1
|
Sypalov SA, Varsegov IS, Ulyanovskii NV, Lebedev AT, Kosyakov DS. Mucolytic Drugs Ambroxol and Bromhexine: Transformation under Aqueous Chlorination Conditions. Int J Mol Sci 2024; 25:5214. [PMID: 38791251 PMCID: PMC11121625 DOI: 10.3390/ijms25105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Bromhexine and ambroxol are among the mucolytic drugs most widely used to treat acute and chronic respiratory diseases. Entering the municipal wastewater and undergoing transformations during disinfection with active chlorine, these compounds can produce nitrogen- and bromine-containing disinfection by-products (DBPs) that are dangerous for aquatic ecosystems. In the present study, primary and deep degradation products of ambroxol and bromhexine obtained in model aquatic chlorination experiments were studied via the combination of high-performance liquid and gas chromatography with high-resolution mass spectrometry. It was shown that at the initial stages, the reactions of cyclization, hydroxylation, chlorination, electrophilic ipso-substitution of bromine atoms with chlorine, and oxidative N-dealkylation occur. Along with known metabolites, a number of novel primary DBPs were tentatively identified based on their elemental compositions and tandem mass spectra. Deep degradation of bromhexine and ambroxol gives twenty-four identified volatile and semi-volatile compounds of six classes, among which trihalomethanes account for more than 50%. The specific class of bromhexine- and ambroxol-related DBPs are bromine-containing haloanilines. Seven of them, including methoxy derivatives, were first discovered in the present study. One more novel class of DBPs associated with bromhexine and ambroxol is represented by halogenated indazoles formed through dealkylation of the primary transformation products containing pyrazoline or tetrahydropyrimidine cycle in their structure.
Collapse
Affiliation(s)
| | | | - Nikolay V. Ulyanovskii
- Laboratory of Environmental Analytical Chemistry, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (S.A.S.); (I.S.V.); (A.T.L.); (D.S.K.)
| | | | | |
Collapse
|
2
|
Foletto VS, da Rosa TF, Serafin MB, Hörner R. Selective serotonin reuptake inhibitor (SSRI) antidepressants reduce COVID-19 infection: prospects for use. Eur J Clin Pharmacol 2022; 78:1601-1611. [PMID: 35943535 PMCID: PMC9360648 DOI: 10.1007/s00228-022-03372-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The absence of specific treatments for COVID-19 leads to an intense global effort in the search for new therapeutic interventions and better clinical outcomes for patients. This review aimed to present a selection of accepted studies that reported the activity of antidepressant drugs belonging to the selective serotonin receptor inhibitor (SSRI) class for treating the novel coronavirus. METHODS A search was performed in PubMed and SciELO databases using the following search strategies: [(coronavirus) OR (COVID) OR (SARS-CoV-2) AND (antidepressant) OR (serotonin) OR (selective serotonin receptor inhibitors)]. In the end, eleven articles were included. We also covered information obtained from ClinicalTrials.gov in our research. RESULTS Although several clinical trials are ongoing, only a few drugs have been officially approved to treat the infection. Remdesivir, an antiviral drug, despite favorable preliminary results, has restricted the use due to the risk of toxicity and methodological flaws. Antidepressant drugs were able to reduce the risk of intubation or death related to COVID-19, decrease the need for intensive medical care, and severely inhibit viral titers by up to 99%. Among the SSRIs studied so far, fluoxetine and fluvoxamine have shown to be the most promising against SARS-CoV-2. CONCLUSION If successful, these drugs can substantially reduce hospitalization and mortality rates, as well as allow for fully outpatient treatment for mild-to-moderate infections. Thus, repositioning SSRIs can provide benefits when faced with a rapidly evolving pandemic such as COVID-19.
Collapse
Affiliation(s)
| | - Taciéli Fagundes da Rosa
- Federal University of Santa Maria, Postgraduate Program in Pharmaceutical Sciences, Santa Maria, RS, Brazil
| | - Marissa Bolson Serafin
- Federal University of Santa Maria, Postgraduate Program in Pharmaceutical Sciences, Santa Maria, RS, Brazil
| | - Rosmari Hörner
- Federal University of Santa Maria, Postgraduate Program in Pharmaceutical Sciences, Santa Maria, RS, Brazil.
- Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, UFSM, Building 26, Room 1201, Santa Maria, RS, 97015-900, Brazil.
| |
Collapse
|
3
|
Ferreira-da-Silva R, Ribeiro-Vaz I, Morato M, Junqueira Polónia J. A comprehensive review of adverse events to drugs used in COVID-19 patients: Recent clinical evidence. Eur J Clin Invest 2022; 52:e13763. [PMID: 35224719 PMCID: PMC9111855 DOI: 10.1111/eci.13763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since the breakthrough of the pandemic, several drugs have been used to treat COVID-19 patients. This review aims to gather information on adverse events (AE) related to most drugs used in this context. METHODS We performed a literature search to find articles that contained information about AE in COVID-19 patients. We analysed and reviewed the most relevant studies in the Medline (via PubMed), Scopus and Web of Science. The most frequent AE identified were grouped in our qualitative analysis by System Organ Class (SOC), the highest level of the MedDRA medical terminology for each of the drugs studied. RESULTS The most frequent SOCs among the included drugs are investigations (n = 7 drugs); skin and subcutaneous tissue disorders (n = 5 drugs); and nervous system disorders, infections and infestations, gastrointestinal disorders, hepatobiliary disorders, and metabolism and nutrition disorders (n = 4 drugs). Other SOCs also emerged, such as general disorders and administration site conditions, renal and urinary disorders, vascular disorders and cardiac disorders (n = 3 drugs). Less frequent SOC were eye disorders, respiratory, thoracic and mediastinal disorders, musculoskeletal and connective tissue disorders, and immune system disorders (n = 2 drugs). Psychiatric disorders, and injury, poisoning and procedural complications were also reported (n = 1 drug). CONCLUSIONS Some SOCs seem to be more frequent than others among the COVID-19 drugs included, although neither of the studies included reported causality analysis. For that purpose, further clinical studies with robust methodologies, as randomised controlled trials, should be designed and performed.
Collapse
Affiliation(s)
- Renato Ferreira-da-Silva
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Inês Ribeiro-Vaz
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Manuela Morato
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, University of Porto, Porto, Portugal
| | - Jorge Junqueira Polónia
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Department of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Sheikhpour M, Delorme V, Kasaeian A, Amiri V, Masoumi M, Sadeghinia M, Ebrahimzadeh N, Maleki M, Pourazar S. An effective nano drug delivery and combination therapy for the treatment of Tuberculosis. Sci Rep 2022; 12:9591. [PMID: 35688860 PMCID: PMC9185718 DOI: 10.1038/s41598-022-13682-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Drug resistance in tuberculosis is exacerbating the threat this disease is posing to human beings. Antibiotics that were once effective against the causative agent, Mycobacterium tuberculosis (Mtb), are now no longer usable against multi- and extensively drug-resistant strains of this pathogen. To address this issue, new drug combinations and novel methods for targeted drug delivery could be of considerable value. In addition, studies have shown that the use of the antidepressant drug fluoxetine, a serotonin reuptake inhibitor, can be useful in the treatment of infectious diseases, including bacterial infections. In this study, an isoniazid and fluoxetine-conjugated multi-walled carbon nanotube nanofluid were designed to increase drug delivery efficiency alongside eliminating drug resistance in vitro. The prepared nanofluid was tested against Mtb. Expression levels of inhA and katG mRNAs were detected by Real-time PCR. ELISA was applied to measure levels of cytokine secretion (TNF-α, and IL-6) from infected macrophages treated with the nano delivery system. The results showed that these nano-drug delivery systems are effective for fluoxetine at far lower doses than for free drugs. Fluoxetine also has an additive effect on the effect of isoniazid, and their concomitant use in the delivery system can have significant effects in treating infection of all clinical strains of Mtb. In addition, it was found that the expression of isoniazid resistance genes, including inhA, katG, and the secretion of cytokines TNFα and IL6 under the influence of this drug delivery system is well regulated. It was shown that the drug conjugation can improve the antibacterial activity of them in all strains and these two drugs have an additive effect on each other both in free and conjugated forms. This nano-drug delivery method combined with host targeted molecules could be a game-changer in the development of a new generation of antibiotics that have high therapeutic efficiencies, low side effects, and the potential to overcome the problem of drug resistance.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Institute Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | - Alibakhsh Kasaeian
- Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sadeghinia
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Nayereh Ebrahimzadeh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Pourazar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Jannini TB, Lorenzo GD, Bianciardi E, Niolu C, Toscano M, Ciocca G, Jannini EA, Siracusano A. Off-label Uses of Selective Serotonin Reuptake Inhibitors (SSRIs). Curr Neuropharmacol 2022; 20:693-712. [PMID: 33998993 PMCID: PMC9878961 DOI: 10.2174/1570159x19666210517150418] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric drugs have primacy for off-label prescribing. Among those, selective serotonin reuptake inhibitors (SSRIs) are highly versatile and, therefore, widely prescribed. Moreover, they are commonly considered as having a better safety profile compared to other antidepressants. Thus, when it comes to off-label prescribing, SSRIs rank among the top positions. In this review, we present the state of the art of off-label applications of selective serotonin reuptake inhibitors, ranging from migraine prophylaxis to SARS-CoV-2 antiviral properties. Research on SSRIs provided significant evidence in the treatment of premature ejaculation, both with the on-label dapoxetine 30 mg and the off-label paroxetine 20 mg. However, other than a serotoninergic syndrome, serious conditions like increased bleeding rates, hyponatremia, hepatoxicity, and post-SSRIs sexual dysfunctions, are consistently more prominent when using such compounds. These insidious side effects might be frequently underestimated during common clinical practice, especially by nonpsychiatrists. Thus, some points must be addressed when using SSRIs. Among these, a psychiatric evaluation before every administration that falls outside the regulatory agencies-approved guidelines has to be considered mandatory. For these reasons, we aim with the present article to identify the risks of inappropriate uses and to advocate the need to actively boost research encouraging future clinical trials on this topic.
Collapse
Affiliation(s)
- Tommaso B. Jannini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgio D. Lorenzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- IRCCS-Fondazione Santa Lucia, Rome, Italy
| | | | - Cinzia Niolu
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Neurology, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Giacomo Ciocca
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Siracusano
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Javelot H, Straczek C, Meyer G, Gitahy Falcao Faria C, Weiner L, Drapier D, Fakra E, Fossati P, Weibel S, Dizet S, Langrée B, Masson M, Gaillard R, Leboyer M, Llorca PM, Hingray C, Haffen E, Yrondi A. Psychotropics and COVID-19: An analysis of safety and prophylaxis. L'ENCEPHALE 2021; 47:564-588. [PMID: 34548153 PMCID: PMC8410507 DOI: 10.1016/j.encep.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
The use of psychotropics during the COVID-19 pandemic has raised two questions, in order of importance: first, what changes should be made to pharmacological treatments prescribed to mental health patients? Secondly, are there any positive side effects of these substances against SARS-CoV-2? Our aim was to analyze usage safety of psychotropics during COVID-19; therefore, herein, we have studied: (i) the risk of symptomatic complications of COVID-19 associated with the use of these drugs, notably central nervous system activity depression, QTc interval enlargement and infectious and thromboembolic complications; (ii) the risk of mistaking the iatrogenic impact of psychotropics with COVID-19 symptoms, causing diagnostic error. Moreover, we provided a summary of the different information available today for these risks, categorized by mental health disorder, for the following: schizophrenia, bipolar disorder, anxiety disorder, ADHD, sleep disorders and suicidal risk. The matter of psychoactive substance use during the pandemic is also analyzed in this paper, and guideline websites and publications for psychotropic treatments in the context of COVID-19 are referenced during the text, so that changes on those guidelines and eventual interaction between psychotropics and COVID-19 treatment medication can be reported and studied. Finally, we also provide a literature review of the latest known antiviral properties of psychotropics against SARS-CoV-2 as complementary information.
Collapse
Affiliation(s)
- H Javelot
- Établissement public de santé Alsace Nord, 141, avenue Strasbourg, 67170 Brumath, France; Laboratoire de toxicologie et pharmacologie neuro cardiovasculaire, centre de recherche en biomédecine de Strasbourg, université de Strasbourg, 1, rue Eugène-Boeckel, 67000 Strasbourg, France.
| | - C Straczek
- Département de pharmacie, CHU d'Henri-Mondor, université Paris Est Créteil (UPEC), AP-HP, 1, rue Gustave-Eiffel, 94000 Créteil, France; Inserm U955, institut Mondor de recherche biomédical, neuropsychiatrie translationnelle, 8, rue du Général-Sarrail, 94000 Créteil, France
| | - G Meyer
- Service pharmacie, établissement public de santé Alsace Nord, 141, avenue Strasbourg, 67170 Brumath, France; Service pharmacie, CHU de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - C Gitahy Falcao Faria
- Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), avenue Pedro-Calmon, 550 - Cidade Universitária da Universidade Federal do Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil
| | - L Weiner
- Clinique de psychiatrie, hôpitaux universitaire de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - D Drapier
- Pôle hospitalo-universitaire de psychiatrie adulte, centre hospitalier Guillaume-Régnier, rue du Moulin-de-Joué, 35700 Rennes, France; EA 4712, comportements et noyaux gris centraux, université de Rennes 1, 2, avenue du Professeur Léon-Bernard, CS 34317, campus santé de Villejean, 35043 Rennes cedex, France
| | - E Fakra
- Pôle universitaire de psychiatrie, CHU de Saint-Étienne, 37, rue Michelet, 42000 Saint-Étienne, France
| | - P Fossati
- Inserm U1127, ICM, service de psychiatrie adultes, groupe hospitalier pitié Salpêtrière, Sorbonne université, AP-HP, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - S Weibel
- Clinique de psychiatrie, hôpitaux universitaire de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - S Dizet
- Centre de ressources et d'expertise en psychopharmacologie (CREPP) Bourgogne Franche-Comté, Chalon-sur-Saône, France; Service Pharmacie, CHS de Sevrey, 55, rue Auguste-Champio, 71100 Sevrey, France
| | - B Langrée
- Service pharmacie, centre hospitalier Guillaume-Régnier, rue du Moulin-de-Joué, 35700 Rennes, France; Clinique du Château de Garches, Nightingale Hospitals-Paris, 11, bis rue de la Porte-Jaune, 92380 Garches, France
| | - M Masson
- SHU, GHU psychiatrie et neurosciences, 1, rue Cabanis, 75014 Paris, France; GHU psychiatrie et neurosciences, université de Paris, Paris, France
| | - R Gaillard
- Conseil national des universités (CNU), 1, rue Cabanis, 75014 Paris, France
| | - M Leboyer
- Inserm, DMU IMPACT, IMRB, translational neuropsychiatry, fondation FondaMental, hôpitaux universitaires « H. Mondor », université Paris Est Créteil (UPEC), AP-HP, 40, rue de Mesly, 94000 Créteil, France; CHU de Clermont-Ferrand, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - P M Llorca
- Université Clermont-Auvergne, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France; Pôle hospitalo-universitaire de psychiatrie d'adultes du Grand Nancy, centre psychothérapique de Nancy, 1, rue Docteur Archambault, 54520 Laxou, France
| | - C Hingray
- Département de neurologie, CHU de Nancy, 25, rue Lionnois, 54000 Nancy, France; CIC-1431 Inserm, service de psychiatrie, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25000 Besançon, France
| | - E Haffen
- Laboratoire de neurosciences, université de Franche-Comté, 19, rue Ambroise-Paré, 25030 Besançon cedex, France
| | - A Yrondi
- Unité ToNIC, UMR 1214 CHU Purpan-Pavillon Baudot, place du Dr Joseph Baylac, 31024 Toulouse cedex 3, France
| |
Collapse
|
7
|
Yang X, Wang W, Ma JL, Qiu YL, Lu K, Cao DS, Wu CK. BioNet: a large-scale and heterogeneous biological network model for interaction prediction with graph convolution. Brief Bioinform 2021; 23:6440126. [PMID: 34849567 PMCID: PMC8690188 DOI: 10.1093/bib/bbab491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Motivation Understanding chemical–gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. Results We developed BioNet, a deep biological networkmodel with a graph encoder–decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.
Collapse
Affiliation(s)
- Xi Yang
- College of Computer, National University of Defense Technology, China
| | - Wei Wang
- National Supercomputer Center in Tianjin, China
| | - Jing-Lun Ma
- College of Computer, National University of Defense Technology, China
| | - Yan-Long Qiu
- College of Computer, National University of Defense Technology, China
| | - Kai Lu
- College of Computer, National University of Defense Technology, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| | - Cheng-Kun Wu
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
8
|
Experiences and Lessons Learned from COVID-19 Pandemic Management in South Korea and the V4 Countries. Trop Med Infect Dis 2021; 6:tropicalmed6040201. [PMID: 34941657 PMCID: PMC8707138 DOI: 10.3390/tropicalmed6040201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
In the first year and a half of the COVID-19 pandemic, South Korea suffered significantly less social and economic damage than the V4 countries (Czech Republic, Hungary, Poland, and Slovakia) despite less stringent restrictive measures. In order to explore the causes of the phenomenon, we examined the public health policies and pandemic management of South Korea and the V4 countries and the social and economic outcomes of the measures. We identified the key factors that contributed to successful public health policies and pandemic management in South Korea by reviewing the international literature. Based on the analysis results, South Korea successfully managed the COVID-19 pandemic thanks to the appropriate combination of non-pharmaceutical measures and its advanced public health system. An important lesson for the V4 countries is that successful pandemic management requires a well-functioning surveillance system, a comprehensive testing strategy, an innovative contact tracing system, transparent government communication, and a coordinated public health system. In addition, to develop pandemic management capabilities and capacities in the V4 countries, continuous training of public health human resources, support for knowledge exchange, encouragement of research on communicable disease management, and collaboration with for-profit and non-governmental organizations are recommended.
Collapse
|
9
|
Meskini M, Rezghi Rami M, Maroofi P, Ghosh S, Siadat SD, Sheikhpour M. An Overview on the Epidemiology and Immunology of COVID-19. J Infect Public Health 2021; 14:1284-1298. [PMID: 34420903 PMCID: PMC8336978 DOI: 10.1016/j.jiph.2021.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses are a large family of viruses that cause illnesses ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and the 2019 novel coronavirus infection (COVID-19). Currently, there is no analyzed data to examine the outbreak of COVID-19 by continent and no determination of prevalence trends; this article reviews COVID-19 epidemiology and immunology. Original research, reviews, governmental databases, and treatment guidelines are analyzed to present the epidemiology and immunology of COVID-19. Reports from patients who were COVID-19 infected showed typical symptoms of neutrophilia, lymphopenia, and increased systemic inflammatory proteins of IL-6 and C reactive protein (CRP). These observations agree with the results of severe conditions of MERS or lethal cases of SARS, in which there is an increased presence of neutrophils and macrophages in the airways. Additionally, analyzed data showed that Europe (49.37%), the Americas (27.4%), and Eastern Mediterranean (10.07%) had the most cumulative total per 100,000 population confirmed cases, and Africa (6.9%), Western Pacific (3.46%), and South-East Asia (2.72%) had the lowest cumulative total per 100,000 population confirmed cases. In general, the trend lines showed that the number of confirmed cases (cumulative total) and deaths (cumulative total) would decrease eventually.
Collapse
Affiliation(s)
- Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Mina Rezghi Rami
- Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Parang Maroofi
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Mojgan Sheikhpour
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|