1
|
Kleinbielen T, Olasagasti F, Azcarate D, Beristain E, Viguri-Díaz A, Guerra-Merino I, García-Orad Á, de Pancorbo MM. In silico identification and in vitro expression analysis of breast cancer-related m 6A-SNPs. Epigenetics 2022; 17:2144-2156. [PMID: 35971775 PMCID: PMC9665143 DOI: 10.1080/15592294.2022.2111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Research on m6A-associated SNPs (m6A-SNPs) has emerged recently due to their possible critical roles in many key biological processes. In this sense, several investigations have identified m6A-SNPs in different diseases. In order to gain a more complete understanding of the role that m6A-SNPs can play in breast cancer, we performed an in silico analysis to identify the m6A-SNPs associated with breast cancer and to evaluate their possible effects. For this purpose, we downloaded SNPs related to breast cancer and a list of m6A-SNPs from public databases in order to identify which ones appear in both. Subsequently, we assessed the identified m6A-SNPs in silico by expression quantitative trait loci (eQTL) analysis and differential gene expression analysis. We genotyped the m6A-SNPs found in the in silico analysis in 35 patients with breast cancer, and we carried out a gene expression analysis experimentally on those that showed differences. Our results identified 981 m6A-SNPs related to breast cancer. Four m6A-SNPs showed an eQTL effect and only three were in genes that presented an altered gene expression. When the three m6A-SNPs were evaluated in the tissue sample of our breast cancer patients, only the m6A-SNP rs76563149 located in ZNF354A gene presented differences in allele frequencies and a low gene expression in breast cancer tissues, especially in luminal B HER2+ subtype. Future investigations of these m6A-SNPs should expand the study in different ethnic groups and increase the sample sizes to test their association with breast cancer and elucidate their molecular function.
Collapse
Affiliation(s)
- Tamara Kleinbielen
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| | - Felix Olasagasti
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
| | - Daniel Azcarate
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| | - Elena Beristain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Molecular Genetics Laboratory, Araba University Hospital, Osakidetza Basque Health Service. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - Amparo Viguri-Díaz
- Pathology Department, Araba University Hospital. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - Isabel Guerra-Merino
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Pathology Department, Araba University Hospital. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - África García-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- BioCruces Bizkaia Health Research Institute. Postal code: 48903. Barakaldo, Bizkaia, Spain
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
2
|
Li HM, Tang F, Wang LJ, Huang Q, Pan HF, Zhang TP. Association of N6-methyladenosine readers' genes variation and expression level with pulmonary tuberculosis. Front Public Health 2022; 10:925303. [PMID: 36072379 PMCID: PMC9441624 DOI: 10.3389/fpubh.2022.925303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023] Open
Abstract
N6-Methyladenosine (m6A) is associated with many biological processes and the development of multiple diseases. The aim of this study was to analyze the association of m6A readers' genes variation, as well as their expression levels, with pulmonary tuberculosis (PTB). A total of 11 single-nucleotide polymorphisms (SNPs) in m6A readers' genes (i.e., YTHDF1 rs6122103, rs6011668, YTHDF2 rs602345, rs3738067, YTHDF3 rs7464, rs12549833, YTHDC1 rs3813832, rs17592288, rs2293596, and YTHDC2 rs6594732, and rs2416282) were genotyped by SNPscan™ technique in 457 patients with PTB and 466 normal controls. The m6A readers' genes expression levels in peripheral blood mononuclear cells (PBMCs) from 78 patients with PTB and 86 normal controls were detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). There was no significant association between all SNPs in YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 genes and PTB susceptibility. The increased frequencies of YTHDF2 rs3738067 GG genotype and YTHDC1 rs3813832 CC genotype, C allele, were, respectively, found in PTB patients with hypoproteinemia and fever. YTHDC2 rs6594732 variant was significantly associated with drug-induced liver damage and sputum smear-positive, and the rs2416282 variant was significantly associated with fever in patients with PTB. Compared with controls, the YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 mRNA levels were significantly decreased in PTB. Moreover, YTHDF1 level was negatively associated with erythrocyte sedimentation rate (ESR), and YTHDF3 and YTHDC1 levels were negatively related to alanine aminotransferase (ALT) in patients with PTB. Our results demonstrated that YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 genes SNPs did not contribute to PTB susceptibility, while their decreased levels in patients with PTB suggested that these m6A readers might play significant roles in PTB.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Tang
- Department of Interventional Pulmonology and Endoscopic Diagnosis and Treatment Center, Anhui Chest Hospital, Hefei, China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Huang
- Department of Public Health, Medical Department, Qinghai University, Xining, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Hai-Feng Pan
| | - Tian-Ping Zhang
- Department of Scientific Research, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Tian-Ping Zhang
| |
Collapse
|
3
|
Anabtawi N, Drabison T, Hu S, Sparreboom A, Talebi Z. The role of OATP1B1 and OATP1B3 transporter polymorphisms in drug disposition and response to anticancer drugs: a review of the recent literature. Expert Opin Drug Metab Toxicol 2022; 18:459-468. [PMID: 35983889 DOI: 10.1080/17425255.2022.2113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Members of the solute carrier family of organic anion transporting polypeptides are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. In particular, the polymorphic transporters OATP1B1 and OATP1B3 are highly expressed in the liver and have been identified as critical regulators of hepatic eliminaton. As these transporters are also expressed in cancer cells, the function alteration of these proteins have important consequences for an individual's susceptibility to certain drug-induced side effects, drug-drug interactions, and treatment efficacy. AREAS COVERED In this mini-review, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of genetic variants in OATP1B1 and OATP1B3 to the transport of anticancer drugs, the role of these carriers in regulation of their disposition and toxicity profiles, and recent advances in attempts to integrate information on transport function in patients to derive individualized treatment strategies. EXPERT OPINION Based on currently available data, it appears imperative that different aspects of disease, physiology, and drugs of relevance should be evaluated along with an individual's genetic signature, and that tools such as biomarker levels can be implemented to achieve the most reliable prediction of clinically relevant pharmacodynamic endpoints.
Collapse
Affiliation(s)
- Nadeen Anabtawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Chen M, Lin W, Yi J, Zhao Z. Exploring the Epigenetic Regulatory Role of m6A-Associated SNPs in Type 2 Diabetes Pathogenesis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1369-1378. [PMID: 34737607 PMCID: PMC8558037 DOI: 10.2147/pgpm.s334346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023]
Abstract
Purpose Genetic factors in type 2 diabetes (T2D) pathogenesis have been widely explored by the genome-wide association studies (GWAS), identifying a great amount of susceptibility loci. With the development of high-resolution sequencing, the N(6)-methyladenosine (m6A) RNA modification has been proved to be affected by genetic variation. In this study, we identified the T2D-associated m6A-SNPs from T2D GWAS data and explored the underlying mechanism of the pathogenesis of T2D. Methods We examined the association of m6A-SNPs with T2D among large-scale T2D GWAS summary statistics and further performed multi-omics integrated analysis to explore the potential role of the identified m6A-SNPs in T2D pathogenesis. Results Among the 15,124 T2D-associated m6A-SNPs, 71 of them reach the genome-wide significant threshold (5.0e-05). The leading SNP rs4993986 (C>G), which is located near the m6A modification site at the 3' end of the HLA-DQB1 transcript, is expected to participate in the pathogenesis of T2D by influencing m6A modification to regulate the HLA-DQB1 expression. Conclusion The current study has suggested a potential correlation between m6A-SNPs and T2D pathogenesis and also provided new insights into the pathogenic mechanism of the T2D susceptibility loci identified by GWAS.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|