1
|
Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. Int J Mol Sci 2022; 23:ijms23073828. [PMID: 35409189 PMCID: PMC8998946 DOI: 10.3390/ijms23073828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Adipocytes from the superficial layer of subcutaneous adipose tissue undergo cyclic de- and re-differentiation, which can significantly influence the development of skin inflammation under different cutaneous conditions. This inflammation can be connected with local loading of the reticular dermis with lipids released due to de-differentiation of adipocytes during the catagen phase of the hair follicle cycle. Alternatively, the inflammation parallels a widespread release of cathelicidin, which typically takes place in the anagen phase (especially in the presence of pathogens). Additionally, trans-differentiation of dermal adipocytes into myofibroblasts, which can occur under some pathological conditions, can be responsible for the development of collateral scarring in acne. Here, we provide an overview of such cellular conversions in the skin and discuss their possible involvement in the pathophysiology of inflammatory skin conditions, such as acne and psoriasis.
Collapse
|
2
|
Effect of diet and weight loss on the severity of psoriasis. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Psoriasis is one of the most common chronic inflammatory skin diseases, constituting a significant health and socioeconomic problem. Despite numerous therapeutic options, the results of treatment often remain insufficient. This may be due to the lack of compliance with medical prescriptions and patients’ limited knowledge of their disease. Psoriatic patient's skin well-being is affected by many factors, including lifestyle. The course of the disease is affected by obesity, improper diet, and stimulants. Often these factors coexist. Excessive weight gain in psoriasis can be caused by a decrease in physical activity, caused by feelings of social stigma, coexistence of psoriatic arthritis, depression, and increased alcohol consumption. Several studies have confirmed that the average fat, protein, and calorie content in the diet of a patient with psoriasis are above the recommended norms. On the other hand, adhering to a low calorie, reducing diet results in a clinically significant improvement in the Psoriasis Area Severity Index (PASI) and patients’ quality of life (i.e., reduction of Dermatology Life Quality Index [DLQI]). Weight reduction caused by diet and exercise reduces the severity of skin lesions, even in people who have not achieved improvement after general treatment. Therefore, it is important to educate the patient about the nature of the disease at the very beginning of treatment. Patients with moderate to severe forms of the disease are predisposed to the development of cardiovascular diseases, obesity, diabetes, and anxiety. That is why plaque psoriasis requires a comprehensive treatment and a holistic approach to the patient.
Collapse
|
3
|
Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors. Int J Mol Sci 2021; 22:ijms22169063. [PMID: 34445769 PMCID: PMC8396451 DOI: 10.3390/ijms22169063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular risk factors are one of the most common comorbidities in psoriasis. A higher prevalence of hypertension, insulin resistance and type 2 diabetes, dyslipidemia, obesity, metabolic syndrome, depression, as well as cardiovascular disease was confirmed in psoriatic patients in comparison to the general population. Data suggest that psoriasis and systemic inflammatory disorders may originate from the pleiotropic interactions with many genetic pathways. In this review, the authors present the current state of knowledge on the potential genetic links between psoriasis and cardiovascular risk factors. The understanding of the processes linking psoriasis with cardiovascular risk factors can lead to improvement of psoriasis management in the future.
Collapse
|
4
|
Ruiyang B, Panayi A, Ruifang W, Peng Z, Siqi F. Adiponectin in psoriasis and its comorbidities: a review. Lipids Health Dis 2021; 20:87. [PMID: 34372872 PMCID: PMC8353790 DOI: 10.1186/s12944-021-01510-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease characterized by abnormal T cell activation and excessive proliferation of keratinocytes. In addition to skin manifestations, psoriasis has been associated with multiple metabolic comorbidities, such as obesity, insulin resistance, and diabetes. An increasing amount of evidence has highlighted the core role of adipokines in adipose tissue and the immune system. This review focus on the role of adiponectin in the pathophysiology of psoriasis and its comorbidities, highlighting the future research avenues.
Collapse
Affiliation(s)
- Bai Ruiyang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Adriana Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Wu Ruifang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhang Peng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Fu Siqi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Bora NS, Mazumder B, Mandal S, Bhutia YD, Das S, Karmakar S, Chattopadhyay P, Dwivedi SK. Protective effect of a topical sunscreen formulation fortified with melatonin against UV-induced photodermatitis: an immunomodulatory effect via NF-κB suppression. Immunopharmacol Immunotoxicol 2019; 41:130-139. [PMID: 30741582 DOI: 10.1080/08923973.2019.1566358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Melatonin and pumpkin seed oil, along with US FDA approved UV filters were incorporated into a formulation for enhancement of UV protection by exerting an antioxidant effect. The objective of this study was to assess the protective effect of this formulation against ultraviolet (UV) radiation-induced photo dermatitis in rats, which is an established model to study the aetiopathogenic mechanisms in psoriasis vulgaris, as the former exhibits the same features to those of clinical psoriasis vulgaris in humans. Materials and methods: The animals were segregated into five groups (6/group) and all received their respective formulations dermally prior to chronic UV irradiation for 28 days. The test, placebo, and standard groups; received the test, placebo, and standard formulations respectively; whereas the positive control group received only UV radiation. A normal control group was also maintained. Disease and treatment status were analyzed using various techniques by euthanizing the rats after 28 days. Results: The test formulation was able to ameliorate the UV-induced increase in skin fold, epidermal thickness, and skin edema; inhibit the reduction of hydroxyproline content and incidence of LPO within the skin tissues of exposed animals. The formulation was also able to inhibit the release of proinflammatory cytokines; IFN-γ, IL-1β, IL-6, and TNF-α; and upregulation of NF-κB and COX-2 genes caused by chronic UV exposure. Conclusion: It can be stated that melatonin included in the newly formulated sunscreen was able to inhibit the induction of photodermatitis via immunoregulation of inflammatory cytokines along with NF-κB and COX-2 genes.
Collapse
Affiliation(s)
- Nilutpal Sharma Bora
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India.,b Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Bhaskar Mazumder
- b Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Santa Mandal
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India.,c School of Pharmaceutical Sciences , IFTM University , Moradabad , India
| | - Yangchen D Bhutia
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| | - Sanghita Das
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| | - Sanjeev Karmakar
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| | | | - Sanjai K Dwivedi
- a Division of Pharmaceutical Technology , Defence Research Laboratory , Tezpur , India
| |
Collapse
|
6
|
Caveolin-1 as a pathophysiological factor and target in psoriasis. NPJ Aging Mech Dis 2019; 5:4. [PMID: 30729030 PMCID: PMC6363785 DOI: 10.1038/s41514-019-0034-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Low expression of caveolin-1 (Cav-1) is typical in psoriatic lesions and overexpression of Cav-1 leads to a reduction of inflammation and suppression of epidermal hyperproliferation, thus ameliorating these two well-known hallmarks of psoriasis. At the same time, the interfacial layers of the white adipose tissue (WAT) adjacent to psoriatic lesions demonstrate much higher stiffness, which also points to a modification of Cav-1 expression in this tissue. These processes are connected with each other and regulated via exosomal exchange. Here we discuss the role of Cav-1 expression in inflammatory and hyperproliferative processes and analyze the ways to provide spatially different modulation of Cav-1 expression in the skin and WAT. Such modulation can be induced by different pharmacological and physical factors. These include application of mechanical stress and supra-physiological temperatures. Cav-1 should therefore be considered as an important target in treatment of psoriasis.
Collapse
|
7
|
Klingberg E, Bilberg A, Björkman S, Hedberg M, Jacobsson L, Forsblad-d'Elia H, Carlsten H, Eliasson B, Larsson I. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: an interventional study. Arthritis Res Ther 2019; 21:17. [PMID: 30635024 PMCID: PMC6330463 DOI: 10.1186/s13075-019-1810-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/02/2019] [Indexed: 11/26/2022] Open
Abstract
Background Obesity is over-represented in patients with psoriatic arthritis (PsA) and associated with higher disease activity, poorer effect of treatment and increased cardiovascular morbidity. Studies on the effects of weight loss are however needed. This study aimed to prospectively study the effects of weight loss treatment with very low energy diet (VLED) on disease activity in patients with PsA (CASPAR criteria) and obesity (body mass index BMI ≥ 33 kg/m2). Methods VLED (640 kcal/day) was taken during 12–16 weeks, depending on pre-treatment BMI. Afterwards, an energy-restricted diet was gradually reintroduced. Weight loss treatment was given within a structured framework for support and medical follow-up. Treatment with conventional synthetic and/or biologic disease-modifying anti-rheumatic drugs was held constant from 3 months before, until 6 months after baseline. Patients were assessed with BMI, 66/68 joints count, Leeds enthesitis index, psoriasis body surface area (BSA), questionnaires and CRP at baseline, 3 and 6 months. Primary outcome was the percentage of patients reaching minimal disease activity (MDA) and secondary outcomes were reaching Psoriatic Arthritis Response Criteria (PsARC) and American College of Rheumatology (ACR) response criteria. Results Totally 41/46 patients completed the study, 63% women, median age 54 years (IQR 48–62). At baseline increased BMI was associated with higher disease activity and poorer function. The median weight loss was 18.7 kg (IQR 14.6–26.5) or 18.6% (IQR 14.7–26.3) of the baseline weight. A majority of the disease activity parameters improved significantly after weight loss, including 68/66 tender/swollen joints count, CRP, BSA, Leeds enthesitis index, HAQ and patient VAS for global health, pain and fatigue. A larger weight loss resulted in more improvement in a dose-response manner. The percentage of patients with MDA increased from 29 to 54%, (p = 0.002). PsARC was reached by 46.3%. The ACR 20, 50 and 70 responses were 51.2%, 34.1% and 7.3% respectively. Conclusions Short-term weight loss treatment with VLED was associated with significant positive effects on disease activity in joints, entheses and skin in patients with PsA and obesity. The study supports the hypothesis of obesity as a promotor of disease activity in PsA. Trial registration ClinicalTrials.gov identifier: NCT02917434, registered on September 21, 2016—retrospectively registered Electronic supplementary material The online version of this article (10.1186/s13075-019-1810-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Klingberg
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Annelie Bilberg
- Institute of Neuroscience and Physiology, Section of Health and Rehabilitation, Physiotherapy, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sofia Björkman
- Department of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin Hedberg
- Department of Rheumatology, Hospital of Borås, Borås, Sweden
| | - Lennart Jacobsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helena Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Björn Eliasson
- Department of Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Larsson
- Department of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Nicu C, Pople J, Bonsell L, Bhogal R, Ansell DM, Paus R. A guide to studying human dermal adipocytes in situ. Exp Dermatol 2018; 27:589-602. [DOI: 10.1111/exd.13549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Carina Nicu
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - Laura Bonsell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - David M. Ansell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | - Ralf Paus
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
- Department of Dermatology and Cutaneous Surgery; Miller School of Medicine; University of Miami; Miami FL USA
| |
Collapse
|
9
|
Kruglikov IL, Scherer PE. Skin aging as a mechanical phenomenon: The main weak links. NUTRITION AND HEALTHY AGING 2018; 4:291-307. [PMID: 29951590 PMCID: PMC6004930 DOI: 10.3233/nha-170037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From a mechanical point of view, human skin appears as a layered composite containing the stiff thin cover layer presented by the stratum corneum, below which are the more compliant layers of viable epidermis and dermis and further below the much more compliant adjacent layer of subcutaneous white adipose tissue (sWAT). Upon exposure to a strain, such a multi-layer system demonstrates structural instabilities in its stiffer layers, which in its simplest form is the wrinkling. These instabilities appear hierarchically when the mechanical strain in the skin exceeds some critical values. Their appearance is mainly dependent on the mismatch in mechanical properties between adjacent skin layers or between the skin and sWAT, on the adhesive strength and thickness ratios between the layers, on their bending and tensile stiffness as well as on the value of the stress existing in single layers. Gradual reduction of elastic fibers in aging significantly reduces the skin's ability to bend, prompting an up to 4-fold reduction of its stability against wrinkling, thereby explaining the role of these fibers in skin aging. While chronological and extrinsic aging differently modify these parameters, they lead to the same end result, reducing the critical strain required for the onset of instabilities. Comparing of mechanical properties of the skin presented as a bi-, tri- or tetra-layer structure demonstrates the particular importance of the papillary dermis in skin aging and provides the arguments to consider the undulations on the dermal-epidermal and dermal-sWAT interfaces as the result of mechanical bifurcation, leading to structural instabilities inside of the skin. According to this model, anti-aging strategies should focus not as much on the reinforcement of the dermis, but rather aim to treat the elastic mismatch between different adjacent layers in the skin and sWAT as well as the adhesion between these layers.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Wollina U, Wetzker R, Abdel-Naser MB, Kruglikov IL. Role of adipose tissue in facial aging. Clin Interv Aging 2017; 12:2069-2076. [PMID: 29255352 PMCID: PMC5723114 DOI: 10.2147/cia.s151599] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Age-dependent modification of the facial subcutaneous white adipose tissue (sWAT) connected with reduction of its volume, modification of collagen content and adhesion between dermal and adipose layers can significantly influence mechanical stability of the skin and cause the development of aging symptoms such as wrinkles. Typical aging appearance in facial skin is at least partly connected with special phenotypical features of facial preadipocytes and mature adipocytes. In this paper, we have discussed the possible roles of local inflammation, compartmental structure of facial sWAT and trans-differentiation processes such as beiging of white adipocytes and adipocyte-myofibroblast transition in facial skin aging.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Dresden
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | |
Collapse
|
11
|
Abstract
Macroscopic mechanical properties of human skin in vivo cannot be considered independent of adjacent subcutaneous white adipose tissue (sWAT). The layered system skin/sWAT appears as the hierarchical structural composite in which single layers behave as fiber-reinforced structures. Effective macroscopic mechanical properties of such composites are mainly determined either by the properties of the skin or by those of the sWAT, dependent on the conditions of mechanical loading. Mechanical interactions between the skin and the adjacent sWAT associated with a mismatch in the mechanical moduli of these two layers can lead to production of the skin wrinkles. Reinforcement of the composite skin/sWAT can take place in different ways. It can be provided through reorientation of collagen fibers under applied loading, through production of new bonds between existing collagen fibers and through induction of additional collagen structures. Effectiveness of this type of reinforcement is strongly dependent on the type of mechanical loading. Different physical interventions induce the reinforcement of at least one of these two layers, thus increasing the effective macroscopic stiffness of the total composite. At the same time, the standalone reinforcement of the skin appears to be less effective to achieve a delay or a reduction of the apparent signs of skin aging relative to the reinforcement of the sWAT.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|