1
|
Lee SY, Cho HJ, Choi J, Ku B, Moon SW, Moon MH, Kim KS, Hyun K, Kim TJ, Sung YE, Hwang Y, Lee E, Ahn DH, Choi JY, Lim JU, Park CK, Kim SW, Kim SJ, Koo IS, Jung WS, Lee SH, Yeo CD, Lee DW. Cancer organoid-based diagnosis reactivity prediction (CODRP) index-based anticancer drug sensitivity test in ALK-rearrangement positive non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res 2023; 42:309. [PMID: 37993887 PMCID: PMC10664561 DOI: 10.1186/s13046-023-02899-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Recently, cancer organoid-based drug sensitivity tests have been studied to predict patient responses to anticancer drugs. The area under curve (AUC) or IC50 value of the dose-response curve (DRC) is used to differentiate between sensitive and resistant patient's groups. This study proposes a multi-parameter analysis method (cancer organoid-based diagnosis reactivity prediction, CODRP) that considers the cancer stage and cancer cell growth rate, which represent the severity of cancer patients, in the sensitivity test. METHODS On the CODRP platform, patient-derived organoids (PDOs) that recapitulate patients with lung cancer were implemented by applying a mechanical dissociation method capable of high yields and proliferation rates. A disposable nozzle-type cell spotter with efficient high-throughput screening (HTS) has also been developed to dispense a very small number of cells due to limited patient cells. A drug sensitivity test was performed using PDO from the patient tissue and the primary cancer characteristics of PDOs were confirmed by pathological comparision with tissue slides. RESULTS The conventional index of drug sensitivity is the AUC of the DRC. In this study, the CODRP index for drug sensitivity test was proposed through multi-parameter analyses considering cancer cell proliferation rate, the cancer diagnosis stage, and AUC values. We tested PDOs from eight patients with lung cancer to verify the CODRP index. According to the anaplastic lymphoma kinase (ALK) rearrangement status, the conventional AUC index for the three ALK-targeted drugs (crizotinib, alectinib, and brigatinib) did not classify into sensitive and resistant groups. The proposed CODRP index-based drug sensitivity test classified ALK-targeted drug responses according to ALK rearrangement status and was verified to be consistent with the clinical drug treatment response. CONCLUSIONS Therefore, the PDO-based HTS and CODRP index drug sensitivity tests described in this paper may be useful for predicting and analyzing promising anticancer drug efficacy for patients with lung cancer and can be applied to a precision medicine platform.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jimin Choi
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kwanyong Hyun
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yeoun Eun Sung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Songeui Multiplex Hall, Seoul, Republic of Korea
| | - In-Seong Koo
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Woo Seok Jung
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang-Hyun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea.
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Wan Y, Qian Y, Wang Y, Fang F, Wu G. Prognostic value of Beclin 1, EGFR and ALK in non-squamous non-small cell lung cancer. Discov Oncol 2022; 13:127. [PMID: 36401689 PMCID: PMC9675885 DOI: 10.1007/s12672-022-00586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant tumors. The study was carried out to investigate the prognostic value of Beclin 1, EGFR and ALK for this cancer. Patients diagnosed with non-squamous NSCLC and admitted to our hospital from January 2011 to September 2016 were analyzed. Expression of Beclin 1 and mutation of EGFR and ALK were assessed using polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) and analyzed for their relationship with demographic and clinical characteristics of the patients. Multivariate Cox regression models were applied to analyze the risk factors associated with survival and receiver response curves (ROC) were plotted to determine the prognostic value of Beclin 1, EGFR and ALK for patients with non-squamous NSCLC. Compared with adjacent normal tissue, Beclin 1 expression was elevated in the cancer tissue significantly; assessments of EGFR and ALK mutations showed that out of the 480 patients, 233 (48.5%) and 75 (12.6%) patients had EGFR and ALK mutations. Univariate analysis revealed that Beclin 1 level, EGFR and ALK mutations were associated with lymph node metastasis, TNM stage, tumor differentiation and prognosis, but not with gender, age and smoking status. The Kaplan-Meier survival analysis indicated that low Beclin 1 expression and positive EGFR and ALK rearrangements were associated with higher survival rate and longer progress-free survival (PFS). Multivariate Cox regression analysis showed that Beclin 1, EGFR, ALK mutations, tumor differentiation grade, TNM stage and lymph node metastasis were independently associated with PFS. ROC analysis showed that Beclin 1, EGFR and ALK were significant predictors for PFS; the areas under curve (AUC) for Beclin 1, EGFR and ALK were 0.812 (P = 0.018, cut-off value: 1.2), 0.781 (P = 0.011, cut-off value: 15%) and 0.722 (P = 0.010, cut-off value: 11%), respectively, suggesting that they have significant prognostic value for lung cancer patients. Our data indicate that Beclin 1, EGFR and ALK genes are associated with the prognosis of patients with non-squamous NSCLC. High Beclin 1 expression and negative EGFR and ALK mutations predict a poor prognosis with PFS.
Collapse
Affiliation(s)
- Yanhui Wan
- Department of Thoracic Surgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, 3002 Futian Road , Shenzhen, 518000, China.
| | - Youhui Qian
- Department of Thoracic Surgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, 3002 Futian Road , Shenzhen, 518000, China
| | - Youyu Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, 3002 Futian Road , Shenzhen, 518000, China
| | - Fuyuan Fang
- Department of Thoracic Surgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, 3002 Futian Road , Shenzhen, 518000, China
| | - Guodong Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, 3002 Futian Road , Shenzhen, 518000, China
| |
Collapse
|
3
|
FGFR2-IIIb Expression by Immunohistochemistry Has High Specificity in Cholangiocarcinoma with FGFR2 Genomic Alterations. Dig Dis Sci 2022; 67:3797-3805. [PMID: 34773565 DOI: 10.1007/s10620-021-07303-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND FGFR2 genomic alterations are observed in 10-20% of cholangiocarcinoma (CCA). Although FGFR2 fusions are an important actionable target, FGFR2 protein expression has not been thoroughly characterized. AIMS To evaluate FGFR2 protein expression in cholangiocarcinoma harboring FGFR2 genomic alterations. METHODS FGFR2 protein expression was evaluated in 99 CCA cases with two different antibodies. FGFR2 genomic alterations were confirmed via next-generating sequencing (NGS) or FISH. Primary objective was to determine the specificity and sensitivity of FGFR2 immunohistochemistry staining for detecting FGFR2 genomic alterations. Secondary objectives included overall FGFR2 immunohistochemistry staining in CCA patients, and evaluation of whether FGFR2 expression correlates with clinical outcomes including overall survival (OS), progression-free survival (PFS), and time-to-tumor recurrence (TTR). RESULTS Immunohistochemistry staining with two antibodies against FGFR2, FPR2-D, and clone 98706 showed high accuracy (78.7% and 91.9%) and specificity (82.9% and 97.7%), and moderate sensitivity (53.9% and 57.1%), respectively, when compared with the standard methods for detecting FGFR2 genomic alterations. In a median follow-up of 72 months, there were no statistically significant differences in OS, PFS, and TTR, for patients with positive or negative FGFR2 staining. CONCLUSION FGFR2 protein expression by immunohistochemistry has high specificity and therefore could be used to imply the presence of FGFR2 genomic alterations in the context of a positive test. In the case of a negative test, NGS or FISH would be necessary to ascertain cases with FGFR2 genomic alterations.
Collapse
|
4
|
Ding Y, Sun C, Su W, Miao C, He X, Wang JS, Zhang ZH. Detecting anaplastic lymphoma kinase (ALK) gene rearrangements with next-generation sequencing remains a reliable approach in patients with non-small-cell lung cancer. Virchows Arch 2022; 481:405-419. [PMID: 35624360 DOI: 10.1007/s00428-022-03339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Next-generation sequencing (NGS) is rapidly becoming routine in clinical oncology practice to identify therapeutic biomarkers, including gene rearrangements in anaplastic lymphoma kinase (ALK). Our study investigated the concordance of ALK positivity evaluated by DNA-based NGS with orthogonal ALK testing methods such as fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and RNA-based NGS (RNA-NGS). Thirty-eight patients with lung adenocarcinoma who were detected with ALK rearrangements using DNA-NGS and also had adequate tissue samples submitted for FISH, IHC, and RNA-NGS, were included in this study. Of the 38 patients, RNA samples from 3 patients failed quality control for RNA-NGS. The concordance of ALK positivity was calculated relative to DNA-NGS results. The concordance rates were 97.1% (34/35) for RNA-NGS, 94.7% (36/38) for IHC, and 97.4% (37/38) for FISH. DNA-NGS detected single ALK rearrangements in 14 (35.0%) patients and complex ALK rearrangements in 26 (65.0%). RNA-NGS detected only single transcripts of the primary ALK fusions. A novel LANCL1-ALK (L7:A20) detected using DNA-NGS was detected as EML4-ALK (E13:A20) transcripts using RNA-NGS. Interestingly, patients with single ALK rearrangements were more likely to be detected with atypical isolated red signals (p < 0.001), while patients with complex ALK rearrangements were more likely to be detected with atypical split red and green signals less than 2 signal diameters apart (p < 0.001). Our study highlights the reliability of NGS in the accurate detection of specific ALK fusion variants and concomitant mutations that are crucial for individualized treatment decisions in patients with lung cancer.
Collapse
Affiliation(s)
- Ying Ding
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Sun
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Su
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Chen Miao
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao He
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Song Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Zhi-Hong Zhang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Kang S, Woo J, Kim S. A Systematic Review of Companion Diagnostic Tests by Immunohistochemistry for the Screening of Alectinib-Treated Patients in ALK-Positive Non-Small Cell Lung Cancer. Diagnostics (Basel) 2022; 12:diagnostics12051297. [PMID: 35626451 PMCID: PMC9140374 DOI: 10.3390/diagnostics12051297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Companion diagnostic tests and targeted therapy changed the management of non-small cell lung cancer by diagnosing genetic modifications and enabling individualized treatment. The purpose of this systematic review is to assess the clinical applicability of companion diagnostic tests (IHC method) by comparing the effects of alectinib and crizotinib in patients with ALK-positive NSCLC. We searched for literature up to March 2022 in PubMed, Web of Science, Cochrane, and Google Scholar. The inclusion criteria were randomized controlled trials comparing the effectiveness of alectinib and crizotinib using an IHC-based companion diagnostic test. The primary outcome was progression-free survival (PFS). The secondary outcomes were objective response rate (ORR), duration of response (DOR), and overall survival (OS). PFS was longer in alectinib (68.4 [61.0, 75.9]) than crizotinib (48.7 [40.4, 56.9]). This indicated that alectinib had a superior efficacy to that of crizotinib (HR range 0.15–0.47). In all secondary outcomes, alectinib was better than crizotinib. Particularly for the ORR, the odds ratio (OR) confirmed that alectinib had a lower risk rate (OR: 2.21, [1.46–3.36], p = 0.0002, I2 = 39%). Therefore, the companion diagnostic test (immunohistochemistry) is an effective test to determine whether to administer alectinib to ALK-positive NSCLC patients.
Collapse
Affiliation(s)
- Sulim Kang
- Department of Medical Industry, Dongguk University-Seoul, 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Korea; (S.K.); (J.W.)
| | - Jaehyun Woo
- Department of Medical Industry, Dongguk University-Seoul, 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Korea; (S.K.); (J.W.)
| | - Sungmin Kim
- Department of Medical Industry, Dongguk University-Seoul, 26, Pil-dong 3-ga, Jung-gu, Seoul 04620, Korea; (S.K.); (J.W.)
- Department of Medical Biotechnology, Dongguk University, Bio Medi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
- Correspondence:
| |
Collapse
|
6
|
Pathak N, Chitikela S, Malik PS. Recent advances in lung cancer genomics: Application in targeted therapy. ADVANCES IN GENETICS 2021; 108:201-275. [PMID: 34844713 DOI: 10.1016/bs.adgen.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genomic characterization of lung cancer has not only improved our understanding of disease biology and carcinogenesis but also revealed several therapeutic opportunities. Targeting tumor dependencies on specific genomic alterations (oncogene addiction) has accelerated the therapeutic developments and significantly improved the outcomes even in advanced stage of disease. Identification of genomic alterations predicting response to specific targeted treatment is the key to success for this "personalized treatment" approach. Availability of multiple choices of therapeutic options for specific genomic alterations highlight the importance of optimum sequencing of drugs. Multiplex gene testing has become mandatory in view of constantly increasing number of therapeutic targets and effective treatment options. Influence of genomic characteristics on response to immunotherapy further makes comprehensive genomic profiling necessary before therapeutic decision making. A comprehensive elucidation of resistance mechanisms and directed treatments have made the continuum of care possible and transformed this deadly disease into a chronic condition. Liquid biopsy-based approach has made the dynamic monitoring of disease possible and enabled treatment optimizations accordingly. Current lung cancer management is the perfect example of "precision-medicine" in clinical oncology.
Collapse
Affiliation(s)
- Neha Pathak
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Sindhura Chitikela
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A.I.R.C.H., All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Rao S, Anthony ML, Chowdhury N, Kathrotia R, Mishra M, Naithani M, Sindhwani G, Singh N. Molecular characterization of lung carcinomas: A study on diagnostic, predictive, and prognostic markers using immunohistochemical analysis at a Tertiary Care Center in Uttarakhand, India. J Carcinog 2021; 20:17. [PMID: 34729049 PMCID: PMC8531572 DOI: 10.4103/jcar.jcar_14_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION: Focused studies in different geographic regions would delineate the underlying biological differences and molecular alterations in non-small cell lung cancer (NSCLC) worldwide. Previous studies in literature have documented limited characterization by studying a minimal number of biological markers. This study was done to evaluate expression of multiple immunomarkers including diagnostic, prognostic, and predictive markers in NSCLC for its characterization. MATERIALS AND METHODS: This was an observational study conducted on 60 consecutive cases of NSCLC. Immunomarkers comprising of p63, p40, TTF-1, napsin A, B-Raf, c-Met, phospho-AKT (P-AKT), PTEN, anaplastic lymphoma kinase (ALK), epidermal growth factor receptor (EGFR) and K-Ras, synaptophysin, chromogranin and pan-cytokeratin were evaluated on paraffin-embedded tissue sections of NSCLC. RESULTS: Age of patients with NSCLC in our study ranged from 35 to 90 years, and 93.3% of them were chronic smokers. 93.3% of cases presented in late stages (Stages III and IV) and 78% of cases were squamous cell carcinoma (SCC). EGFR positivity was noted in 83.3% of cases. ALK was positive in one case while C-Met and PTEN immunopositivity was noted in only two cases. Ten cases showed positivity for K-Ras and 90% of these were SCC. Ten cases were positive for B-Raf and 80% of these were SCC. 30% of cases showed immunopositivity for P-AKT. None of the molecular markers was found to have statistically significant correlation with clinicopathological parameters. CONCLUSION: SCC is the predominant histological subtype of NSCLC in the region of Uttarakhand, India, with a high proportion of cases harboring EGFR mutation. Variable expression of K-Ras, P-AKT, ALK 1, and PTEN in NSCLC signifies that molecular profile of every case is individualistic and independent. We attribute this to ethnicity, influence of implicated substance or metabolite in tobacco, and variable mutations incurred in tumor cells over a period of time.
Collapse
Affiliation(s)
- Shalinee Rao
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Michael Leonard Anthony
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nilotpal Chowdhury
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rajesh Kathrotia
- Department of Physiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Mayank Mishra
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manisha Naithani
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Girish Sindhwani
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Neha Singh
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
8
|
Chang S, Shim HS, Kim TJ, Choi YL, Kim WS, Shin DH, Kim L, Park HS, Lee GK, Lee CH. Molecular biomarker testing for non-small cell lung cancer: consensus statement of the Korean Cardiopulmonary Pathology Study Group. J Pathol Transl Med 2021; 55:181-191. [PMID: 33966368 PMCID: PMC8141968 DOI: 10.4132/jptm.2021.03.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular biomarker testing is the standard of care for non–small cell lung cancer (NSCLC) patients. In 2017, the Korean Cardiopulmonary Pathology Study Group and the Korean Molecular Pathology Study Group co-published a molecular testing guideline which contained almost all known genetic changes that aid in treatment decisions or predict prognosis in patients with NSCLC. Since then there have been significant changes in targeted therapies as well as molecular testing including newly approved targeted drugs and liquid biopsy. In order to reflect these changes, the Korean Cardiopulmonary Pathology Study Group developed a consensus statement on molecular biomarker testing. This consensus statement was crafted to provide guidance on what genes should be tested, as well as methodology, samples, patient selection, reporting and quality control.
Collapse
Affiliation(s)
- Sunhee Chang
- Department of Pathology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Lucia Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Heae Surng Park
- Department of Pathology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Geon Kook Lee
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Chang Hun Lee
- Department of Pathology, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | | |
Collapse
|
9
|
Kumar M, Kumar K, Singh HP, Nair S, Patel A, Kumar A, Soni S. Discordance between Fluorescence In Situ Hybridization and Immunohistochemistry Analysis of Anaplastic Lymphoma Kinase Rearrangement in Indian Patients with Non-Small Cell Lung Cancer. South Asian J Cancer 2020; 9:109-114. [PMID: 33354554 PMCID: PMC7745737 DOI: 10.1055/s-0040-1721191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Aims This study aims to evaluate the incidence of anaplastic lymphoma kinase (ALK) mutation in nonsmall cell lung cancer (NSCLC) incorporating fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) methods and to look for any discordance. Methods We evaluated 101 samples obtained from an enriched cohort of NSCLCs patients from the Army Hospital Research and Referral, New Delhi, India, between November 2016 and November 2018. IHC was performed using the highly-sensitive D5F3 rabbit monoclonal primary antibody. FISH was performed with dual-color, break-apart probe (ZytoLight SPEC) on formalin-fixed, and paraffin-embedded tissue. Discordance between IHC and FISH for ALK rearrangements was evaluated. Pearson correlation coefficient ( r ) was performed to identify any association of ALK presence (by IHC and FISH) with smoking brain metastasis, programmed death-ligand (PD-L1) expression, pleural effusion, and histopathological subtype. Results A total of 7.92% (8/101) cases tested by IHC and 9.9% (10/101) cases tested by FISH were positive for ALK rearrangement. Of 93 ALK IHC-negative cases, 4 were ALK FISH-positive, whereas of 91 ALK FISH-negative cases, 4 were ALK IHC-positive cases. The correlation analysis demonstrated no or very weak correlation in ALK mutations by IHC or FISH with smoking, brain metastasis, PD-L1 expression, pleural effusion, and histopathological examination, except a weak positive correlation ( r = 0.33) observed between brain metastasis and ALK rearrangement identified by FISH. Conclusions Our study demonstrated a somewhat similar incidence of ALK FISH-positive cases and ALK IHC-positive cases, though the incidence was numerically higher for ALK-FISH method.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Kishore Kumar
- Department of Medical Oncology, Command Hospital Air Force, Bengaluru, Karnataka, India
| | - Harinder Pal Singh
- Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Suresh Nair
- Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Amol Patel
- Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Ashok Kumar
- Department of Radiation Oncology, Army Hospital Research and Referral, New Delhi, India
| | - Sneha Soni
- Community Medicine, Rama Medical College, Hapur, Uttar Pradesh, India
| |
Collapse
|
10
|
Zito Marino F, Botti G, Aquino G, Ferrero S, Gaudioso G, Palleschi A, Rocco D, Salvi R, Micheli MC, Micheli P, Morabito A, Rocco G, Giordano A, De Cecio R, Franco R. Unproductive Effects of ALK Gene Amplification and Copy Number Gain in Non-Small-Cell Lung Cancer. ALK Gene Amplification and Copy Gain in NSCLC. Int J Mol Sci 2020; 21:E4927. [PMID: 32664698 PMCID: PMC7404032 DOI: 10.3390/ijms21144927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023] Open
Abstract
Background: The Anaplastic Lymphoma Kinase (ALK) gene is known to be affected by several genetic alterations, such as rearrangement, amplification and point mutation. The main goal of this study was to comprehensively analyze ALK amplification (ALK-A) and ALK gene copy number gain (ALK-CNG) in a large cohort of non-small-cell lung cancer (NSCLC) patients in order to evaluate the effects on mRNA and protein expression. Methods: ALK locus number status was evaluated in 578 NSCLC cases by fluorescence in situ hybridization (FISH). In addition, ALK immunohistochemistry and ALK mRNA in situ hybridization were performed. Results: Out of 578 cases, 17 cases showed ALK-A. In addition, 14 cases presented ALK-CNG and 72 cases presented chromosome 2 polyploidy. None of those carrying ALK-A and -CNG showed either ALK immunohistochemical expression or ALK mRNA expression through in situ hybridization. We observed a high frequency of extra copies of the ALK gene. Conclusions: Our findings demonstrated that ALK-A is not involved in mRNA production and consequently is not involved in protein production; these findings support the hypothesis that ALK-A might not play a role in the pathogenesis of NSCLC, underlining the absence of a specific clinical application.
Collapse
Affiliation(s)
- Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS “Fondazione Pascale”, 80131 Naples, Italy; (G.B.); (G.A.); (R.D.C.)
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS “Fondazione Pascale”, 80131 Naples, Italy; (G.B.); (G.A.); (R.D.C.)
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.F.); (G.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.F.); (G.G.)
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Danilo Rocco
- Department of Pulmonary Oncology, AORN Dei Colli Monaldi, 80131 Naples, Italy;
| | - Rosario Salvi
- Thoracic Surgery Unit, AORN Dei Colli Monaldi, 80131 Naples, Italy;
| | | | - Pietro Micheli
- Pathology Unit, AORN Dei Colli Monaldi, 80131 Naples, Italy; (M.C.M.); (P.M.)
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS “Fondazione Pascale”, 80131 Naples, Italy;
| | - Gaetano Rocco
- Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
- Sbarro Health Research Organization, Philadelphia, PA 19122, USA
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS “Fondazione Pascale”, 80131 Naples, Italy; (G.B.); (G.A.); (R.D.C.)
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
11
|
Pinsolle J, McLeer-Florin A, Giaj Levra M, de Fraipont F, Emprou C, Gobbini E, Toffart AC. Translating Systems Medicine Into Clinical Practice: Examples From Pulmonary Medicine With Genetic Disorders, Infections, Inflammations, Cancer Genesis, and Treatment Implication of Molecular Alterations in Non-small-cell Lung Cancers and Personalized Medicine. Front Med (Lausanne) 2019; 6:233. [PMID: 31737634 PMCID: PMC6828737 DOI: 10.3389/fmed.2019.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancers (NSCLC) represent 85% of all lung cancers, with adenocarcinoma as the most common subtype. Since the 2000's, the discovery of molecular alterations including epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements together with the development of specific tyrosine kinase inhibitors (TKIs) has facilitated the development of personalized medicine in the management of this disease. This review focuses on the biology of molecular alterations in NSCLC as well as the diagnostic tools and therapeutic alternatives available for each targetable alteration. Rapid and sensitive methods are essential to detect gene alterations, using tumor tissue biopsies or liquid biopsies. Massive parallel sequencing or Next Generation Sequencing (NGS) allows to simultaneously analyze numerous genes from relatively low amounts of DNA. The detection of oncogenic fusions can be conducted using fluorescence in situ hybridization, reverse-transcription polymerase chain reaction, immunohistochemistry, or NGS. EGFR mutations, ALK and ROS1 rearrangements, MET (MET proto-oncogenereceptor tyrosine kinase), BRAF (B-Raf proto-oncogen serine/threonine kinase), NTRK (neurotrophic tropomyosin receptor kinase), and RET (ret proto-oncogene) alterations are described with their respective TKIs, either already authorized or still in development. We have herein paid particular attention to the mechanisms of resistance to EGFR and ALK-TKI. As a wealth of diagnostic tools and personalized treatments are currently under development, a close collaboration between molecular biologists, pathologists, and oncologists is crucial.
Collapse
Affiliation(s)
- Julian Pinsolle
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
| | - Anne McLeer-Florin
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
- Departement of Pathological Anatomy and Cytology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
- UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
| | - Matteo Giaj Levra
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Department of Biochemistry, Molecular Biology and Environmental Toxicology, CHU Grenoble Alpes, Grenoble, France
| | - Florence de Fraipont
- UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
- Department of Biochemistry, Molecular Biology and Environmental Toxicology, CHU Grenoble Alpes, Grenoble, France
| | - Camille Emprou
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
- Departement of Pathological Anatomy and Cytology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Elisa Gobbini
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Cancer Research Center Lyon, Centre Léon Bérard, Lyon, France
| | - Anne-Claire Toffart
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
- UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
| |
Collapse
|