1
|
Odeniran PO, Paul-Odeniran KF, Ademola IO. The comprehensive epidemiological status of human African trypanosomiasis in Nigeria: meta-analysis and systematic review of the full story (1962-2022). Parasitol Res 2024; 123:291. [PMID: 39102014 DOI: 10.1007/s00436-024-08312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human African trypanosomiasis (HAT) in Nigeria is caused primarily by Trypanosoma brucei gambiense (gHAT), which has historically been a major human and animal health problem. This study aims to examine the status of gHAT in Nigeria over the past 60 years. The World Health Organization (WHO) set two targets to eliminate HAT as a public health concern by 2020 and terminate its global transmission by 2030. The former target has been achieved, but accurate monitoring and surveillance are important for maintaining this success and delivering the second target. Although recent cases in Nigeria are rare, accurately estimating the national seroprevalence and actual prevalence of gHATs remains challenging. To address this, a meta-analysis reviewed studies on gHATs in Nigeria from databases such as Embase, Global Health, Ovid Medline, Web of Science, and Google Scholar. Ten studies were included, ranging between 1962 and 2016, covering 52 clusters and 5,671,877 individuals, even though databases were scrutinized up to 2022. The seroprevalence ranged from 1.75 to 17.07%, with an overall estimate of 5.01% (95% CI 1.72-9.93). The actual gHAT prevalence detected by parasitological or PCR methods was 0.001 (95% CI 0.000-0.002), indicating a prevalence of 0.1%. Notably, the seroprevalence was greater in southern Nigeria than in northern Nigeria. These findings suggest that the disease might be spreading unnoticed due to the increased movement of people from endemic areas. This study highlights the paucity of studies in Nigeria over the last 60 years and emphasizes the need for further research, systematic surveillance, and proper reporting methods throughout the country.
Collapse
Affiliation(s)
- Paul Olalekan Odeniran
- Department of Veterinary Parasitology and Entomology, University of Ibadan, Ibadan, 200001, Nigeria.
| | | | - Isaiah Oluwafemi Ademola
- Department of Veterinary Parasitology and Entomology, University of Ibadan, Ibadan, 200001, Nigeria
| |
Collapse
|
2
|
Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface. PLoS Negl Trop Dis 2021; 15:e0008267. [PMID: 33406097 PMCID: PMC7822626 DOI: 10.1371/journal.pntd.0008267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.
Collapse
|
3
|
Snijders R, Fukinsia A, Claeys Y, Mpanya A, Hasker E, Meheus F, Miaka E, Boelaert M. Cost of a new method of active screening for human African trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl Trop Dis 2020; 14:e0008832. [PMID: 33315896 PMCID: PMC7769601 DOI: 10.1371/journal.pntd.0008832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/28/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Human African trypanosomiases caused by the Trypanosoma brucei gambiense parasite is a lethal disease targeted for eradication. One of the main disease control strategies is active case-finding through outreach campaigns. In 2014, a new method for active screening was developed with mini, motorcycle-based, teams. This study compares the cost of two active case-finding approaches, namely the traditional mobile teams and mini mobile teams, in the two health districts of the Democratic Republic of the Congo. METHODS The financial and economic costs of both approaches were estimated from a health care provider perspective. Cost and operational data were collected for 12 months for 1 traditional team and 3 mini teams. The cost per person screened and diagnosed was calculated and univariate sensitivity analysis was conducted to identify the main cost drivers. RESULTS During the study period in total 264,630 people were screened, and 23 HAT cases detected. The cost per person screened was lower for a mini team than for a traditional team in the study setting (US$1.86 versus US$2.08). A comparable result was found in a scenario analysis, assuming both teams would operate in a similar setting, with the cost per person screened by a mini team 15% lower than the cost per person screened by a traditional team (1.86 $ vs 2.14$). The main explanations for this lower cost are that mini teams work with fewer human resources, cheaper means of transportation and do not perform the Capillary Tube Centrifugation test or card agglutination test dilutions. DISCUSSION Active HAT screening with mini mobile teams has a lower cost and could be a cost-effective alternative for active case-finding. Further research is needed to determine if mini mobile teams have similar or better yields than traditional mobile teams in terms of detections and cases successfully treated.
Collapse
Affiliation(s)
- Rian Snijders
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alain Fukinsia
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of Congo
| | - Yves Claeys
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alain Mpanya
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of Congo
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Filip Meheus
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Erick Miaka
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of Congo
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
4
|
Lumbala C, Matovu E, Sendagire H, Kazibwe AJN, Likwela JL, Muhindo Mavoko H, Kayembe S, Lutumba P, Biéler S, Van Geertruyden JP, Ndung’u JM. Performance evaluation of a prototype rapid diagnostic test for combined detection of gambiense human African trypanosomiasis and malaria. PLoS Negl Trop Dis 2020; 14:e0008168. [PMID: 32251426 PMCID: PMC7162526 DOI: 10.1371/journal.pntd.0008168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/16/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
Background Malaria is endemic in all regions where gambiense or rhodesiense human African trypanosomiasis (HAT) is reported, and both diseases have similarities in their symptomatology. A combined test could be useful for both diseases and would facilitate integration of the screening for gambiense HAT (gHAT) and malaria diagnosis. This study aimed to evaluate a combined prototype rapid diagnostic test (RDT) for gHAT and malaria. Methods Blood samples were collected in the Democratic Republic of the Congo and in Uganda to evaluate the performance of a prototype HAT/Malaria Combined RDT in comparison to an individual malaria RDT based on Plasmodium falciparum (P.f.) Histidine Rich Protein II (HRP-II or HRP2) antigen (SD BIOLINE Malaria Ag P.f. RDT) for malaria detection and an individual gHAT RDT based on recombinant antigens, the SD BIOLINE HAT 2.0 RDT for HAT screening. Due to the current low prevalence of gHAT in endemic regions, the set of blood samples that were collected was used to evaluate the specificity of the RDTs for gHAT, and additional archived plasma samples were used to complete the evaluation of the HAT/Malaria Combined RDT in comparison to the HAT 2.0 RDT. Results Frozen whole blood samples from a total of 486 malaria cases and 239 non-malaria controls, as well as archived plasma samples from 246 gHAT positive and 246 gHAT negative individuals were tested. For malaria, the sensitivity and specificity of the malaria band in the HAT/Malaria Combined RDT were 96.9% (95% CI: 95.0–98.3) and 97.1% (95% CI: 94.1–98.8) respectively. The sensitivity and specificity of the SD BIOLINE malaria Ag P.f. RDT were 97.3% (95% CI: 95.5–98.6) and 97.1% (95% CI: 94.1–98.8) respectively. For gHAT, using archived plasma samples, the sensitivity and specificity were respectively 89% (95% CI: 84.4–92.6) and 93.5% (95% CI: 89.7–96.2) with the HAT/Malaria Combined RDT, and 88.2% (95% CI: 83.5–92) and 94.7% (95% CI: 91.1–97.2) with the HAT 2.0 RDT. Using the whole blood samples that were collected during the study, the specificity of the HAT/Malaria Combined RDT for gHAT was 95.8% (95% CI: 94.3–97.0). Conclusion The HAT/Malaria Combined prototype RDT was as accurate as the individual malaria or gHAT RDTs. The HAT/Malaria Combined prototype RDT is therefore suitable for both malaria diagnosis and gHAT screening. However, there is a need to assess its accuracy using fresh samples in prospective clinical trials. The annual number of reported cases of human African trypanosomiasis (HAT), also known as sleeping sickness (SS), is currently below 1,000 cases worldwide. The Democratic Republic of the Congo (DRC), the most affected country, and Uganda, which shares a border with DRC, are both endemic for gambiense HAT (gHAT). The main strategy to control gHAT is screening of at-risk individuals, followed by diagnosis and treatment of confirmed cases. However, this strategy and even the passive screening as currently implemented become less efficient with declining incidence, justifying innovative strategies to efficiently detect the remaining cases. All areas where gHAT occurs are also endemic for malaria, presenting an opportunity to integrate gHAT screening activities within malaria control activities. This integration is warranted by the fact that in early disease stage, gHAT patients present with signs and symptoms strikingly similar to those of malaria. In order to use malaria diagnosis as an entry point to screen for gHAT, Standard Diagnostics (SD), Republic of Korea (now Abbott Diagnostics, Korea Inc–ADK) made a Combined prototype RDT for both malaria and gHAT, expected to be as accurate as the individual gHAT and malaria RDTs. In this study, we evaluated the accuracy of the Combined prototype RDT using whole blood samples collected in Uganda and DRC, and archived plasma samples collected in DRC, Angola and Central African Republic. We found that the Combined prototype performs just as well as individual RDTs.
Collapse
Affiliation(s)
- Crispin Lumbala
- Disease Control Directorate, Ministry of Public Health, Democratic Republic of the Congo
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Hakim Sendagire
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Anne J. N. Kazibwe
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Joris L. Likwela
- Public Health Department, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | | | - Simon Kayembe
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Pascal Lutumba
- Kinshasa University, Kinshasa, Democratic Republic of the Congo
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | | | - Joseph M. Ndung’u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
5
|
Nkieri M, Mbo F, Kavunga P, Nganzobo P, Mafolo T, Selego C, Mwamba Miaka E. An Active Follow-up Strategy for Serological Suspects of Human African Trypanosomiasis with Negative Parasitology Set up by a Health Zone Team in the Democratic Republic of Congo. Trop Med Infect Dis 2020; 5:tropicalmed5020053. [PMID: 32260405 PMCID: PMC7345707 DOI: 10.3390/tropicalmed5020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The World Health Organization aims for the elimination of Human African Trypanosomiasis (HAT) as a public health problem by 2020 and for full elimination (absence of new cases) by 2030. One of strategies to achieve this is the active follow-up of all HAT serological suspects found during passive screening who have never been re-tested for parasitology. This is important because these cases can maintain HAT transmission and may be responsible for reemergence of the disease. Methods: In order to improve case finding at low cost in the targeted population, a general recall was transmitted to aparasitemic serological suspects about the availability of confirmation services at the general referral hospital. Transport was facilitated for re-testing. The initial examinations were carried out in Health Centers from Bagata Health Zone (HZ) in the Democratic Republic of the Congo between January 2017 and April 2019. This strategy of using a HZ team has not been previously documented. Results: From a total sample of 74 serological suspects listed by the health centers, 36 cases were re-examined at the general reference hospital; 19% (7/36) self-presented and 81% (29/36) were actively followed up by HZ personnel. Of those re-examined at the general reference hospital, 39% (14/36) resulted in a parasitologically confirmed case. Of the 14 people diagnosed with HAT, 14% (2/14) self-presented and the remaining 86% (12/14) were diagnosed in suspects who were actively followed up. This new strategy of facilitating transport from the villages added value by contributing to the detection of 12 HAT cases, compared to the passive approach, waiting for self-reference, which resulted in the detection of 2 new HAT cases. The cost per detected patient was 70 USD from the group of 7 suspects who self-presented for testing at the hospital and 346 USD per detected case for the group of 29 patients who were actively followed up by health zone staff. Conclusion: Targeted active follow-up of aparasitemic serological suspects by HZ teams is a cost-effective and promising approach to identifying additional cases of HAT in areas of very low prevalence, which would contribute to the HAT elimination goal set by the World Health Organization.
Collapse
Affiliation(s)
- Matthieu Nkieri
- Bagata Health Zone, Avenue Kalanganda N 10, Mwendo Bagata,32 Kwilu Province, Democratic Republic of the Congo; (M.N.); (P.K.)
| | - Florent Mbo
- National Sleeping Sickness Control Program (PNLTHA) (PNMLS building), Boulevard Triomphale Crossing Av. 24 November, 10 Kinshasa, Democratic Republic of the Congo; (P.N.); (E.M.M.)
- HAT Platform, Avenue Milambo N 4 Quartier Socimat, Gombe, 10 Kinshasa, Democratic Republic of the Congo
- Correspondence: or ; Tel.: +243-814313838
| | - Papy Kavunga
- Bagata Health Zone, Avenue Kalanganda N 10, Mwendo Bagata,32 Kwilu Province, Democratic Republic of the Congo; (M.N.); (P.K.)
| | - Pathou Nganzobo
- National Sleeping Sickness Control Program (PNLTHA) (PNMLS building), Boulevard Triomphale Crossing Av. 24 November, 10 Kinshasa, Democratic Republic of the Congo; (P.N.); (E.M.M.)
| | - Titus Mafolo
- Provincial Health Ministry of Kwilu, Aviation/Ifuri/Bandundu town, Bandundu, Democratic Republic of the Congo; (T.M.); (C.S.)
| | - Chalet Selego
- Provincial Health Ministry of Kwilu, Aviation/Ifuri/Bandundu town, Bandundu, Democratic Republic of the Congo; (T.M.); (C.S.)
| | - Eric Mwamba Miaka
- National Sleeping Sickness Control Program (PNLTHA) (PNMLS building), Boulevard Triomphale Crossing Av. 24 November, 10 Kinshasa, Democratic Republic of the Congo; (P.N.); (E.M.M.)
| |
Collapse
|
6
|
Akazue PI, Ebiloma GU, Ajibola O, Isaac C, Onyekwelu K, Ezeh CO, Eze AA. Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens 2019; 8:E135. [PMID: 31470522 PMCID: PMC6789789 DOI: 10.3390/pathogens8030135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
The recent massive reduction in the numbers of fresh Human African Trypanosomiasis (HAT) infection has presented an opportunity for the global elimination of this disease. To prevent a possible resurgence, as was the case after the reduced transmission of the 1960s, surveillance needs to be sustained and the necessary tools for detection and treatment of cases need to be made available at the points of care. In this review, we examine the available resources and make recommendations for improvement to ensure the sustenance of the already achieved gains to keep the trend moving towards elimination.
Collapse
Affiliation(s)
- Pearl Ihuoma Akazue
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City 300283, Nigeria
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Olumide Ajibola
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul PO Box 273, The Gambia
| | - Clement Isaac
- Department of Zoology, Faculty of Life Sciences, Ambrose Alli University, Ekpoma 310101, Nigeria
| | - Kenechukwu Onyekwelu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Charles O Ezeh
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Anthonius Anayochukwu Eze
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria.
| |
Collapse
|
7
|
Luryama Moi K, Obol JH, Anywar Arony D. Identification of human African Trypanosomiasis foci using school-going children in post-conflict era in Nwoya District, Northern Uganda: A cross-sectional study. AAS Open Res 2018; 1:8. [PMID: 32382695 PMCID: PMC7194148 DOI: 10.12688/aasopenres.12851.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Human African Trypanosomiasis (HAT) is fatal if untreated; the drugs to treat it are toxic making its management difficult and diagnosis complex. Nwoya district has a long history of sleeping-sickness dating back to pre-colonial times. The civil war of 1986-2008 displaced many who upon return complained of cattle and dogs dying of unknown causes alongside increased tsetse flies infestation hence, the needs for the study. Methods: We enrolled local 3,040 pupils and recorded their social-demographic characteristics and access to different domesticated animals/fowls in their homes. Screening for HAT using the card agglutination test for trypanosomiasis (CATT) was performed; positive individuals had their titres determined, followed by microscopy and loop mediated isothermal amplification analysis (LAMP). R was used for analysis where associations were sought between dependent and independent variables. Any factor with P-value <0.05 was taken as statistically significant. Results: HAT serological prevalence of 1.2% (95% CI 0.8-1.6) was obtained, 58.3% being boys while 41.7% were girls with titres ranging from 1:2 - 1:16. Two schools alone, constituted 47% of the CATT positive cases. Pupils who came from homes with dogs were more likely to be CATT/ Trypanosoma brucei gambiense positive; (adjusted odds ratio = 3.12, 95% CI 1.41-6.99 & p=0.005). Conclusions: Though no parasites were detected, with prevalence of CATT positive at 1.2%, active surveillance in the district is still recommended. CATT positive cases needs follow-ups were immune trypanolysis test done to ascertain their exposure.
Collapse
Affiliation(s)
- Kenneth Luryama Moi
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - James Henry Obol
- Department of Public Health, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Denis Anywar Arony
- Department of Medical Biochemistry, Faculty of Medicine, Gulu University, Gulu, Uganda
| |
Collapse
|
8
|
Matovu E, Kitibwa A, Picado A, Biéler S, Bessell PR, Ndung'u JM. Serological tests for gambiense human African trypanosomiasis detect antibodies in cattle. Parasit Vectors 2017; 10:546. [PMID: 29100526 PMCID: PMC5670715 DOI: 10.1186/s13071-017-2487-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
Background Serological tests for gambiense human African trypanosomiasis (gHAT) detect antibodies to antigens on the cell surface of bloodstream trypanosomes. As trypanosomes that cause animal African trypanosomiasis (AAT) also express related antigens, we have evaluated two rapid diagnostic tests (RDTs) on cattle in trypanosomiasis endemic and non-endemic regions, to determine whether gHAT serological tests could also be used to screen for AAT. Methods Two RDTs, 1G RDT, made with native antigens, and p2G RDT, made with recombinant antigens, were tested on 121 cattle in a trypanosomiasis-free region, and on 312 cattle from a rhodesiense HAT and AAT endemic region. A subset of samples from the endemic region were also tested with two immune trypanolysis (TL) tests. The sensitivity of the tests was estimated by evaluating the result of the RDT on samples that were positive by both microscopy and internal transcribed spacer (ITS) PCR, whilst specificity was the result of the RDT on samples that were negative by ITS PCR and microscopy, and others from the non-endemic region. Results The specificity of the p2G RDT on cattle from the non-endemic region was 97.5% (95% CI: 93.0–99.2%), compared to only 57.9% (95% CI: 48.9–66.3%) for 1G RDT. The specificities of 1G RDT, p2G RDT and TL on endemic control cattle were 14.6% (95% CI: 9.7–21.5%), 22.6% (95% CI: 16.4–30.3%) and 68.3% (95% CI: 59.6–75.9%), respectively. The sensitivities of the tests on trypanosome positive samples were 85.1% (95% CI: 79.1–89.7%), 89.1% (95% CI: 83.7–93.0%) and 59.3% (95% CI: 51.8–66.4%), respectively. Among the same samples, 51.7% were positive by both TL and the 1G RDT. Conclusions These serological tests detect cross-reacting antibodies in cattle. The p2G RDT based on recombinant antigens had a high specificity in a non-endemic region, while the 1G RDT had a lower specificity, suggesting cross-reactivity with other pathogens. Electronic supplementary material The online version of this article (10.1186/s13071-017-2487-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda.
| | - Annah Kitibwa
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Albert Picado
- Foundation for Innovative New Diagnostics (FIND), Campus Biotech, Chemin des Mines, Geneva, Switzerland
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics (FIND), Campus Biotech, Chemin des Mines, Geneva, Switzerland
| | | | - Joseph Mathu Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Campus Biotech, Chemin des Mines, Geneva, Switzerland
| |
Collapse
|
9
|
N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, Courtin F, Coulibaly B, Fauret P, Kouakou L, Ravel S, Deborggraeve S, Solano P, De Meeûs T, Bucheton B, Jamonneau V. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2017; 11:e0005993. [PMID: 29045405 PMCID: PMC5662240 DOI: 10.1371/journal.pntd.0005993] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/30/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. In Africa, significant efforts to control human African trypanosomiasis (HAT) over the past three decades have drastically reduced the prevalence of the disease and elimination seems today an achievable goal. However, potential animal reservoirs of Trypanosoma brucei gambiense may compromise this ambitious objective. In the Bonon and Sinfra HAT endemic foci in Côte d’Ivoire, no recent data are available about the prevalence of animal African trypanosomiasis (AAT). The aim of this study was to identify trypanosomes circulating in domestic animals in these two HAT foci using serological, parasitological and molecular tools. We showed that T. brucei s.l. and T. congolense were the most prevalent trypanosome species and that pigs and cattle were the most infected animals. Discordant results were observed between the T. b. gambiense specific molecular and serological tools and the presence of an animal reservoir for T. b. gambiense remains unclear. Nevertheless, improved control strategies can be proposed based on this study to reach HAT elimination and contribute to AAT control in the study areas.
Collapse
Affiliation(s)
- Martial Kassi N’Djetchi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Hamidou Ilboudo
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Jacques Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Justin Windingoudi Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Pierre Fauret
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Lingué Kouakou
- Programme National d’Elimination de la Trypanosomose Humaine Africaine, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Sophie Ravel
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Thierry De Meeûs
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bruno Bucheton
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail:
| |
Collapse
|
10
|
Koffi M, N'Djetchi M, Ilboudo H, Kaba D, Coulibaly B, N'Gouan E, Kouakou L, Bucheton B, Solano P, Courtin F, Ehrhardt S, Jamonneau V. A targeted door-to-door strategy for sleeping sickness detection in low-prevalence settings in Côte d'Ivoire. ACTA ACUST UNITED AC 2016; 23:51. [PMID: 27849517 PMCID: PMC5112757 DOI: 10.1051/parasite/2016059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/30/2016] [Indexed: 11/14/2022]
Abstract
Significant efforts to control human African trypanosomiasis (HAT) over the three past decades have resulted in drastic reductions of disease prevalence in Côte d’Ivoire. In this context, the costly and labor-intensive active mass screening strategy is no longer efficient. In addition to a more cost-effective passive surveillance system being implemented in this low-prevalence context, our aim was to develop an alternative targeted active screening strategy. In 2012, we carried out a targeted door-to-door (TDD) survey focused on the immediate vicinities of former HAT patients detected in the HAT focus of Bonon and compared the results to those obtained during classical active mass screening (AMS) surveys conducted from 2000 to 2012 in the same area. The TDD that provides a friendlier environment, inviting inhabitants to participate and gain awareness of the disease, detected significantly more HAT cases than the AMS. These results suggest that the TDD is an efficient and useful strategy in low-prevalence settings where very localized transmission cycles may persist and, in combination with passive surveillance, could help in eliminating HAT.
Collapse
Affiliation(s)
- Mathurin Koffi
- Université Jean Lorougnon Guédé, UFR Environnement, Laboratoire des Interactions Hôte-Microorganisme-Environnement et Évolution (LIHME), BP 150 Daloa, Côte d'Ivoire
| | - Martial N'Djetchi
- Université Jean Lorougnon Guédé, UFR Environnement, Laboratoire des Interactions Hôte-Microorganisme-Environnement et Évolution (LIHME), BP 150 Daloa, Côte d'Ivoire
| | - Hamidou Ilboudo
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP /Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité de recherches sur les bases biologiques de la lutte intégrée, 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Dramane Kaba
- Institut Pierre Richet, Unité de Recherche « Trypanosomoses », 01 BP 1500, Bouaké 01, Bouaké, Côte d'Ivoire
| | - Bamoro Coulibaly
- Institut Pierre Richet, Unité de Recherche « Trypanosomoses », 01 BP 1500, Bouaké 01, Bouaké, Côte d'Ivoire
| | - Emmanuel N'Gouan
- Projet de Recherche Clinique sur les Trypanosomoses (PRCT), BP 1425, Daloa, Côte d'Ivoire
| | - Lingué Kouakou
- Programme National d'Élimination de la Trypanosomose Humaine Africaine, 17 BP 934, Abidjan, Côte d'Ivoire
| | - Bruno Bucheton
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Philippe Solano
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP /Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité de recherches sur les bases biologiques de la lutte intégrée, 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Fabrice Courtin
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP /Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité de recherches sur les bases biologiques de la lutte intégrée, 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Vincent Jamonneau
- Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP /Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), Unité de recherches sur les bases biologiques de la lutte intégrée, 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| |
Collapse
|
11
|
de Vries H, Wagelmans APM, Hasker E, Lumbala C, Lutumba P, de Vlas SJ, van de Klundert J. Forecasting Human African Trypanosomiasis Prevalences from Population Screening Data Using Continuous Time Models. PLoS Comput Biol 2016; 12:e1005103. [PMID: 27657937 PMCID: PMC5033383 DOI: 10.1371/journal.pcbi.1005103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
To eliminate and eradicate gambiense human African trypanosomiasis (HAT), maximizing the effectiveness of active case finding is of key importance. The progression of the epidemic is largely influenced by the planning of these operations. This paper introduces and analyzes five models for predicting HAT prevalence in a given village based on past observed prevalence levels and past screening activities in that village. Based on the quality of prevalence level predictions in 143 villages in Kwamouth (DRC), and based on the theoretical foundation underlying the models, we consider variants of the Logistic Model-a model inspired by the SIS epidemic model-to be most suitable for predicting HAT prevalence levels. Furthermore, we demonstrate the applicability of this model to predict the effects of planning policies for screening operations. Our analysis yields an analytical expression for the screening frequency required to reach eradication (zero prevalence) and a simple approach for determining the frequency required to reach elimination within a given time frame (one case per 10000). Furthermore, the model predictions suggest that annual screening is only expected to lead to eradication if at least half of the cases are detected during the screening rounds. This paper extends knowledge on control strategies for HAT and serves as a basis for further modeling and optimization studies.
Collapse
Affiliation(s)
- Harwin de Vries
- Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| | | | - Epco Hasker
- Department of Public Health, Institute Of Tropical Medicine, Antwerp, Belgium
| | - Crispin Lumbala
- Programme National de Lutte contre la Trypanosomiase Humaine Africain (PNLTHA), Kinshasa, Democratic Republic of Congo
| | - Pascal Lutumba
- University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Sake J. de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joris van de Klundert
- Institute of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Bisser S, Lumbala C, Nguertoum E, Kande V, Flevaud L, Vatunga G, Boelaert M, Büscher P, Josenando T, Bessell PR, Biéler S, Ndung’u JM. Sensitivity and Specificity of a Prototype Rapid Diagnostic Test for the Detection of Trypanosoma brucei gambiense Infection: A Multi-centric Prospective Study. PLoS Negl Trop Dis 2016; 10:e0004608. [PMID: 27058033 PMCID: PMC4825971 DOI: 10.1371/journal.pntd.0004608] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/14/2016] [Indexed: 01/03/2023] Open
Abstract
Background A major challenge in the control of human African trypanosomiasis (HAT) is lack of reliable diagnostic tests that are rapid and easy to use in remote areas where the disease occurs. In Trypanosoma brucei gambiense HAT, the Card Agglutination Test for Trypanosomiasis (CATT) has been the reference screening test since 1978, usually on whole blood, but also in a 1/8 dilution (CATT 1/8) to enhance specificity. However, the CATT is not available in a single format, requires a cold chain for storage, and uses equipment that requires electricity. A solution to these challenges has been provided by rapid diagnostic tests (RDT), which have recently become available. A prototype immunochromatographic test, the SD BIOLINE HAT, based on two native trypanosomal antigens (VSG LiTat 1.3 and VSG LiTat 1.5) has been developed. We carried out a non-inferiority study comparing this prototype to the CATT 1/8 in field settings. Methodology/Principal Findings The prototype SD BIOLINE HAT, the CATT Whole Blood and CATT 1/8 were systematically applied on fresh blood samples obtained from 14,818 subjects, who were prospectively enrolled through active and passive screening in clinical studies in three endemic countries of central Africa: Angola, the Democratic Republic of the Congo and the Central African Republic. One hundred and forty nine HAT cases were confirmed by parasitology. The sensitivity and specificity of the prototype SD BIOLINE HAT was 89.26% (95% confidence interval (CI) = 83.27–93.28) and 94.58% (95% CI = 94.20–94.94) respectively. The sensitivity and specificity of the CATT on whole blood were 93.96% (95% CI = 88.92–96.79) and 95.91% (95% CI = 95.58–96.22), and of the CATT 1/8 were 89.26% (95% CI = 83.27–93.28) and 98.88% (95% CI = 98.70–99.04) respectively. Conclusion/Significance After further optimization, the prototype SD BIOLINE HAT could become an alternative to current screening methods in primary healthcare settings in remote, resource-limited regions where HAT typically occurs. Early diagnosis and treatment of human African trypanosomiasis is essential for safe and effective treatment. The tests used to screen suspected patients and populations at risk are difficult to implement in remote rural settings where the disease occurs. Availability of simple, easy to use, instrument-free rapid diagnostic tests would improve screening and coverage of the population at risk and contribute to elimination of the disease. It would enable technicians with limited training and clinicians in emergency or medical wards to make rapid differential diagnosis for neurological syndromes or malaria-like illnesses. Introduction of such tests in all healthcare facilities in endemic regions would enable early detection of cases, hence reducing the time lost by patients before they get adequate and safe treatment. Treatment delay occurs when such patients attend non-specialized health centres that are unable to perform diagnosis of the disease. We evaluated a prototype rapid diagnostic test for HAT, the SD BIOLINE HAT in Angola, the Democratic Republic of the Congo and the Central African Republic. We show here that the test is as sensitive as the CATT in a 1/8 dilution and less sensitive than CATT on whole blood, although this latter difference was not statistically significant. The prototype RDT is a promising alternative for serodiagnosis of HAT.
Collapse
Affiliation(s)
- Sylvie Bisser
- INSERM UMR1094, Institute of Neuroepidemiology and Tropical Neurology, Limoges, France
- * E-mail:
| | - Crispin Lumbala
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Etienne Nguertoum
- Institut Centrafricain de la Recherche Agronomique (ICRA), Bangui, Central African Republic
| | - Victor Kande
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Laurence Flevaud
- Médecins Sans Frontières (MSF) Operational Centre Barcelona-Athens (OCBA), Barcelona, Spain
| | - Gedeao Vatunga
- Instituto de Combate e Controlo das Tripanossomiases, Luanda, Angola
| | | | | | | | | | - Sylvain Biéler
- Foundation for Innovative New Diagnostics, Campus Biotech, Geneva, Switzerland
| | - Joseph M. Ndung’u
- Foundation for Innovative New Diagnostics, Campus Biotech, Geneva, Switzerland
| |
Collapse
|
13
|
Sistrom M, Evans B, Benoit J, Balmer O, Aksoy S, Caccone A. De Novo Genome Assembly Shows Genome Wide Similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS One 2016; 11:e0147660. [PMID: 26910229 PMCID: PMC4766357 DOI: 10.1371/journal.pone.0147660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
Background Trypanosoma brucei is a eukaryotic pathogen which causes African trypanosomiasis. It is notable for its variant surface glycoprotein (VSG) coat, which undergoes antigenic variation enabled by a large suite of VSG pseudogenes, allowing for persistent evasion of host adaptive immunity. While Trypanosoma brucei rhodesiense (Tbr) and T. b gambiense (Tbg) are human infective, related T. b. brucei (Tbb) is cleared by human sera. A single gene, the Serum Resistance Associated (SRA) gene, confers Tbr its human infectivity phenotype. Potential genetic recombination of this gene between Tbr and non-human infective Tbb strains has significant epidemiological consequences for Human African Trypanosomiasis outbreaks. Results Using long and short read whole genome sequencing, we generated a hybrid de novo assembly of a Tbr strain, producing 4,210 scaffolds totaling approximately 38.8 megabases, which comprise a significant proportion of the Tbr genome, and thus represents a valuable tool for a comparative genomics analyses among human and non-human infective T. brucei and future complete genome assembly. We detected 5,970 putative genes, of which two, an alcohol oxidoreductase and a pentatricopeptide repeat-containing protein, were members of gene families common to all T. brucei subspecies, but variants specific to the Tbr strain sequenced in this study. Our findings confirmed the extremely high level of genomic similarity between the two parasite subspecies found in other studies. Conclusions We confirm at the whole genome level high similarity between the two Tbb and Tbr strains studied. The discovery of extremely minor genomic differentiation between Tbb and Tbr suggests that the transference of the SRA gene via genetic recombination could potentially result in novel human infective strains, thus all genetic backgrounds of T. brucei should be considered potentially human infective in regions where Tbr is prevalent.
Collapse
Affiliation(s)
- Mark Sistrom
- School of Natural Sciences, University of California, Merced, 5200 N. Lake Rd, Merced, CA, 95343, United States of America
- * E-mail:
| | - Benjamin Evans
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street New Haven, CT 06520, United States of America
| | - Joshua Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, United States of America
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street New Haven, CT 06520, United States of America
| |
Collapse
|
14
|
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. PLoS One 2015; 10:e0139579. [PMID: 26555902 PMCID: PMC4640498 DOI: 10.1371/journal.pone.0139579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.
Collapse
Affiliation(s)
- Corinne S. Wilson
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Alex J. Chang
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Rebecca Greene
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sulynn Machado
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Matthew W. Parsons
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Taylor A. Takats
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Luke J. Zambetti
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Amy L. Springer
- Department of Biology, Siena College, Loudonville, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lamour SD, Gomez-Romero M, Vorkas PA, Alibu VP, Saric J, Holmes E, Sternberg JM. Discovery of Infection Associated Metabolic Markers in Human African Trypanosomiasis. PLoS Negl Trop Dis 2015; 9:e0004200. [PMID: 26505639 PMCID: PMC4624234 DOI: 10.1371/journal.pntd.0004200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023] Open
Abstract
Human African trypanosomiasis (HAT) remains a major neglected tropical disease in Sub-Saharan Africa. As clinical symptoms are usually non-specific, new diagnostic and prognostic markers are urgently needed to enhance the number of identified cases and optimise treatment. This is particularly important for disease caused by Trypanosoma brucei rhodesiense, where indirect immunodiagnostic approaches have to date been unsuccessful. We have conducted global metabolic profiling of plasma from T.b.rhodesiense HAT patients and endemic controls, using 1H nuclear magnetic resonance (NMR) spectroscopy and ultra-performance liquid chromatography, coupled with mass spectrometry (UPLC-MS) and identified differences in the lipid, amino acid and metabolite profiles. Altogether 16 significantly disease discriminatory metabolite markers were found using NMR, and a further 37 lipid markers via UPLC-MS. These included significantly higher levels of phenylalanine, formate, creatinine, N-acetylated glycoprotein and triglycerides in patients relative to controls. HAT patients also displayed lower concentrations of histidine, sphingomyelins, lysophosphatidylcholines, and several polyunsaturated phosphatidylcholines. While the disease metabolite profile was partially consistent with previous data published in experimental rodent infection, we also found unique lipid and amino acid profile markers highlighting subtle but important differences between the host response to trypanosome infections between animal models and natural human infections. Our results demonstrate the potential of metabolic profiling in the identification of novel diagnostic biomarkers and the elucidation of pathogenetic mechanisms in this disease.
Collapse
Affiliation(s)
- Sabrina D. Lamour
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Maria Gomez-Romero
- Section of Hepatology and Gastroenterology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Panagiotis A. Vorkas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Vincent P. Alibu
- Section of Hepatology and Gastroenterology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jasmina Saric
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jeremy M. Sternberg
- Institute of Biological and Environmental Sciences, University Of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
16
|
Stone CM, Chitnis N. Implications of Heterogeneous Biting Exposure and Animal Hosts on Trypanosomiasis brucei gambiense Transmission and Control. PLoS Comput Biol 2015; 11:e1004514. [PMID: 26426854 PMCID: PMC4591123 DOI: 10.1371/journal.pcbi.1004514] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022] Open
Abstract
The gambiense form of sleeping sickness is a neglected tropical disease, which is presumed to be anthroponotic. However, the parasite persists in human populations at levels of considerable rarity and as such the existence of animal reservoirs has been posited. Clarifying the impact of animal host reservoirs on the feasibility of interrupting sleeping sickness transmission through interventions is a matter of urgency. We developed a mathematical model allowing for heterogeneous exposure of humans to tsetse, with animal populations that differed in their ability to transmit infections, to investigate the effectiveness of two established techniques, screening and treatment of at-risk populations, and vector control. Importantly, under both assumptions, an integrated approach of human screening and vector control was supported in high transmission areas. However, increasing the intensity of vector control was more likely to eliminate transmission, while increasing the intensity of human screening reduced the time to elimination. Non-human animal hosts played important, but different roles in HAT transmission, depending on whether or not they contributed as reservoirs. If they did not serve as reservoirs, sensitivity analyses suggested their attractiveness may instead function as a sink for tsetse bites. These outcomes highlight the importance of understanding the ecological and environmental context of sleeping sickness in optimizing integrated interventions, particularly for moderate and low transmission intensity settings. Sleeping sickness, a disease that strikes predominantly poor populations in sub-Saharan Africa, has been targeted for elimination as a public health problem. Despite decades of control operations the disease remains enigmatic and is capable of persisting in populations at low levels of prevalence. Two mechanisms are investigated here that could allow persistence at such levels. Heterogeneous exposure of humans to tsetse is modelled as a subset of humans commuting to areas of high vectorial capacity. Additionally, non-human animals may act as reservoir species. We developed, parameterized, and investigated a model of sleeping sickness transmission to gain insight into the impact of these assumptions on the prospects of elimination using screening and treatment of humans and vector control. Supplemental use of vector control increased the probability of elimination and decreased the duration until elimination was achieved. This was more pronounced when animals did contribute to transmission, or when coverage and compliance of humans with screening operations was lower, for instance due to an inability to reach the humans at greatest risk of exposure. These results can provide insights to public health officials as to when to consider supplementing human treatment with additional measures, and thereby improve the prospects of elimination of this disease.
Collapse
Affiliation(s)
- Chris M. Stone
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Tirados I, Esterhuizen J, Kovacic V, Mangwiro TNC, Vale GA, Hastings I, Solano P, Lehane MJ, Torr SJ. Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy. PLoS Negl Trop Dis 2015; 9:e0003822. [PMID: 26267814 PMCID: PMC4580652 DOI: 10.1371/journal.pntd.0003822] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. Methods and Findings The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km2). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. Interpretation The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised. Sleeping sickness is controlled by case detection and treatment but this often only reaches less than 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because of expense. We conducted a full scale field trial of a refined vector control technology. From preliminary trials we determined the number of insecticidal tiny targets required to control tsetse populations by more than 90%. We then carried out a full scale, 500 km2 field trial covering two HAT foci in Northern Uganda (overall target density 5.7/km2). In 12 months tsetse populations declined by more than 90%. A mathematical model suggested that a 72% reduction in tsetse population is required to stop transmission in those settings. The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US$433,333 (WHO figures). One year of vector control organised within country, which can completely stop HAT transmission, would cost US$42,700. The case for adding this new method of vector control to case detection and treatment is strong. We outline how such a component could be organised.
Collapse
Affiliation(s)
- Inaki Tirados
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Vanja Kovacic
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - T. N. Clement Mangwiro
- Bindura University of Science Education, Department of Animal Science, Bindura, Zimbabwe
| | - Glyn A. Vale
- Southern African Centre for Epidemiological Modelling and Analysis, University of Stellenbosch, Stellenbosch, South Africa
| | - Ian Hastings
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philippe Solano
- Institut de Recherche pour le Developpement (IRD), UMR IRD-CIRAD 177 INTERTRYP CIRDES 01, Bobo-Dioulasso, Burkina Faso
| | - Michael J. Lehane
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Steve J. Torr
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
18
|
Lumbala C, Simarro PP, Cecchi G, Paone M, Franco JR, Kande Betu Ku Mesu V, Makabuza J, Diarra A, Chansy S, Priotto G, Mattioli RC, Jannin JG. Human African trypanosomiasis in the Democratic Republic of the Congo: disease distribution and risk. Int J Health Geogr 2015; 14:20. [PMID: 26047813 PMCID: PMC4501122 DOI: 10.1186/s12942-015-0013-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background For the past three decades, the Democratic Republic of the Congo (DRC) has been the country reporting the highest number of cases of human African trypanosomiasis (HAT). In 2012, DRC continued to bear the heaviest burden of gambiense HAT, accounting for 84 % of all cases reported at the continental level (i.e., 5,968/7,106). This paper reviews the status of sleeping sickness in DRC between 2000 and 2012, with a focus on spatio-temporal patterns. Epidemiological trends at the national and provincial level are presented. Results The number of HAT cases reported yearly from DRC decreased by 65 % from 2000 to 2012, i.e., from 16,951 to 5,968. At the provincial level a more complex picture emerges. Whilst HAT control in the Equateur province has had a spectacular impact on the number of cases (97 % reduction), the disease has proved more difficult to tackle in other provinces, most notably in Bandundu and Kasai, where, despite substantial progress, HAT remains entrenched. HAT prevalence presents its highest values in the northern part of the Province Orientale, where a number of constraints hinder surveillance and control. Significant coordinated efforts by the National Sleeping Sickness Control Programme and the World Health Organization in data collection, reporting, management and mapping, culminating in the Atlas of HAT, have enabled HAT distribution and risk in DRC to be known with more accuracy than ever before. Over 18,000 locations of epidemiological interest have been geo-referenced (average accuracy ≈ 1.7 km), corresponding to 93.6 % of reported cases (period 2000–2012). The population at risk of contracting sleeping sickness has been calculated for two five-year periods (2003–2007 and 2008–2012), resulting in estimates of 33 and 37 million people respectively. Conclusions The progressive decrease in HAT cases reported since 2000 in DRC is likely to reflect a real decline in disease incidence. If this result is to be sustained, and if further progress is to be made towards the goal of HAT elimination, the ongoing integration of HAT control and surveillance into the health system is to be closely monitored and evaluated, and active case-finding activities are to be maintained, especially in those areas where the risk of infection remains high and where resurgence could occur. Electronic supplementary material The online version of this article (doi:10.1186/s12942-015-0013-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Crispin Lumbala
- National Sleeping Sickness Control Programme, Kinshasa, Democratic Republic of the Congo.
| | - Pere P Simarro
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, 1211, Geneva, 27, Switzerland.
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Sub-regional Office for Eastern Africa, Addis Ababa, Ethiopia.
| | - Massimo Paone
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Viale delle Terme di Caracalla, 00153, Rome, Italy.
| | - José R Franco
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, 1211, Geneva, 27, Switzerland.
| | - Victor Kande Betu Ku Mesu
- Neglected Tropical Diseases Department, Ministry of Public Health, Kinshasa, Democratic Republic of the Congo.
| | - Jacquies Makabuza
- National Sleeping Sickness Control Programme, Kinshasa, Democratic Republic of the Congo.
| | - Abdoulaye Diarra
- World Health Organization, Regional Office for Africa, Intercountry Support Team, Libreville, Gabon.
| | - Shampa Chansy
- National Sleeping Sickness Control Programme, Kinshasa, Democratic Republic of the Congo.
| | - Gerardo Priotto
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, 1211, Geneva, 27, Switzerland.
| | - Raffaele C Mattioli
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Viale delle Terme di Caracalla, 00153, Rome, Italy.
| | - Jean G Jannin
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, 1211, Geneva, 27, Switzerland.
| |
Collapse
|
19
|
Rayaisse JB, Salou E, Courtin F, Yoni W, Barry I, Dofini F, Kagbadouno M, Camara M, Torr SJ, Solano P. Baited-boats: an innovative way to control riverine tsetse, vectors of sleeping sickness in West Africa. Parasit Vectors 2015; 8:236. [PMID: 25928366 PMCID: PMC4436790 DOI: 10.1186/s13071-015-0851-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human African Trypanosomiasis (HAT) is an important neglected tropical disease caused by Trypanosoma spp. parasites transmitted by species of tsetse fly (Glossina spp). The most important vectors of HAT are riverine tsetse and these can be controlled by attracting them to stationary baits such as insecticide-impregnated traps or targets deployed along the banks of rivers. However, the geographical nature of some riverine habitats, particularly mangroves but also extensive lake and river networks, makes deployment of baits difficult and limits their efficacy. It is known that tsetse are attracted by the movement of their hosts. Our hypothesis was that mounting a target on canoes typically used in Africa ('pirogues') would produce an effective means of attracting-and-killing riverine tsetse in extensive wetland habitats. METHODS In Folonzo, southern Burkina Faso, studies were made of the numbers of tsetse attracted to a target (75 × 50 cm) of blue cloth and netting mounted on a pirogue moving along a river, versus the same target placed on the riverbank. The targets were covered with a sticky film which caught tsetse as they contacted the target. RESULTS The pirogue-mounted target caught twice as many G. tachinoides and G. p. gambiensis, and 8 times more G. morsitans submorsitans than the stationary one (P < 0.001). CONCLUSION Pirogues are common vehicle for navigating the rivers, lakes and swamps of West Africa. The demonstration that tsetse can be attracted to targets mounted on such boats suggests that pirogues might provide a cost-effective and convenient platform for deploying targets to control tsetse in the mangrove systems of West Africa where HAT persists. Further studies to assess the impact of pirogue-mounted targets on tsetse populations in HAT foci and the protective value of targets for pirogue passengers are recommended.
Collapse
Affiliation(s)
- Jean-Baptiste Rayaisse
- Centre International de Recherche - Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| | - Ernest Salou
- Centre International de Recherche - Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| | - Fabrice Courtin
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, CIRDES, Bobo-Dioulasso, Burkina Faso.
| | - Wilfrid Yoni
- Centre International de Recherche - Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| | - Issiaka Barry
- Centre International de Recherche - Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| | - Fabien Dofini
- Centre International de Recherche - Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| | - Moise Kagbadouno
- Programme National de Lutte contre la Trypanosomiase Humaine (PNLTHA), Conakry, Guinea.
| | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine (PNLTHA), Conakry, Guinea.
| | - Stephen J Torr
- Liverpool School of Tropical Medicine, Liverpool, UK. .,Warwick Medical School, University of Warwick, Coventry, UK.
| | - Philippe Solano
- Institut de Recherche pour le Développement, UMR 177 IRD-CIRAD INTERTRYP, Montpellier, France.
| |
Collapse
|
20
|
Sudarshi D, Lawrence S, Pickrell WO, Eligar V, Walters R, Quaderi S, Walker A, Capewell P, Clucas C, Vincent A, Checchi F, MacLeod A, Brown M. Human African trypanosomiasis presenting at least 29 years after infection--what can this teach us about the pathogenesis and control of this neglected tropical disease? PLoS Negl Trop Dis 2014; 8:e3349. [PMID: 25522322 PMCID: PMC4270486 DOI: 10.1371/journal.pntd.0003349] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Darshan Sudarshi
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Sarah Lawrence
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | | | - Vinay Eligar
- Princess of Wales Hospital, Bridgend Hospital, Wales, United Kingdom
| | - Richard Walters
- Morriston Hospital, Swansea, Wales, United Kingdom
- Princess of Wales Hospital, Bridgend Hospital, Wales, United Kingdom
| | - Shumonta Quaderi
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Alice Walker
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Paul Capewell
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Angela Vincent
- Nuffield Dept of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Francesco Checchi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael Brown
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Abstract
Human African trypanosomiasis (HAT), or sleeping sickness, is caused by Trypanosoma brucei gambiense, which is a chronic form of the disease present in western and central Africa, and by Trypanosoma brucei rhodesiense, which is an acute disease located in eastern and southern Africa. The rhodesiense form is a zoonosis, with the occasional infection of humans, but in the gambiense form, the human being is regarded as the main reservoir that plays a key role in the transmission cycle of the disease. The gambiense form currently assumes that 98% of the cases are declared; the Democratic Republic of the Congo is the most affected country, with more than 75% of the gambiense cases declared. The epidemiology of the disease is mediated by the interaction of the parasite (trypanosome) with the vectors (tsetse flies), as well as with the human and animal hosts within a particular environment. Related to these interactions, the disease is confined in spatially limited areas called “foci”, which are located in Sub-Saharan Africa, mainly in remote rural areas. The risk of contracting HAT is, therefore, determined by the possibility of contact of a human being with an infected tsetse fly. Epidemics of HAT were described at the beginning of the 20th century; intensive activities have been set up to confront the disease, and it was under control in the 1960s, with fewer than 5,000 cases reported in the whole continent. The disease resurged at the end of the 1990s, but renewed efforts from endemic countries, cooperation agencies, and nongovernmental organizations led by the World Health Organization succeeded to raise awareness and resources, while reinforcing national programs, reversing the trend of the cases reported, and bringing the disease under control again. In this context, sustainable elimination of the gambiense HAT, defined as the interruption of the transmission of the disease, was considered as a feasible target for 2030. Since rhodesiense HAT is a zoonosis, where the animal reservoir plays a key role, the interruption of the disease’s transmission is not deemed feasible.
Collapse
Affiliation(s)
- Jose R Franco
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Pere P Simarro
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Abdoulaye Diarra
- World Health Organization, Inter Country Support Team for Central Africa, Regional Office for Africa, Libreville, Gabon
| | - Jean G Jannin
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| |
Collapse
|
22
|
Performance of parasitological and molecular techniques for the diagnosis and surveillance of gambiense sleeping sickness. PLoS Negl Trop Dis 2014; 8:e2954. [PMID: 24921941 PMCID: PMC4055587 DOI: 10.1371/journal.pntd.0002954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives Recently, improvements have been made to diagnostics for gambiense sleeping sickness control but their performance remains poorly documented and may depend on specimen processing prior to examination. In a prospective study in the Democratic Republic of the Congo, we compared the diagnostic performance of several parasite detection techniques, immune trypanolysis and of m18S PCR on whole blood stored in a stabilisation buffer or dried on filter paper. Methods Individuals with CATT whole blood (WB) titer ≥1∶4 or with clinical signs indicative for sleeping sickness were examined for presence of trypanosomes in lymph node aspirate (LNA) and/or in blood. Blood was examined with Capillary Centrifugation Technique (CTC), mini-Anion Exchange Centrifugation Technique (mAECT) and mAECT on buffy coat (BC). PCR was performed on whole blood (i) stored in guanidine hydrochloride EDTA (GE) stabilisation buffer and (ii) dried on filter paper, and repeatability and reproducibility were assessed. Immune trypanolysis (TL) was performed on plasma. Results A total of 237 persons were included. Among 143 parasitologically confirmed cases, 85.3% had a CATT-WB titre of ≥1/8, 39.2% were positive in LNA, 47.5% in CTC, 80.4% in mAECT-WB, 90.9% in mAECT-BC, 95.1% in TL and up to 89.5% in PCR on GE-stabilised blood. PCR on GE-stabilised blood showed highest repeatability (87.8%) and inter-laboratory reproducibility (86.9%). Of the 94 non-confirmed suspects, respectively 39.4% and 23.4% were TL or PCR positive. Suboptimal specificity of PCR and TL was also suggested by latent class analysis. Conclusion The combination of LNA examination with mAECT-BC offered excellent diagnostic sensitivity. For PCR, storage of blood in stabilisation buffer is to be preferred over filter paper. TL as well as PCR are useful for remote diagnosis but are not more sensitive than mAECT-BC. For TL and PCR, the specificity, and thus usefulness for management of non-confirmed suspects remain to be determined. Human African trypanosomiasis or sleeping sickness still causes considerable suffering in sub-Sahara Africa. Diagnostics for this infectious disease constantly improve but their performance in terms of accuracy and reproducibility should be evaluated prior to implementation in control activities. We evaluated the diagnostic performance of several microscopic, serological and molecular diagnostic tests on a cohort of 237 sleeping sickness suspects in the Democratic Republic of the Congo. Since molecular diagnostics are rather sophisticated, we also assessed their repeatability and reproducibility. In the absence of a golden standard test, latent class analysis revealed that the suboptimal specificity of the serological and molecular tests is an issue. Our study shows the superior diagnostic sensitivity of the combination of lymph node aspirate examination and separation of trypanosomes from blood by mini Anion Exchange Centrifugation Techniques.
Collapse
|
23
|
Aksoy S, Attardo G, Berriman M, Christoffels A, Lehane M, Masiga D, Toure Y. Human African trypanosomiasis research gets a boost: unraveling the tsetse genome. PLoS Negl Trop Dis 2014; 8:e2624. [PMID: 24762859 PMCID: PMC3998789 DOI: 10.1371/journal.pntd.0002624] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Serap Aksoy
- Yale School of Public Health, Department of Epidemiology and Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| | - Geoffrey Attardo
- Yale School of Public Health, Department of Epidemiology and Public Health, New Haven, Connecticut, United States of America
| | - Matt Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Hinxton, United Kingdom
| | - Alan Christoffels
- South African National Bioinformatics Institute, MRC Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Mike Lehane
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Dan Masiga
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Yeya Toure
- Vector, Environment and Society Unit, Tropical Diseases Research (TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
24
|
Cordon-Obras C, Cano J, Knapp J, Nebreda P, Ndong-Mabale N, Ncogo-Ada PR, Ndongo-Asumu P, Navarro M, Pinto J, Benito A, Bart JM. Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades. Parasit Vectors 2014; 7:31. [PMID: 24438585 PMCID: PMC3898820 DOI: 10.1186/1756-3305-7-31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
Background Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko. Methods A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial (COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by Distance Based, Maximum Likelihood and Bayesian Inference methods. Results The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC), including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes, clearly divergent from the genotypes previously identified in Mbini and Kogo. Conclusions We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where trypanosomiasis transmission is controlled but not definitively eliminated yet.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jean-Mathieu Bart
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Sinesio Delgado, 4, pabellón 13, Madrid 28029, Spain.
| |
Collapse
|