tumor microenvironment, which was mediated by exosomes. Moreover, miR-770 overexpression inhibited the migration and invasion. Rescue of STMN1 could partly reverse the effect of miR-770 in TNBC behaviors. Furthermore, we also demonstrated that overexpression of miR-770 inhibited DOX resistance and metastasis in vivo. Taken together, our results proved that miR-770 could suppress the doxorubicin-resistance and metastasis of TNBC cells, which broaden our insights into the underlying mechanisms in chemo-resistance and metastasis, and provided a new prognostic marker for TNBC cells.
Collapse
|
21
|
Zhao M, Ang L, Huang J, Wang J. MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis. Tumour Biol 2017; 39:1010428317691682. [PMID: 28222665 DOI: 10.1177/1010428317691682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs are small RNA molecules that play a major role in the post-transcriptional regulation of genes and influence the development, differentiation, proliferation, and apoptosis of cells and the development and progression of tumors. The epithelial-mesenchymal transition is a process by which epithelial cells morphologically transform into cells with a mesenchymal phenotype. The epithelial-mesenchymal transition plays a highly important role in tumor invasion and metastasis. Increasing evidence indicates that microRNAs are tightly associated with epithelial-mesenchymal transition regulation in tumor cells. In breast cancer, various microRNA molecules have been identified as epithelial-mesenchymal transition inducers or inhibitors, which, through different mechanisms and signaling pathways, participate in the regulation of breast cancer invasion and metastasis among various biological behaviors. The epithelial-mesenchymal transition-related microRNAs in breast cancer provide valuable molecules for researching cell invasion and metastasis, and they also provide candidate targets that may be significant for the targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Jin Wang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|