1
|
Tu M, Wang X, Liu H, Jia H, Wang Y, Li J, Zhang G. Precision patient selection for improved detection of circulating genetically abnormal cells in pulmonary nodules. Sci Rep 2024; 14:22532. [PMID: 39341939 PMCID: PMC11438957 DOI: 10.1038/s41598-024-73542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Circulating genetically abnormal cells (CACs) have emerged as a promising biomarker for the early diagnosis of lung cancer, particularly in patients with pulmonary nodules. However, their performance may be suboptimal in certain patient populations. This study aimed to refine patient selection to improve the detection of CACs in pulmonary nodules. A retrospective analysis was conducted on 241 patients with pulmonary nodules who had undergone pathological diagnosis through surgical tissue specimens. Utilizing consensus clustering analysis, the patients were categorized into three distinct clusters. Cluster 1 was characterized by older age, larger nodule size, and a higher prevalence of hypertension and diabetes. Notably, the diagnostic efficacy of CACs in Cluster 1 surpassed that of the overall patient population (AUC: 0.855 vs. 0.689, P = 0.044). Moreover, for Cluster 1, an integrated diagnostic model was developed, incorporating CACs, sex, maximum nodule type, and maximum nodule size, resulting in a further improved AUC of 0.925 (95% CI 0.846-1.000). In conclusion, our study demonstrates that CACs detection shows better diagnostic performance in aiding the differentiation between benign and malignant nodules in older patients with larger pulmonary nodules and comorbidities such as diabetes and hypertension. Further research and validation are needed to explore how to better integrate CACs detection into clinical practice.
Collapse
Affiliation(s)
- Meng Tu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China
- Henan Clinical Medical Research Center for Respiratory Diseases, Zhengzhou, China
| | - Xinjuan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China
| | - Hongping Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China
| | - Hongxia Jia
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China
| | - Jing Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, China.
- Henan Clinical Medical Research Center for Respiratory Diseases, Zhengzhou, China.
| |
Collapse
|
2
|
Chen D, Cao H, Zheng X, Wang H, Han Z, Wang W. Immune checkpoint gene signature assesses immune infiltration profiles in bladder cancer and identifies KRT23 as an immunotherapeutic target. BMC Cancer 2024; 24:1024. [PMID: 39160525 PMCID: PMC11331755 DOI: 10.1186/s12885-024-12790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND In the past few decades, researchers have made promising progress, including the development of immune checkpoint inhibitors (ICIs) in the therapy of bladder cancer (BLCA). Existing studies mainly focus on single immune checkpoint inhibitors but lack relevant studies on the gene expression profiles of multiple immune checkpoints. METHODS RNA-sequencing profiling data and clinical information of BLCA patients and normal human bladder samples were acquired from the Cancer Genome Atlas and Gene Expression Omnibus databases and analyzed to identify different expression profiles of immune checkpoint genes (ICGs) after consensus clustering analysis. Based on the 526 intersecting differentially expressed genes, the LASSO Cox regression analysis was utilized to construct the ICG signature. RESULTS According to the expression of ICGs, BLCA patients were divided into three subtypes with different phenotypic and mechanistic characteristics. Furthermore, the developed ICG signature were independent predictors of outcome in BLCA patients, and was correlated with the immune infiltration, the expression of ICGs and chemotherapeutic effect. CONCLUSIONS This study systematically and comprehensively analyzed the expression profile of immune checkpoint genes, and established the ICG signature to investigate the differences in ICGs expression and tumor immune microenvironment, which will help risk stratification and accelerate precision medicine. Finally, we identified KRT23 as the most critical model gene, and highlighted KRT23 as a potential target to enhance immunotherapy against BLCA.
Collapse
Affiliation(s)
- Dongshan Chen
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
- Department of Urology, Qilu Hospital of Shandong University, Wenhuaxi Road #107, Jinan, 250012, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Xiang Zheng
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Zengchi Han
- Department of Urology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, NO.1 Jingba Road, Shizhong District, Jinan, 250001, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital Affiliated Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Lin Y, Zhang J, Li Y, Guo W, Chen L, Chen M, Chen X, Zhang W, Jin X, Jiang M, Xiao H, Wang C, Song C, Fu F. CTPS1 promotes malignant progression of triple-negative breast cancer with transcriptional activation by YBX1. J Transl Med 2022; 20:17. [PMID: 34991621 PMCID: PMC8734240 DOI: 10.1186/s12967-021-03206-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03206-5.
Collapse
Affiliation(s)
- Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenzhe Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuan Jin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Han Xiao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China. .,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China. .,Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Xie Q, Zhao S, Liu W, Cui Y, Li F, Li Z, Guo T, Yu W, Guo W, Deng W, Gu C. YBX1 Enhances Metastasis and Stemness by Transcriptionally Regulating MUC1 in Lung Adenocarcinoma. Front Oncol 2022; 11:702491. [PMID: 34976785 PMCID: PMC8714800 DOI: 10.3389/fonc.2021.702491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal expression of the transcription factor Y-box-binding protein-1 (YBX1) is associated with the proliferation, migration, aggressiveness, and stem-like properties of various cancers. These characteristics contribute to the tumorigenesis and metastasis of cancer. We found that the expression levels of Mucin-1 (MUC1) and YBX1 were positively correlated in lung adenocarcinoma cells and lung adenocarcinoma tissue. Our retrospective cohort study of 176 lung adenocarcinoma patients after surgery showed that low expression of both YBX1 and MUC1 was an independent predictor of the prognosis and recurrence of lung adenocarcinoma. In lung adenocarcinoma cells, the silencing/overexpression of YBX1 caused a simultaneous change in MUC1, and MUC1 overexpression partially reversed the decreased tumor cell migration, aggressiveness, and stemness caused by YBX1 silencing. Moreover, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays proved that MUC1 was the downstream target of YBX1 and that YBX1 bound to the -1480~-1476 position in the promoter region of MUC1 to regulate its transcription. Furthermore, in mouse xenograft models and a lung cancer metastasis model, MUC1, which is downstream of YBX1, partially reversed the decreased number and size of tumors caused by YBX1 silencing. In conclusion, our findings indicated a novel mechanism by which YBX1 promotes the stemness and metastasis of lung adenocarcinoma by targeting MUC1 and provided a combination approach for diagnosis different from traditional single tumor biomarkers to predict patient prognosis and provide clinical treatment targets.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenzhi Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Cui
- Zhongshan Hospital, Dalian University, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Lung Cancer Diagnosis and Treatment Center, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Lung Cancer Diagnosis and Treatment Center, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer 2021; 21:558-577. [PMID: 34341537 DOI: 10.1038/s41568-021-00380-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
6
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
7
|
Zhu J, Lu Q, Li B, Li H, Wu C, Li C, Jin H. Potential of the cell-free blood-based biomarker uroplakin 2 RNA to detect recurrence after surgical resection of lung adenocarcinoma. Oncol Lett 2021; 22:520. [PMID: 34025787 PMCID: PMC8130048 DOI: 10.3892/ol.2021.12781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, and ~30% of patients with LUAD develop cancer recurrence after surgery. The present study aimed to identify and validate biomarkers that may be used to monitor recurrence following LUAD surgery. Data from patients with LUAD were downloaded from The Cancer Genome Atlas database and postoperative recurrence samples were selected. Subsequently, weighted gene co-expression network analysis (WGCNA) was subsequently performed to identify key co-expression gene modules. Additionally, enrichment analysis of the key gene modules was performed using the Database for Annotation, Visualization and Integrated Discovery. Furthermore, survival analysis was performed on the most notable biomarker, uroplakin 2 (UPK2), which was downloaded from the Oncomine database, and its effect on prognosis was assessed. WGCNA identified 39 gene modules, of which one was most associated with recurrence. Among them, UPK2, kelch domain containing 3, galanin receptor 2 and tyrosinase-related protein 1 served a central role in the co-expression network and were significantly associated with the survival of patients. A total of 132 blood samples were collected from patients with LUAD with free UPK2 in the plasma. The expression levels of UPK2 relative to GADPH were 0.1623 and 0.2763 in non-relapsed and relapsed patients, respectively. Receiver operating characteristic curve analysis was used to detect free UPK2 mRNA in the blood in order to monitor postoperative recurrence, resulting in an area under the curve of 0.767 and a 95% CI of 0.675-0.858. Patients with high free UPK2 mRNA expression had unfavorable survival outcomes compared with those with low UPK2 expression. Therefore, free UPK2 mRNA expression in the plasma may have the potential to act as an indicator of postoperative recurrence in patients with early stage LUAD.
Collapse
Affiliation(s)
- Ji Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Qijue Lu
- Department of Thoracic Surgery, First Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Bin Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Huafei Li
- School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Cong Wu
- Department of Laboratory Diagnosis, First Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chunguang Li
- Department of Thoracic Surgery, First Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Hai Jin
- Department of Thoracic Surgery, First Affiliated Hospital of The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
Xie Q, Li F, Zhao S, Guo T, Li Z, Fang L, Wang S, Liu W, Gu C. GalNAc-T3 and MUC1, a combined predictor of prognosis and recurrence in solitary pulmonary adenocarcinoma initially diagnosed as malignant solitary pulmonary nodule (≤ 3 cm). Hum Cell 2020; 33:1252-1263. [PMID: 32776306 DOI: 10.1007/s13577-020-00400-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The significance of the polypeptide N-acetyl-galactosaminyl transferase-3 (GalNAc-T3) and mucin 1 (MUC1) in solitary pulmonary adenocarcinoma (SPA) initially diagnosed as malignant solitary pulmonary nodule (≤ 3 cm), especially as a combined predictor of prognosis and recurrence, was explored in this study. A retrospective analysis of 83 patients with SPA (≤ 3 cm), which revealed postoperative pathological diagnosis was lung adenocarcinoma after complete resection. Immunohistochemical staining was used to detect the expression of GalNAc-T3 and MUC1 in primary tumor specimens. The relationship between expression and various clinicopathological factors was analyzed, as well as the effects of patients' overall survival (OS) and disease-free survival (DFS). In all patients, GalNAc-T3 was highly expressed in 53 (63.9%) cases; MUC1 was highly expressed in 31 (37.3%) cases. The GalNAc-T3 expression was correlated with differentiation, pathological risk group, N stage, and TNM stage. The group with high GalNAc-T3 expression and low MUC1 expression (GalNAc-T3Hig/MUC1Low) is correlated to pathological differentiation and has a trend related to the TNM stage. The patients with better differentiation, lower pathological risk group, lower N stage, and GalNAc-T3 high expression had better overall survival, especially the GalNAc-T3Hig/MUC1Low group. Moreover, the moderate differentiation, N3 stage, and GalNAc-T3Hig/MUC1Low group were independent predictive factors for OS. Besides, patients with lower N stage, lower TNM stage, higher GalNAc-T3 expression got better disease-free survival (DFS), especially the GalNAc-T3Hig/MUC1Low group. The GalNAc-T3Hig/MUC1Low group was an independent predictive factor for DFS. In conclusion, GalNAc-T3 and MUC1 were combined predictors of prognosis and recurrence in SPA (≤ 3 cm).
Collapse
Affiliation(s)
- Qiang Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Lei Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Shiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Wenzhi Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, Liaoning, People's Republic of China.
- Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Cui Y, Li F, Xie Q, Zhao S, Guo T, Guo P, Hu S, Hao J, Tian C, Yu W, Li Z, Fang L, Zhao L, Chen M, Wu T, Gu C. YBX1 mediates autophagy by targeting p110β and decreasing the sensitivity to cisplatin in NSCLC. Cell Death Dis 2020; 11:476. [PMID: 32561752 PMCID: PMC7305216 DOI: 10.1038/s41419-020-2555-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
Y-box binding protein 1 (YBX1) is involved in the development of multiple types of tumors. However, the relationship between YBX1 and autophagy in non-small cell lung cancer (NSCLC) remains unclear. In this study, we analyzed the expression and clinical significance of YBX1 and markers of autophagy (LC3I/II) in NSCLC and examined their roles in regulating sensitivity to cisplatin in NSCLC. The retrospective analysis of patients with NSCLC indicated that YBX1 was positively correlated with autophagy. Increased levels of YBX1 or autophagy also observed in NSCLC cells compared with those in 16HBE cells. Compared to the controls, the knockdown of YBX1 expression suppressed autophagy, increased drug sensitivity and promoted apoptosis in response to cisplatin in NSCLC cells by targeting the p110β promoter and inhibiting p110β/Vps34/beclin1 signaling pathways. We also demonstrated in an in vivo study that the overexpressed YBX1 effectively increased NSCLC growth and progression and decreased the sensitivity to cisplatin by inducing autophagy in a xenograft tumor model, and these effects were concomitant with the increasing of p110β and beclin1 expression. Collectively, these results show that YBX1 plays an essential role in autophagy in NSCLC.
Collapse
Affiliation(s)
- Yanwei Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
- Departments of Respiratory Medicine, Zhongshan Hospital, Dalian Univerdity, 116011, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Qiang Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116011, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cell, Dalian Medical University, 116011, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell, Dalian Medical University, 116011, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cell, Dalian Medical University, 116011, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, 116011, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Lei Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Lei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cell, Dalian Medical University, 116011, Dalian, China
| | - Taihua Wu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
10
|
Li F, Zhao S, Cui Y, Guo T, Qiang J, Xie Q, Yu W, Guo W, Deng W, Gu C, Wu T. α1,6-Fucosyltransferase (FUT8) regulates the cancer-promoting capacity of cancer-associated fibroblasts (CAFs) by modifying EGFR core fucosylation (CF) in non-small cell lung cancer (NSCLC). Am J Cancer Res 2020; 10:816-837. [PMID: 32266093 PMCID: PMC7136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main cancer-promoting component in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). α1,6-Fucosyltransferase (FUT8), the key enzyme catalyzing core α1,6-fucosylation (CF), plays a promoting role in multiple malignancies. In the current study, we investigated the function of FUT8 in CAFs and elucidated the mechanism through which FUT8 regulates the cancer-promoting capacity of CAFs in NSCLC. A bioinformatics analysis was performed to reveal the relationship between FUT8 and CAFs. Resected specimens from NSCLC patients were analyzed to assess the expression of FUT8 in CAFs. Primary CAFs and normal lung fibroblasts (NLFs) were extracted from NSCLC patient specimens and were co-cultured with NSCLC cell lines in a novel 3D-printed non-contact co-culture device. An In vivo CAF/NSCLC co-injection tumorigenesis assay was performed using nude mice to study the function of FUT8/CF in TME formation. The current study revealed that FUT8-mediated CF in CAFs plays a positive role in the cancer-promoting capacity of these cells. FUT8 overexpression was observed in CAFs isolated from some lung adenocarcinoma cases. Further investigation showed that FUT8/CF in CAFs promoted the formation of an invasive and malignant TME in vivo and in vitro, and the resulting NSCLC cells exhibited faster proliferation and increased invasiveness. EGFR signaling exerts a catalytic effect on the cancer-promoting capacity of CAFs and is regulated by the CF modification of the EGFR protein.
Collapse
Affiliation(s)
- Fengzhou Li
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Shilei Zhao
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Yanwei Cui
- Zhongshan Hospital, Dalian UniversityDalian, China
| | - Tao Guo
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Jiaqi Qiang
- Dalian Municipal Central Hospital Affiliated to Dalian Medical UniversityDalian, China
| | - Qiang Xie
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Lab of Oncology in South ChinaGuangzhou, China
| | - Chundong Gu
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Taihua Wu
- The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
11
|
Wang Y, Su J, Wang Y, Fu D, Ideozu JE, Geng H, Cui Q, Wang C, Chen R, Yu Y, Niu Y, Yue D. The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis. J Exp Clin Cancer Res 2019; 38:386. [PMID: 31481087 PMCID: PMC6720408 DOI: 10.1186/s13046-019-1347-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a deadly urological tumor that remains largely incurable. Our limited understanding of key molecular mechanisms underlying RCC invasion and metastasis has hampered efforts to identify molecular drivers with therapeutic potential. With evidence from our previous study revealing that nuclear overexpression of YBX1 is associated with RCC T stage and metastasis, we investigated the effects of YBX1 in RCC migration, invasion, and adhesion, and then characterized its interaction with RCC-associated proteins G3BP1 and SPP1. Methods Renal cancer cell lines, human embryonic kidney cells, and clinical samples were analyzed to investigate the functional role of YBX1 in RCC metastasis. YBX1 knockdown cells were established via lentiviral infection and subjected to adhesion, transwell migration, and invasion assay. Microarray, immunoprecipitation, dual-luciferase reporter assay, and classical biochemical assays were applied to characterize the mechanism of YBX1 interaction with RCC-associated proteins G3BP1 and SPP1. Results Knockdown of YBX1 in RCC cells dramatically inhibited cell adhesion, migration, and invasion. Mechanistic investigations revealed that YBX1 interaction with G3BP1 upregulated their downstream target SPP1 in vitro and in vivo, which led to an activated NF-κB signaling pathway. Meanwhile, knockdown of SPP1 rescued the YBX1/G3BP1-mediated activation of NF-κB signaling pathway, and RCC cell migration and invasion. We further showed that YBX1 expression was positively correlated with G3BP1 and SPP1 expression levels in clinical RCC samples. Conclusions YBX1 interacts with G3BP1 to promote metastasis of RCC by activating the YBX1/G3BP1–SPP1–NF-κB signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1347-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Su
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.,Department of Laboratory Medicine, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China
| | - Yiting Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Donghe Fu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Justin E Ideozu
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Chicago, IL, 60614, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.,Department of Pediatrics, Feinberg School of Medicine at Northwestern University Chicago, Chicago, IL, 60611, USA
| | - Qiqi Cui
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yixi Yu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Yue
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China. .,Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Zhang C, Yin T, Tao R, Xiao B, Chen J, Li Z, Miao X, Peng Q, Sun L, Zhang W, Ren J, Zhang Z, Zhang Y, Li X, Zhang W. Elevated nuclear YBX1 expression and the clinicopathological characteristics of patients with solid tumors: a meta-analysis. Cancer Manag Res 2019; 11:4391-4402. [PMID: 31191002 PMCID: PMC6526190 DOI: 10.2147/cmar.s195243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2019] [Indexed: 01/11/2023] Open
Abstract
Purpose: Y-box binding protein 1 (YBX1) is a multifunctional protein linked to tumor progression and its elevated expression is an indicator of poor prognosis in various cancers. This meta-analysis aimed to investigate the prognostic value and clinical significance of YBX1 in malignant cancer. Methods: Relevant articles published through September 12, 2018 were identified from a comprehensive electronic and manual search in PubMed, Web of Science and Embase databases. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to estimate the relationship among clinicopathological characteristics, overall survival and disease-free-survival of patients with solid tumor and YBX1 expression. Results: The study included 27 studies and 5,996 patients. Our analysis revealed significant association between increased YBX1 expression and tumor differentiation status, tumor size and lymph node metastasis; moreover, the pooled HR values demonstrated that high nuclear YBX1 expression was significantly associated with worse overall survival (HR=2.14; 95% CI: 1.72–2.67, P<0.001). Conclusion: The evidence supports YBX1 as a tumor biomarker to guide clinical management and indicate prognosis.
Collapse
Affiliation(s)
- Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Tingting Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ran Tao
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Bo Xiao
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zixuan Li
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xueyuan Miao
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Liu Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Weihua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Junxu Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Ying Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, People's Republic of China
| | - Wei Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
13
|
The Nutritional Cytokine Leptin Promotes NSCLC by Activating the PI3K/AKT and MAPK/ERK Pathways in NSCLC Cells in a Paracrine Manner. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2585743. [PMID: 31119158 PMCID: PMC6500706 DOI: 10.1155/2019/2585743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022]
Abstract
Purpose Leptin is a nutritional cytokine encoded by the obesity gene whose concentration in the tumor microenvironment is closely related to the occurrence and progression of cancer. However, previous evidence has suggested that there is no clear relationship between serum leptin concentrations and lung cancer progression. Cancer-associated fibroblasts (CAFs), the most abundant component of the tumor microenvironment in a variety of solid tumors, were recently reported to produce leptin. Therefore, it was inferred that leptin is most likely to affect non-small-cell lung cancer (NSCLC) through an autocrine and paracrine mechanism. In the current study, we investigated the paracrine effect and mechanism of leptin produced by CAFs on NSCLC by establishing a novel in vitro cell coculture system. Methods A noncontact coculture device was designed and made by 3D printing. CAFs and paired normal lung fibroblasts (NLFs) from 5 patients were successfully isolated and cocultured with two NSCLC cell lines in a coculture system. The background expression of leptin was detected by western blot. The in situ expression of leptin and its receptor (Ob-R) in NSCLC tissues and paired normal lung tissues was analyzed by immunohistochemistry. Furthermore, we downregulated the expression of leptin in CAFs and assessed changes in its promotion on NSCLC cells in the coculture system. Finally, changes in the phosphorylation of ERK1/2 and AKT were examined to investigate the molecular mechanisms responsible for the paracrine promotion of NSCLC cells by leptin. Results Leptin was overexpressed in nearly all five primary CAF lines compared with its expression in paired NLFs. IHC staining showed that the expression of leptin was high in NSCLC cells, slightly lower in CAF, and negative in normal lung tissue. Ob-R was strongly expressed in NSCLC cells. The ability of A549 and H1299 cells to proliferate and migrate was enhanced by high leptin levels in both the cocultured fibroblasts and the culture medium. Furthermore, western blot assays suggested that the MAPK/ERK1/2 and PI3K/AKT signaling pathways were activated by leptin produced by CAFs, which demonstrated that the functions of paracrine leptin in NSCLC are as those of the serum leptin to other cancers. Conclusion Leptin produced by CAF promotes proliferation and migration of NSCLC cells probably via PI3K/AKT and MAPK/ERK1/2 signaling pathways in a paracrine manner.
Collapse
|
14
|
Kosnopfel C, Sinnberg T, Sauer B, Busch C, Niessner H, Schmitt A, Forchhammer S, Grimmel C, Mertens PR, Hailfinger S, Dunn SE, Garbe C, Schittek B. YB-1 Expression and Phosphorylation Regulate Tumorigenicity and Invasiveness in Melanoma by Influencing EMT. Mol Cancer Res 2018; 16:1149-1160. [PMID: 29743296 DOI: 10.1158/1541-7786.mcr-17-0528] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Cutaneous melanoma represents one of the most aggressive human tumor entities possessing a high tendency to metastasize. Cancer cells frequently exploit a highly conserved developmental program, the epithelial-to-mesenchymal transition (EMT), to gain migratory and invasive properties promoting their metastatic spread. Cytoplasmic localization of the oncogenic transcription and translation factor Y-box binding protein 1 (YB-1) is a powerful inducer of EMT in breast carcinoma cells. Interestingly, EMT-like processes have also been observed in cutaneous melanoma despite its neural crest origin. Here, increased expression of YB-1 negatively affects patient survival in malignant melanoma and promotes melanoma cell tumorigenicity both in vitro and in vivo Intriguingly, this effect seems to be mainly mediated by cytoplasmic YB-1 that does not exhibit phosphorylation at serine-102 (S102). Moreover, S102 unphosphorylated YB-1 enhances the migratory and invasive potential of human melanoma cells in two-dimensional (2D) and three-dimensional (3D) culture systems and facilitates acquisition of a mesenchymal-like invasive phenotype in the chick embryo model. Collectively, these data demonstrate that the cytoplasmic activity of YB-1 stimulates tumorigenicity and metastatic potential of melanoma cells by promoting EMT-like properties.Implications: This study reveals for the first time that YB-1 efficiently drives tumorigenicity and invasiveness of melanoma cells in its S102 unphosphorylated cytoplasmic state and that YB-1 expression represents a negative prognostic factor in primary melanoma patients. Mol Cancer Res; 16(7); 1149-60. ©2018 AACR.
Collapse
Affiliation(s)
- Corinna Kosnopfel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Christian Busch
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
- Dermateam, Winterthur, Switzerland
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Anja Schmitt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Cornelia Grimmel
- FACS Core Facility, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stephan Hailfinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, British Columbia, Canada
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Quantitative proteomic analysis of pancreatic cyst fluid proteins associated with malignancy in intraductal papillary mucinous neoplasms. Clin Proteomics 2018; 15:17. [PMID: 29713252 PMCID: PMC5907296 DOI: 10.1186/s12014-018-9193-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background
The application of advanced imaging technologies for identifying pancreatic cysts has become widespread. However, accurately differentiating between low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive intraductal papillary mucinous neoplasms (IPMNs) remains a diagnostic challenge with current biomarkers, necessitating the development of novel biomarkers that can distinguish IPMN malignancy.
Methods Cyst fluid samples were collected from nine IPMN patients (3 LGD, 3 HGD, and 3 invasive IPMN) during their pancreatectomies. An integrated proteomics approach that combines filter-aided sample preparation, stage tip-based high-pH fractionation, and high-resolution MS was applied to acquire in-depth proteomic data of pancreatic cyst fluid and discover marker candidates for IPMN malignancy. Biological processes of differentially expressed proteins that are related to pancreatic cysts and aggressive malignancy were analyzed using bioinformatics tools such as gene ontology analysis and Ingenuity pathway analysis. In order to confirm the validity of the marker candidates, 19 cyst fluid samples were analyzed by western blot.
Results A dataset of 2992 proteins was constructed from pancreatic cyst fluid samples. A subsequent analysis found 2963 identified proteins in individual samples, 2837 of which were quantifiable. Differentially expressed proteins between histological grades of IPMN were associated with pancreatic diseases and malignancy according to ingenuity pathway analysis. Eighteen biomarker candidates that were differentially expressed across IPMN histological grades were discovered—7 DEPs that were upregulated and 11 that were downregulated in more malignant grades. HOOK1 and PTPN6 were validated by western blot in an independent cohort, the results of which were consistent with our proteomic data. Conclusions This study demonstrates that novel biomarker candidates for IPMN malignancy can be discovered through proteomic analysis of pancreatic cyst fluid. Electronic supplementary material The online version of this article (10.1186/s12014-018-9193-1) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Wang Y, Su J, Fu D, Wang Y, Chen Y, Chen R, Qin G, Zuo J, Yue D. The Role of YB1 in Renal Cell Carcinoma Cell Adhesion. Int J Med Sci 2018; 15:1304-1311. [PMID: 30275756 PMCID: PMC6158664 DOI: 10.7150/ijms.25580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Y-box binding protein 1 (YB1) is a multifunctional protein involved in many processes related to cancer progression and metastasis. Methods: In this study, we constructed YB1 knockdown stable renal cell carcinoma (RCC) cell line 786-0. The gene expression profile of 786-0 was performed by DNA microarray analysis to identify genes that were regulated by YB1. Real-time PCR and western blotting were used to test the genes and proteins expression. Transforming growth factor-β (TGF-β) activity was detected by dual-luciferase reporter assay. Cell adhesion assay was used to determine RCC cell adhesion ability. Results: Pathway analysis revealed that YB1 knockdown influenced cell adhesion molecules (CAMs). We further verified four genes (CLDN4, NRXN3, ITGB8, and VCAN) related to CAMs by real-time PCR, and confirmed that YB1 regulated the expression of ITGB8 in RCC. Functional assays demonstrated that knockdown of YB1 significantly inhibited the cell adhesion of 786-0 cells in vitro. In addition, YB1 affected TGF-β activation. Conclusion: Our study demonstrated that YB1 modulated the adhesion ability of renal cell carcinoma cells by regulating ITGB8 and TGF-β.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Jing Su
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Donghe Fu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China.,Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yiting Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Yajing Chen
- Research Center of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Jing Zuo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Dan Yue
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
17
|
Vaklavas C, Blume SW, Grizzle WE. Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Front Oncol 2017; 7:158. [PMID: 28798901 PMCID: PMC5526920 DOI: 10.3389/fonc.2017.00158] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/04/2023] Open
Abstract
Although transcript levels have been traditionally used as a surrogate measure of gene expression, it is increasingly recognized that the latter is extensively and dynamically modulated at the level of translation (messenger RNA to protein). Over the recent years, significant progress has been made in dissecting the complex posttranscriptional mechanisms that regulate gene expression. This advancement in knowledge came hand in hand with the progress made in the methodologies to study translation both at gene-specific as well as global genomic level. The majority of translational control is exerted at the level of initiation; nonetheless, protein synthesis can be modulated at the level of translation elongation, termination, and recycling. Sequence and structural elements and epitranscriptomic modifications of individual transcripts allow for dynamic gene-specific modulation of translation. Cancer cells usurp the regulatory mechanisms that govern translation to carry out translational programs that lead to the phenotypic hallmarks of cancer. Translation is a critical nexus in neoplastic transformation. Multiple oncogenes and signaling pathways that are activated, upregulated, or mutated in cancer converge on translation and their transformative impact "bottlenecks" at the level of translation. Moreover, this translational dysregulation allows cancer cells to adapt to a diverse array of stresses associated with a hostile microenviroment and antitumor therapies. All elements involved in the process of translation, from the transcriptional template, the components of the translational machinery, to the proteins that interact with the transcriptome, have been found to be qualitatively and/or quantitatively perturbed in cancer. This review discusses the regulatory mechanisms that govern translation in normal cells and how translation becomes dysregulated in cancer leading to the phenotypic hallmarks of malignancy. We also discuss how dysregulated mediators or components of translation can be utilized as biomarkers with potential diagnostic, prognostic, or predictive significance. Such biomarkers have the potential advantage of uniform applicability in the face of inherent tumor heterogeneity and deoxyribonucleic acid instability. As translation becomes increasingly recognized as a process gone awry in cancer and agents are developed to target it, the utility and significance of these potential biomarkers is expected to increase.
Collapse
Affiliation(s)
- Christos Vaklavas
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott W Blume
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Grizzle
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells. Mol Cell Biochem 2017; 433:1-12. [PMID: 28382490 DOI: 10.1007/s11010-017-3011-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.
Collapse
|