1
|
Rintz E, Banacki M, Ziemian M, Kobus B, Wegrzyn G. Causes of death in mucopolysaccharidoses. Mol Genet Metab 2024; 142:108507. [PMID: 38815294 DOI: 10.1016/j.ymgme.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland.
| | - Marcin Banacki
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Maja Ziemian
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Barbara Kobus
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Lee CL, Chuang CK, Chiu HC, Tu RY, Lo YT, Chang YH, Lin SP, Lin HY. Clinical Utility of Elosulfase Alfa in the Treatment of Morquio A Syndrome. Drug Des Devel Ther 2022; 16:143-154. [PMID: 35046639 PMCID: PMC8759989 DOI: 10.2147/dddt.s219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA or Morquio A) is an autosomal recessive disorder and is one of the lysosomal storage diseases. Patients with MPS IVA have a striking skeletal phenotype but normal intellect. The phenotypic continuum of MPS IVA ranges from severe and rapid progress to mild and slow progress. The diagnosis of MPS IVA is usually suspected based on abnormal bone findings and dysplasia on physical examination and radiographic investigation in the preschool years. In the past, only supportive care was available. Due to the early and severe skeletal abnormalities, the orthopedic specialist was usually the main care provider. However, patients need aggressive monitoring and management of their systemic disease. Therefore, they need an interdisciplinary team for their care, comprising medical geneticists, cardiologists, pulmonary specialists, gastroenterologists, otolaryngologists, audiologists, and ophthalmologists. After the US Food and Drug Administration approved elosulfase alfa in 2014, patients older than 5 years could benefit from this treatment. Clinical trials showed clinically meaningful improvements with once-a-week intravenous dosing (2.0 mg/kg per week), significantly improving the 6min walk test, the 3min stair climb test, and respiratory function when compared with placebo. Elosulfase alfa is well-tolerated, and there is a good response indicated by decreasing urine glycosaminoglycans.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ru-Yi Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan,Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan,Correspondence: Shuan-Pei Lin; Hsiang-Yu Lin Department of Pediatrics, MacKay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, TaiwanTel +886-2-2543-3535 ext. 3090; +886-2-2543-3535 ext. 3089Fax +886-2-2543-3642 Email ;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan,Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
4
|
Álvarez VJ, Bravo SB, Chantada-Vazquez MP, Colón C, De Castro MJ, Morales M, Vitoria I, Tomatsu S, Otero-Espinar FJ, Couce ML. Characterization of New Proteomic Biomarker Candidates in Mucopolysaccharidosis Type IVA. Int J Mol Sci 2020; 22:ijms22010226. [PMID: 33379360 PMCID: PMC7795692 DOI: 10.3390/ijms22010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Skeletal dysplasia and the related clinical features of MPS IVA are caused by disruption of the cartilage and its extracellular matrix, leading to a growth imbalance. Enzyme replacement therapy (ERT) with recombinant human GALNS has yielded positive results in activity of daily living and endurance tests. However, no data have demonstrated improvements in bone lesions and bone grow thin MPS IVA after ERT, and there is no correlation between therapeutic efficacy and urine levels of keratan sulfate, which accumulates in MPS IVA patients. Using qualitative and quantitative proteomics approaches, we analyzed leukocyte samples from healthy controls (n = 6) and from untreated (n = 5) and ERT-treated (n = 8, sampled before and after treatment) MPS IVA patients to identify potential biomarkers of disease. Out of 690 proteins identified in leukocytes, we selected a group of proteins that were dysregulated in MPS IVA patients with ERT. From these, we identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-glucosidase AB, and vitronectin. Further studies of cartilage and bone alterations in MPS IVA will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
Affiliation(s)
- Víctor J. Álvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Maria Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - María J. De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - Montserrat Morales
- Minority Diseases Unit Hospital Universitario12 de Octubre, 28041 Madrid, Spain;
| | - Isidro Vitoria
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Francisco J. Otero-Espinar
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Correspondence: or ; Tel.: +34-981-951-100
| |
Collapse
|
5
|
Aylward SC, Pindrik J, Abreu NJ, Cherny WB, O’Neal M, de Los Reyes E. Cerliponase alfa for CLN2 disease, a promising therapy. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1856654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shawn C. Aylward
- Department of Pediatrics and Neurology, Nationwide Children‘s Hospital, Columbus, OH, USA
| | - Jonathan Pindrik
- Division of Pediatric Neurosurgery, Nationwide Children‘s Hospital, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Nicolas J. Abreu
- Department of Pediatrics and Neurology, Nationwide Children‘s Hospital, Columbus, OH, USA
| | - W. Bruce Cherny
- Department of Pediatric Neurosurgery, St. Luke‘s Children‘s Hospital, Boise, ID, USA
| | - Matthew O’Neal
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Emily de Los Reyes
- Department of Pediatrics and Neurology, Nationwide Children‘s Hospital, Columbus, OH, USA
| |
Collapse
|
6
|
Erazo-Narváez AF, Muñoz-Vidal JM, Rodríguez-Vélez GH, Acosta-Aragón MA. Clinical outcomes in elderly patients with Morquio a syndrome receiving enzyme replacement therapy - experience in a Colombian center. Mol Genet Metab Rep 2020; 25:100679. [PMID: 33304816 PMCID: PMC7718482 DOI: 10.1016/j.ymgmr.2020.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Mucopolysaccharidosis type IV A (MPS IVA) or Morquio A syndrome is an autosomal recessive lysosomal storage disease caused by GALNS gene mutations that lead to a deficiency of the N-acetylgalactosamine-6-sulfate sulfatase enzyme and the accumulation of two glycosaminoglycans in cell lysosomes, namely, chondroitin and keratan sulfate. OBJECTIVE To present two female patients with Morquio A syndrome in their late adult years (over 50 years of age) with a classical phenotype, treated with enzyme replacement therapy; and to present a summary of the natural history and the characteristics of the disease, and the benefit of comprehensive management. MATERIALS AND METHODS Descriptive clinical study before and after the treatment with enzyme replacement therapy as part of the comprehensive management of MPS IVA. RESULTS Enzyme replacement therapy with elosulfase alfa was effective, with an adequate safety profile in these two patients, showing evidence of sustained improvement in terms of endurance and gait patterns. CONCLUSION We present two cases of MPS IVA, with longer survival than reported previously in classical phenotypes associated with this disease condition. There is a paucity of reports of similar cases in the literature. We believe that the clinical heterogeneity of the disease manifesting with the classical phenotype, together with comprehensive management, have played a role in the survival of these two patients. Therapy with elosulfase alfa as part of comprehensive management has been crucial; we suspect a clinical response and infer a better quality of life and reduced burden for the caregiver, supporting its use in older patients.
Collapse
Affiliation(s)
| | | | - Guillermo Hernando Rodríguez-Vélez
- Universidad del Cauca, School of Exact, Natural and Education Sciences, Physical Education Recreation and Sports Department, Popayán, Colombia
| | - María Amparo Acosta-Aragón
- Universidad del Cauca, School of Health Sciences, Pediatrics Department, Popayán, Colombia
- Hospital Universitario San José, Pediatrics Department, Popayán, Colombia
| |
Collapse
|
7
|
Kakkis E, Marsden D. Urinary glycosaminoglycans as a potential biomarker for evaluating treatment efficacy in subjects with mucopolysaccharidoses. Mol Genet Metab 2020; 130:7-15. [PMID: 32224020 DOI: 10.1016/j.ymgme.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
Abstract
Accumulations of glycosaminoglycans (GAGs) that result from deficiencies in lysosomal hydrolases are characteristic of mucopolysaccharidoses (MPS). Enzyme replacement therapies (ERTs) are now available for several MPS diseases (MPS I, MPS II, MPS IVA, MPS VI, and MPS VII), but assessment of the efficacy of treatment can be challenging because these are rare, progressive, and highly heterogeneous diseases; because some clinical manifestations may be irreversible if treatment initiation is delayed; and because determining the benefits of a treatment to prevent those manifestations may take prolonged periods of time. In addition to accumulation of GAGs in tissues, elevated urinary GAG (uGAG) levels are evident and are reduced rapidly after initiation of ERT. Studies in MPS animal models and clinical studies in subjects with MPS diseases have revealed correlations between reductions of uGAG levels and clinical effects of ERTs. In this article, we review the growing body of evidence to support the potential for the use of uGAG levels as predictive biomarkers of treatment efficacy.
Collapse
Affiliation(s)
- Emil Kakkis
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States of America.
| | - Deborah Marsden
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States of America
| |
Collapse
|
8
|
Peracha H, Sawamoto K, Averill L, Kecskemethy H, Theroux M, Thacker M, Nagao K, Pizarro C, Mackenzie W, Kobayashi H, Yamaguchi S, Suzuki Y, Orii K, Orii T, Fukao T, Tomatsu S. Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol Genet Metab 2018; 125:18-37. [PMID: 29779902 PMCID: PMC6175643 DOI: 10.1016/j.ymgme.2018.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is an autosomal recessive disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to the accumulation of specific glycosaminoglycans (GAGs), chondroitin-6-sulfate (C6S) and keratan sulfate (KS), which are mainly synthesized in the cartilage. Therefore, the substrates are stored primarily in the cartilage and its extracellular matrix (ECM), leading to a direct impact on bone development and successive systemic skeletal spondylepiphyseal dysplasia. The skeletal-related symptoms for MPS IVA include short stature with short neck and trunk, odontoid hypoplasia, spinal cord compression, tracheal obstruction, obstructive airway, pectus carinatum, restrictive lung, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. The degree of imbalance of growth in bone and other organs and tissues largely contributes to unique skeletal dysplasia and clinical severity. Diagnosis of MPS IVA needs clinical, radiographic, and laboratory testing to make a complete conclusion. To diagnose MPS IVA, total urinary GAG analysis which has been used is problematic since the values overlap with those in age-matched controls. Currently, urinary and blood KS and C6S, the enzyme activity of GALNS, and GALNS molecular analysis are used for diagnosis and prognosis of clinical phenotype in MPS IVA. MPS IVA can be diagnosed with unique characters although this disorder relates closely to other disorders in some characteristics. In this review article, we comprehensively describe clinical, radiographic, biochemical, and molecular diagnosis and clinical assessment tests for MPS IVA. We also compare MPS IVA to other closely related disorders to differentiate MPS IVA. Overall, imbalance of growth in MPS IVA patients underlies unique skeletal manifestations leading to a critical indicator for diagnosis.
Collapse
Affiliation(s)
- Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Lauren Averill
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Heidi Kecskemethy
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Mary Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mihir Thacker
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Kyoko Nagao
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, United States; College of Health Sciences, University of Delaware, Newark, DE, United States
| | - Christian Pizarro
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - William Mackenzie
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Kenji Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
9
|
Aydın E, ERASLAN CENK, Canda E, Yazıcı H, Kalkan Uçar S, Çoker M, Çallı MC, Kitiş Ö. Mukopolisakkaridoz tip IVa’da (Morquio sendromu) spinal tutulum: Tanı ve izlemde MRG’nin önemi. EGE TIP DERGISI 2017. [DOI: 10.19161/etd.390224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Puckett Y, Mulinder H, Montaño AM. Enzyme Replacement Therapy with Elosulfase alfa for Mucopolysaccharidosis IVA (Morquio A Syndrome): Milestones and Challenges. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1366900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yana Puckett
- Department of General Surgery, Texas Tech University, School of Medicine, Lubbock, TX, USA
| | - Holly Mulinder
- Department of General Surgery, Texas Tech University, School of Medicine, Lubbock, TX, USA
| | - Adriana M. Montaño
- Department of Pediatrics, Saint Louis University, School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University, School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, USA
| |
Collapse
|
11
|
Colmenares-Bonilla D, Esquitin-Garduño N. Diagnosis of Morquio-A patients in Mexico: How far are we from prompt diagnosis? Intractable Rare Dis Res 2017; 6:119-123. [PMID: 28580212 PMCID: PMC5451743 DOI: 10.5582/irdr.2017.01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mucopolysaccharidosis IV A, better known as Morquio-A syndrome, is a rare condition with severe skeletal and multiorgan involvement. Sometimes is not easy to differentiate from other skeletal dysplasias. Prior to definitive diagnosis, patients have been delayed or misdiagnosis due to lack of knowledge of local physicians about this disease. The aim of this study is to compare the age of onset of clinical manifestations, age of diagnosis, as seen by the parent or primary caregiver and compare this age with other population reports worldwide. Self-administered questionnaires were conducted to the primary caregiver of confirmed patients, collecting information about the onset of symptoms, age, previous diagnoses and biological variables (age, gender, sex). Data from 50 patients, 23 men and 27 women was obtained. Mean age at definitive diagnosis was 5.6 years, age at onset of signs or symptoms was 4.14 years starting with pigeon chest deformity, valgus knees at 4.5 years, stiff hands and increasing mobility of wrists to the 5.8 years, followed by limitation to lift shoulders to 7.1 years. In 78% of patients the diagnosis was by a geneticist. First and subsequent observed clinical changes were orthopedic, starting as early as 4.4 years as noted by parents. Rise of suspicious may delay 16 months' average to definitive diagnosis based on other multi-systemic findings. The most frequent specialist aid in diagnosis is a clinical geneticist followed by orthopedic surgeon. The diagnosis of Morquio-A disease in Mexico is as early as reports from other centers.
Collapse
Affiliation(s)
- Douglas Colmenares-Bonilla
- Musculoskeletal Division, Pediatric Orthopedic Department, Hospital Regional de Alta Especialidad del Bajio, Leon, Guanajuato, Mexico
- Address correspondence to: Dr. Douglas Colmenares-Bonilla, Pediatric Orthopaedic Department, Hospital Regional de Alta Especialidad del Bajio, Boulevard Milenio No. 130, Col. San Carlos la Roncha, C.P. 37660 Leon, Guanajuato, Mexico. E-mail:
| | - Nayeli Esquitin-Garduño
- Neurosciences Division, Neurophysiology Department, Hospital Regional de Alta Especialidad del Bajio, Leon, Guanajuato, Mexico
| |
Collapse
|
12
|
Oxidative profile exhibited by Mucopolysaccharidosis type IVA patients at diagnosis: Increased keratan urinary levels. Mol Genet Metab Rep 2017; 11:46-53. [PMID: 28487826 PMCID: PMC5408501 DOI: 10.1016/j.ymgmr.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
Morquio A disease (Mucopolysaccharidosis type IVA, MPS IVA) is one of the 11 mucopolysaccharidoses (MPSs), a heterogeneous group of inherited lysosomal storage disorders (LSDs) caused by deficiency in enzymes need to degrade glycosaminoglycans (GAGs). Morquio A is characterized by a decrease in N-acetylgalactosamine-6-sulfatase activity and subsequent accumulation of keratan sulfate and chondroitin 6-sulfate in cells and body fluids. As the pathophysiology of this LSD is not completely understood and considering the previous results of our group concerning oxidative stress in Morquio A patients receiving enzyme replacement therapy (ERT), the aim of this study was to investigate oxidative stress parameters in Morquio A patients at diagnosis. It was studied 15 untreated Morquio A patients, compared with healthy individuals. The affected individuals presented higher lipid peroxidation, assessed by urinary 15-F2t-isoprostane levels and no protein damage, determined by sulfhydryl groups in plasma and di-tyrosine levels in urine. Furthermore, Morquio A patients showed DNA oxidative damage in both pyrimidines and purines bases, being the DNA damage positively correlated with lipid peroxidation. In relation to antioxidant defenses, affected patients presented higher levels of reduced glutathione (GSH) and increased activity of glutathione peroxidase (GPx), while superoxide dismutase (SOD) and glutathione reductase (GR) activities were similar to controls. Our findings indicate that Morquio A patients present at diagnosis redox imbalance and oxidative damage to lipids and DNA, reinforcing the idea about the importance of antioxidant therapy as adjuvant to ERT, in this disorder.
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- Cr, creatinine
- DI, damage index
- DTNB, 5,5′-dithiobis(2-nitrobenzoic acid)
- ELISA, enzyme-linked immunoassay
- ERT, enzyme replacement therapy
- Endo III, endonuclease III
- FU, fluorescence units
- GAGs, glycosaminoglycans
- GALNS, N-acetylgalactosamine-6-sulfatase
- GCL, glutamate cysteine ligase
- GCLC, catalytic subunit of GCL
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, glutathione oxidized
- H2O2, hydrogen peroxide
- IEM, inborn errors of metabolism
- Keratan sulfate
- LPS, lipopolysaccharide
- LSDs, lysosomal storage disorders
- MPSs, mucopolysaccharidoses
- Morquio A syndrome
- Mucopolysaccharidosis type IVA
- N-acetyl-galactosamine-6-sulfatase
- OH•, hydroxyl radical
- Oxidative stress
- ROS, reactive oxygen species
- SEM, standard error of the mean
- SOD, superoxide dismutase
- TLR4, Toll Like Receptor 4
- TNB, tionitrobenzoic acid
- mRNA, messenger ribonucleic acid
Collapse
|
13
|
Jelin AC, O'Hare E, Blakemore K, Jelin EB, Valle D, Hoover-Fong J. Skeletal Dysplasias: Growing Therapy for Growing Bones. Front Pharmacol 2017; 8:79. [PMID: 28321190 PMCID: PMC5337493 DOI: 10.3389/fphar.2017.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Skeletal dysplasias represent a large and diverse group of rare conditions affecting collagen and bone. They can be clinically classified based on radiographic and physical features, and many can be further defined at a molecular level (Bonafe et al., 2015). Early diagnosis is critical to proper medical management including pharmacologic treatment when available. Patients with severe skeletal dysplasias often have small chests with respiratory insufficiency or airway obstruction and require immediate intubation after birth. Thereafter a variety of orthopedic, neurosurgical, pulmonary, otolaryngology interventions may be needed. In terms of definitive treatment for skeletal dysplasias, there are few pharmacotherapeutic options available for the majority of these conditions. We sought to describe therapies that are currently available or under investigation for skeletal dysplasias.
Collapse
Affiliation(s)
- Angie C. Jelin
- Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | - Karin Blakemore
- Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Eric B. Jelin
- Pediatric Surgery, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - David Valle
- Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Julie Hoover-Fong
- Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|