1
|
An S, Wang X, Shi H, Zhang X, Meng H, Li W, Chen D, Ge J. Apelin protects against ischemia-reperfusion injury in diabetic myocardium via inhibiting apoptosis and oxidative stress through PI3K and p38-MAPK signaling pathways. Aging (Albany NY) 2020; 12:25120-25137. [PMID: 33342766 PMCID: PMC7803490 DOI: 10.18632/aging.104106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Among all diabetes mellitus-associated cardiovascular diseases, morbidity of diabetic myocardium with ischemia reperfusion injury (D-IRI) is increasing year by year. We aimed to discover a therapeutic biomarker and investigate its mechanism in D-IRI. High-fat diet and streptozotocin-induced diabetes rats were operated with IRI or sham. Recombined lentiviral vector encoding Apelin was injected into D-IRI rat via tail vein. Cardiac function, infarct size, cellular death and oxidative stress were major outcome measures. Cardiomyocyte ischemia reperfusion injury was more serious in D-IRI rats than in non-diabetes ischemia reperfusion injury (ND-IRI) rats. The secretion of NTproBNP was increased in D-IRI compared with ND-IRI. Bcl-2 expression was decreased, and Bax and cleaved caspase-3 expression was increased in D-IRI rats compared with ND-IRI rats, which were reversed after treatment with Apelin. Apelin-upregulation improved cardiomyocyte ischemia reperfusion injury and decreased NT-proBNP levels in D-IRI rats. Apelin overexpression enhanced PI3K and eNOS levels while reduced those of p38-MAPK and iNOS in D-IRI rats. Apelin overexpression protected against D-IRI through inhibiting apoptosis and oxidative stress via PI3K and p38MAPK signaling pathways in D-IRI rats. These findings provide critical new insight into understanding of Apelin's cardio-protective effects, which may become a novel therapeutic target for the diabetic IRI patients.
Collapse
Affiliation(s)
- Songtao An
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xi Wang
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xueqiang Zhang
- Department of Cardiology, Hongxing Hospital, Hami 839000, Xinjiang, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Qureshi M, Gammoh E, Shakil J, Robbins R. Update on Management of Type 2 Diabetes for Cardiologists. Methodist Debakey Cardiovasc J 2019; 14:273-280. [PMID: 30788013 DOI: 10.14797/mdcj-14-4-273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The management of type 2 diabetes mellitus has evolved over the last several years as new antidiabetic agents continue to arrive and change the goals of diabetes care. In 2008, the U.S. Food and Drug Administration mandated that all new antidiabetic agents must demonstrate cardiovascular (CV) safety, which has led to a series of CV outcome trials. In this article, we review the key findings from these CV outcome trials and their impact on diabetes care guidelines.
Collapse
|
3
|
Liu CH, Hua N, Fu X, Pan YL, Li B, Li XD. Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats. BMC Cardiovasc Disord 2018; 18:236. [PMID: 30545309 PMCID: PMC6293565 DOI: 10.1186/s12872-018-0950-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
Background Our previous study showed that metformin regulates the mRNA and protein levels of type 2 small conductance calcium-activated potassium channel (SK2) and type 3 small conductance calcium-activated potassium channels (SK3) in atrial tissue as well as the ion current of atrial myocytes in rats with type 2 diabetes mellitus (T2DM), but the underlying signaling mechanism is unknown. This study aimed to investigate whether metformin regulates atrial SK2 and SK3 protein expression in T2DM rats though the protein kinase C (PKC)/extracellular signal-regulated kinase (ERK) signaling pathway. Methods A T2DM rat model was established using a high-fat and high-sugar diet combined with a low-dose intraperitoneal injection of streptozotocin (STZ). The rats were randomly divided into the following five groups: the control group, the untreated T2DM group, the metformin-treated only group, the phorbol 12-myristate 13-acetate (PMA; a PKC agonist administered by intraperitoneal injection) treatment group, and the recombinant human epidermal growth factor (rh-EGF; an ERK agonist administered by tail vein injection) treatment group. The activity of PKC in atrial tissues was assayed by a PKC kinase activity assay kit. The protein expression of SK2, SK3, and phosphorylated ERK (pERK) were determined by western blotting and immunohistochemistry. Results Compared with the Control group, atrial PKC activity and pERK and SK3 protein expression were increased, while SK2 protein expression was decreased in atrial tissues of T2DM rats. Eight weeks of metformin treatment inhibited the PKC activity and pERK and SK3 expression, and elevated SK2 expression compared with the T2DM group. Compared with the metformin-treated only group, the injection of rh-EGF increased pERK and SK3 expression, and decreased SK2 expression; the injection of PMA increased PKC activity and SK3 expression, and decreased SK2 expression. In addition, the injection with PMA significantly elevated the expression of pERK. Conclusions The PKC/ERK signaling pathway is involved in the downregulation of SK2 expression and the upregulation of SK3 expression in the atrium of T2DM rats. Long-term metformin treatment prevents the SK2 downregulation and the SK3 upregulation through inhibiting the PKC/ERK signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12872-018-0950-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang-He Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Na Hua
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yi-Long Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Bin Li
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiao-Dong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
4
|
Wu F, Yu B, Zhang X, Zhang Y. Cardioprotective effect of Notch signaling on the development of myocardial infarction complicated by diabetes mellitus. Exp Ther Med 2017; 14:3447-3454. [PMID: 29042932 PMCID: PMC5639400 DOI: 10.3892/etm.2017.4932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to elucidate the role of Notch signaling in the development of myocardial infarction (MI) concomitant with diabetes in vivo and in vitro and evaluated the therapeutic effect of the Notch signaling in vitro. Streptozotocin-induced diabetic rats were subjected to 25 min of ischemia and 2 h of reperfusion. Cardiac troponin T (cTnT) and creatine kinase-MB (CK-MB) isoenzyme levels were detected. Infarct size was measured by 2,3,5-triphenyltetrazolium chloride staining. Myocardial apoptosis and fibrosis were examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and Masson Trichrome staining, respectively. The mRNA and protein levels of Notch signaling components, including Notch1, Notch4, Delta-like 1, Jagged1, Mastermind-like protein 1 and p300, were quantified by reverse transcription-quantitative polymerase chain reaction and western blotting analyses, respectively. H9c2 cells were treated with/without 33 mM high glucose (HG) and/or subjected to hypoxia in the presence/absence of Jagged1. Cell viability and apoptosis were determined by MTT assay and Annexin V-fluorescein isothiocyanate/propidium iodide assay. Levels of the Notch signaling pathway members were examined. The present findings revealed that diabetes elevated CK-MB and cTnT, increased infarct size, induced myocardial apoptosis and inhibited the Notch signaling pathway in vivo after ischemia/reperfusion. Ischemia/reperfusion augmented the severity of MI in diabetic rats. Furthermore, HG reduced cell viability and induced cell apoptosis in H9c2 cells after hypoxia exposure, which was inhibited by Jagged1. We also found that HG inhibited Notch signaling in H9c2 cells after hypoxia, whereas Jagged1 exerted its cardioprotective effect on hypoxic injury (in HG environments or not) by activating the Notch signaling pathway. In conclusion, these findings suggest that diabetes promoted the progression of MI in vivo and in vitro via the inhibition of the Notch signaling pathway. Jagged1 may protect against MI in in vitro models by activating Notch signaling.
Collapse
Affiliation(s)
- Fang Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150081, P.R. China
| | - Xu Zhang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuelan Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
Ioacara S, Guja C, Reghina A, Martin S, Sirbu A, Fica S. Cardiovascular Mortality in Type 2 Diabetes Patients with Incident Exposure to Insulin Glargine. J Diabetes Res 2015; 2015:962346. [PMID: 26176017 PMCID: PMC4484560 DOI: 10.1155/2015/962346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 11/29/2022] Open
Abstract
The study investigated the impact of insulin glargine exposure on cardiovascular mortality in type 2 diabetes patients with incident insulin initiation. All consecutive diabetes patients aged >40 years were screened at their first diabetes outpatient visit between 01/01/2001 and 12/31/2008 (n = 79869). Exclusion criteria restricted the cohort to 4990 incident insulin users, aged 40-79 years, who were followed up for death until 12/31/2011. Baseline was defined 6 months after insulin initiation. Adjusted time-dependent competing risk regression analysis was performed. Mean baseline age was 62 ± 9 years, with mean follow-up of 4.7 ± 1.9 years. During 23179 person-years of exposure time, there were 887 deaths (521 cardiovascular). Glargine cumulative time exposure significantly lowered overall cardiovascular, subhazard ratio (SHR) 0.963 (CI 95% 0.944-0.981, p < 0.001), and myocardial infarction mortality, SHR 0.945 (CI 95% 0.899-0.994, p = 0.028), but not stroke mortality. Glargine cumulative dose exposure (10,000 IU increments) significantly lowered cardiovascular mortality, SHR 0.977 (CI 95% 0.960-0.993, p = 0.006), but not for myocardial infarction and stroke. Both cumulative dose and time exposure to insulin glargine were associated with lower cardiovascular mortality. The effect was mostly driven by myocardial infarction end point, supporting the concept of macrovascular benefit for basal analogue insulin use in type 2 diabetes.
Collapse
Affiliation(s)
- Sorin Ioacara
- “Elias” Emergency University Hospital, Marasti Boulevard 17, 011461 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Cristian Guja
- “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari 8, 050474 Bucharest, Romania
- “Prof. NC Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, Ion Movila 5-7, 020475 Bucharest, Romania
- *Cristian Guja:
| | - Aura Reghina
- “Elias” Emergency University Hospital, Marasti Boulevard 17, 011461 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari 8, 050474 Bucharest, Romania
- “Victor Babes” National Research and Development Institute of Pathology and Biomedical Sciences, Splaiul Independentei 99-101, 050096 Bucharest, Romania
| | - Sorina Martin
- “Elias” Emergency University Hospital, Marasti Boulevard 17, 011461 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Anca Sirbu
- “Elias” Emergency University Hospital, Marasti Boulevard 17, 011461 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Simona Fica
- “Elias” Emergency University Hospital, Marasti Boulevard 17, 011461 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari 8, 050474 Bucharest, Romania
| |
Collapse
|