1
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Theyab A, Alsharif KF, Alzahrani KJ, Oyouni AAA, Hawsawi YM, Algahtani M, Alghamdi S, Alshammary AF. New insight into strategies used to develop long-acting G-CSF biologics for neutropenia therapy. Front Oncol 2023; 12:1026377. [PMID: 36686781 PMCID: PMC9850083 DOI: 10.3389/fonc.2022.1026377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Over the last 20 years, granulocyte colony-stimulating factors (G-CSFs) have become the major therapeutic option for the treatment of patients with neutropenia. Most of the current G-CSFs require daily injections, which are inconvenient and expensive for patients. Increased understanding of G-CSFs' structure, expression, and mechanism of clearance has been very instrumental in the development of new generations of long-acting G-CSFs with improved efficacy. Several approaches to reducing G-CSF clearance via conjugation techniques have been investigated. PEGylation, glycosylation, polysialylation, or conjugation with immunoglobulins or albumins have successfully increased G-CSFs' half-lives. Pegfilgrastim (Neulasta) has been successfully approved and marketed for the treatment of patients with neutropenia. The rapidly expanding market for G-CSFs has increased demand for G-CSF biosimilars. Therefore, the importance of this review is to highlight the principle, elimination's route, half-life, clearance, safety, benefits, and limitations of different strategies and techniques used to increase the half-life of biotherapeutic G-CSFs. Understanding these strategies will allow for a new treatment with more competitive manufacturing and lower unit costs compared with that of Neulasta.
Collapse
Affiliation(s)
- Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia,College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia,*Correspondence: Abdulrahman Theyab, ; Khalaf F. Alsharif,
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia,*Correspondence: Abdulrahman Theyab, ; Khalaf F. Alsharif,
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Yousef MohammedRabaa Hawsawi
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia,Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory and Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ullah A, Kwon HT, Lim SI. Albumin: A Multi-talented Clinical and Pharmaceutical Player. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
6
|
Ghidini M, Indini A, Nigro O, Polito S, Rijavec E, Petrelli F, Tomasello G. Advances in the pharmacological management of neutropenia in solid tumors: the advent of biosimilars. Expert Opin Pharmacother 2021; 22:857-865. [PMID: 33579166 DOI: 10.1080/14656566.2021.1873950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Severe neutropenia and infections are potentially life-threatening complications of cytotoxic antineoplastic therapies and often require hospitalization with a severe economic impact. Furthermore, hematological toxicity frequently results in chemotherapy dose reductions and delays that could interfere with disease control.Areas covered: This review provides an overview of granulocyte colony-stimulating factors (G-CSFs) including pegylated molecules, as well as more recent biosimilar G-CSFs, focusing on the toxicity, pharmacokinetics, and efficacy of these compounds.Expert opinion: The administration of hematopoietic growth factors in primary and secondary prophylaxis of neutropenia is a standard supportive care measure. Recently, several biosimilars have been developed. The market for biosimilar agents seems to be increasing over time thanks to their similar effectiveness and safety, compared with their originators, but lower costs.
Collapse
Affiliation(s)
- Michele Ghidini
- Department of Internal Medicine, Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Indini
- Department of Internal Medicine, Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Olga Nigro
- Oncology Department, Medical Oncology, ASST Sette Laghi, Ospedale Di Circolo E Fondazione Macchi, Varese, Italy
| | - Simona Polito
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Erika Rijavec
- Department of Internal Medicine, Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Petrelli
- Department of Medical Sciences, Oncology Unit, ASST Bergamo Ovest, Treviglio, Italy
| | - Gianluca Tomasello
- Department of Internal Medicine, Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Abstract
An opportunistic infection (OI) is a disease of microbial cause or pathogenesis generally thought to occur in hosts with weakened immunity. Oral OIs are associated with many risk factors and pathogens. Causative organisms for oral OIs have unique modes of transmission. The clinical presentation of oral OIs is heterogeneous and diagnosis can be challenging. Therefore, laboratory identification of causative pathogens is useful for definitive diagnosis and targeted therapeutics, and can be achieved by biological, serologic, histologic, and/or molecular methods. Clinical risk assessment and history with review of systems, and accurate diagnosis, treatment, and follow-up, are essential.
Collapse
|
8
|
Taylor SJ, Duyvestyn JM, Dagger SA, Dishington EJ, Rinaldi CA, Dovey OM, Vassiliou GS, Grove CS, Langdon WY. Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Sci Transl Med 2018; 9:9/402/eaam8060. [PMID: 28794285 DOI: 10.1126/scitranslmed.aam8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
We describe an approach to inhibit chemotherapy-induced myelosuppression. We found that short-term exposure of mice to the FLT3 inhibitor quizartinib induced the transient quiescence of multipotent progenitors (MPPs). This property of quizartinib conferred marked protection to MPPs in mice receiving fluorouracil or gemcitabine. The protection resulted in the rapid recovery of bone marrow and blood cellularity, thus preventing otherwise lethal myelosuppression. A treatment strategy involving quizartinib priming that protected wild-type bone marrow progenitors, but not leukemic cells, from fluorouracil provided a more effective treatment than conventional induction therapy in mouse models of acute myeloid leukemia. This strategy has the potential to be extended for use in other cancers where FLT3 inhibition does not adversely affect the effectiveness of chemotherapy. Thus, the addition of quizartinib to cancer treatment regimens could markedly improve cancer patient survival and quality of life.
Collapse
Affiliation(s)
- Samuel J Taylor
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Johanna M Duyvestyn
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Samantha A Dagger
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Emma J Dishington
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Catherine A Rinaldi
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver M Dovey
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carolyn S Grove
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.,PathWest Department of Haematology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia.,Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
9
|
Vacirca JL, Chan A, Mezei K, Adoo CS, Pápai Z, McGregor K, Okera M, Horváth Z, Landherr L, Hanslik J, Hager SJ, Ibrahim EN, Rostom M, Bhat G, Choi MR, Reddy G, Tedesco KL, Agajanian R, Láng I, Schwartzberg LS. An open-label, dose-ranging study of Rolontis, a novel long-acting myeloid growth factor, in breast cancer. Cancer Med 2018; 7:1660-1669. [PMID: 29573207 PMCID: PMC5943466 DOI: 10.1002/cam4.1388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 12/03/2022] Open
Abstract
This randomized, open‐label, active‐controlled study investigated the safety and efficacy of three doses of Rolontis (eflapegrastim), a novel, long‐acting myeloid growth factor, versus pegfilgrastim in breast cancer patients being treated with docetaxel and cyclophosphamide (TC). The primary efficacy endpoint was duration of severe neutropenia (DSN) during the first cycle of treatment. Patients who were candidates for adjuvant/neoadjuvant TC chemotherapy were eligible for participation. TC was administered on Day 1, followed by 45, 135, or 270 μg/kg Rolontis or 6 mg pegfilgrastim on Day 2. Complete blood counts were monitored daily when the absolute neutrophil count (ANC) fell to <1.5 × 109/L. Up to four cycles of TC were investigated. The difference in DSN (time from ANC <0.5 × 109/L to ANC recovery ≥2.0 × 109/L) between the Rolontis and pegfilgrastim groups was −0.28 days (confidence interval [CI]: −0.56, −0.06) at 270 μg/kg, 0.14 days (CI: −0.28, 0.64) at 135 μg/kg, and 0.72 days (CI: 0.19, 1.27) at 45 μg/kg. Noninferiority to pegfilgrastim was demonstrated at 135 μg/kg (P = 0.002) and 270 μg/kg (P < .001), with superiority demonstrated at 270 μg/kg (0.03 days; P = 0.023). The most common treatment‐related adverse events (AEs) were bone pain, myalgia, arthralgia, back pain, and elevated white blood cell counts, with similar incidences across groups. All doses of Rolontis were well tolerated, and no new or significant treatment‐related toxicities were observed. In Cycle 1, Rolontis demonstrated noninferiority at the 135 μg/kg dose and statistical superiority in DSN at the 270 μg/kg dose when compared to pegfilgrastim.
Collapse
Affiliation(s)
| | - Arlene Chan
- Breast Cancer Research Centre WA and Curtin UniversityPerthWestern AustraliaAustralia
| | - Klára Mezei
- Szabolcs‐Szatmár Bereg County Hospital and University Teaching HospitalNyíregyházaHungary
| | | | | | | | - Meena Okera
- Adelaide Cancer CentreKurralta ParkSouth AustraliaAustralia
| | | | | | - Jerzy Hanslik
- Szpital Rejonowy Dzienny Oddzial ChemioterapiiRaciborzuPoland
| | - Steven J. Hager
- California Cancer Associates for Research and ExcellenceFresnoCalifornia
| | | | | | | | | | - Guru Reddy
- Spectrum PharmaceuticalsIrvineCalifornia
| | - Karen L. Tedesco
- New York Oncology Hematology (US Oncology/McKesson Specialty Health)AlbanyNew York
| | - Richy Agajanian
- The Oncology Institute of Hope and InnovationDowneyCalifornia
| | - István Láng
- National Institute of OncologyBudapestHungary
| | | |
Collapse
|