1
|
Gu TT, Wu H, Yang F, Gaubert P, Heighton SP, Fu Y, Liu K, Luo SJ, Zhang HR, Hu JY, Yu L. Genomic analysis reveals a cryptic pangolin species. Proc Natl Acad Sci U S A 2023; 120:e2304096120. [PMID: 37748052 PMCID: PMC10556634 DOI: 10.1073/pnas.2304096120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/26/2023] [Indexed: 09/27/2023] Open
Abstract
Eight extant species of pangolins are currently recognized. Recent studies found that two mitochondrial haplotypes identified in confiscations in Hong Kong could not be assigned to any known pangolin species, implying the existence of a species. Here, we report that two additional mitochondrial haplotypes identified in independent confiscations from Yunnan align with the putative species haplotypes supporting the existence of this mysterious species/population. To verify the new species scenario we performed a comprehensive analysis of scale characteristics and 138 whole genomes representing all recognized pangolin species and the cryptic new species, 98 of which were generated here. Our morphometric results clearly attributed this cryptic species to Asian pangolins (Manis sp.) and the genomic data provide robust and compelling evidence that it is a pangolin species distinct from those recognized previously, which separated from the Philippine pangolin and Malayan pangolin over 5 Mya. Our study provides a solid genomic basis for its formal recognition as the ninth pangolin species or the fifth Asian one, supporting a new taxonomic classification of pangolins. The effects of glacial climate changes and recent anthropogenic activities driven by illegal trade are inferred to have caused its population decline with the genomic signatures showing low genetic diversity, a high level of inbreeding, and high genetic load. Our finding greatly expands current knowledge of pangolin diversity and evolution and has vital implications for conservation efforts to prevent the extinction of this enigmatic and endangered species from the wild.
Collapse
Affiliation(s)
- Tong-Tong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| | - Feng Yang
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong Special Administrative Region999077, China
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III–Paul Sabatier, 31062Toulouse Cedex 9, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Porto4450-208, Portugal
| | - Sean P. Heighton
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III–Paul Sabatier, 31062Toulouse Cedex 9, France
| | - Yeyizhou Fu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Ke Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Hua-Rong Zhang
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong Special Administrative Region999077, China
| | - Jing-Yang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| |
Collapse
|
2
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Ciprofloxacin and enrofloxacin can cause reproductive toxicity via endocrine signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114049. [PMID: 36063617 DOI: 10.1016/j.ecoenv.2022.114049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CIP) and enrofloxacin (ENR) are veterinary antibiotics commonly utilized to treat and prevent animal diseases. Environmental and dietary antibiotic residues can directly and indirectly affect the reproductive development of animals and humans. This article investigated the reproductive toxicity of CIP in male zebrafish, showing that it could decrease the spermatogonial weight and damage the spermatogonial tissue. The sex hormone assays showed that CIP decreased fshb and lhb gene expression and plasma testosterone (T). In addition, transcriptome analysis indicated that the effect of CIP on zebrafish might be related to the endocrine signaling pathways. ENR, which was selected for further study, inhibited mouse Leydig (TM3) and Sertoli (TM4) cell proliferation and caused cell cycle arrest. The sperm concentration, serum luteotropic hormone (LH) and follicle-stimulating hormone (FSH), and T levels decreased in adolescent mice after ENR treatment for 30d in vivo. Hematoxylin and eosin (H&E) staining showed that ENR exposure potentially induced testicular injury, while the real-time quantitative PCR (qPCR) results indicated that ENR inhibited the mRNA expression of key genes in the Leydig cells (cyp11a1, 3β-HSD, and 17β-HSD), Sertoli cells (Inhbβ and Gdnf) and spermatogenic cells (Plzf, Stra8 and Dmc1). In conclusion, these findings indicated that ENR exposure might influence the development of the testes of pubescent mice.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Pandey A, Yadav SK, Vishvkarma R, Singh B, Maikhuri JP, Rajender S, Gupta G. The dynamics of gene expression during and post meiosis sets the sperm agenda. Mol Reprod Dev 2019; 86:1921-1939. [DOI: 10.1002/mrd.23278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aastha Pandey
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Rahul Vishvkarma
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Bineta Singh
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | | | - Singh Rajender
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| | - Gopal Gupta
- Division of EndocrinologyCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
5
|
Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R. Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline. CHEMOSPHERE 2019; 222:722-731. [PMID: 30738315 DOI: 10.1016/j.chemosphere.2019.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Veterinary tetracyclines drugs are emerging organic pollutants detected at high concentrations in the urine of school children and a potential public health risk. However, the implications of early-life exposure to tetracyclines on testosterone production, being new endocrine disruptors, remain unknown. We investigated whether the early-life exposure to low-doxycycline, a widely used tetracycline, on mitochondria dysfunction and testosterone disruption in Leydig cells in vitro and in vivo. Next, we determined the mRNA levels of testis cells markers for early-life exposure to low-doxycycline outcomes of testis health in later-life. Finally, we compared the weight gain performance exposed to low- and therapeutic-doses through 15 weeks and examined the role of the microbiota during development. Our results showed doxycycline disturbed steroidogenesis process by mitochondrial dysfunction in mouse Leydig tumor cell line (MLTC-1) cells in vitro. Leydig cells mitochondrial function was disrupted by early-life exposure to low-doxycycline from birth to 49 days, causing testosterone deficiency and decreased quality of the sperm in mice. Early-life exposure to low-doxycycline significantly altered the mRNA levels of key genes in Leydig cells (Cyp11a1, Cyp17a1 and 17β-HSD) and spermatogenic cells (Grfal, Plzf, and Stra8) in later-life in mice. Subchronic low- and therapeutic-doses doxycycline changed gut microbiota differences in diversity reduction and compositional alteration. Moreover, the weight gain effects of doxycycline were only observed in low-dose in male mice. Overall, these results provide insight into the effects of doxycycline on both testis and gut microbiota health. The results provide insight that environmental antibiotics are needed additional research to classify as ECDs.
Collapse
Affiliation(s)
- Xiang Hou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lei Zhu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianwei Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lili Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Minmin Tang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Ruicheng Wei
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
López-Galindo L, Juárez OE, Larios-Soriano E, Del Vecchio G, Ventura-López C, Lago-Lestón A, Galindo-Sánchez C. Transcriptomic Analysis Reveals Insights on Male Infertility in Octopus maya Under Chronic Thermal Stress. Front Physiol 2019; 9:1920. [PMID: 30697164 PMCID: PMC6341066 DOI: 10.3389/fphys.2018.01920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Octopus maya endemic to the Yucatan Peninsula, Mexico, is an ectotherm organism particularly temperature-sensitive. Studies in O. maya females show that temperatures above 27°C reduce the number of eggs per spawn, fertilization rate and the viability of embryos. High temperatures also reduce the male reproductive performance and success. However, the molecular mechanisms are still unknown. The transcriptomic profiles of testes from thermally stressed (30°C) and not stressed (24°C) adult male octopuses were compared, before and after mating to understand the molecular bases involved in the low reproductive performance at high temperature. The testis paired-end cDNA libraries were sequenced using the Illumina MiSeq platform. Then, the transcriptome was assembled de novo using Trinity software. A total of 53,214,611 high-quality paired reads were used to reconstruct 85,249 transcripts and 77,661 unigenes with an N50 of 889 bp length. Later, 13,154 transcripts were annotated implementing Blastx searches in the UniProt database. Differential expression analysis revealed 1,881 transcripts with significant difference among treatments. Functional annotation and pathway mapping of differential expressed transcripts revealed significant enrichment for biological processes involved in spermatogenesis, gamete generation, germ cell development, spermatid development and differentiation, response to stress, inflammatory response and apoptosis. Remarkably, the transcripts encoding genes such as ZMYND15, KLHL10, TDRD1, TSSK2 and DNAJB13, which are linked to male infertility in other species, were differentially expressed among the treatments. The expression levels of these key genes, involved in sperm motility and spermatogenesis were validated by quantitative real-time PCR. The results suggest that the reduction in male fertility at high temperature can be related to alterations in spermatozoa development and motility.
Collapse
Affiliation(s)
- Laura López-Galindo
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Oscar E Juárez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ernesto Larios-Soriano
- Laboratorio de Fisiología Integrativa de Organismos Marinos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Giulia Del Vecchio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Ventura-López
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Clara Galindo-Sánchez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| |
Collapse
|
7
|
Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, Syed N, Mezey JG, Abi Khalil C, Malek JA, Al-Ansari A, Al Said S, Crystal RG. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med 2018; 20:1365-1373. [PMID: 29790874 DOI: 10.1038/gim.2018.10] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Nonobstructive azoospermia (NOA) affects 1% of the male population; however, despite state-of-the-art clinical assessment, for most patients the cause is unknown. We capitalized on an analysis of multiplex families in the Middle East to identify highly penetrant genetic causes. METHODS We used whole-exome sequencing (WES) in 8 consanguineous families and combined newly discovered genes with previously reported ones to create a NOA gene panel, which was used to identify additional variants in 75 unrelated idiopathic NOA subjects and 74 fertile controls. RESULTS In five of eight families, we identified rare deleterious recessive variants in CCDC155, NANOS2, SPO11, TEX14, and WNK3 segregating with disease. These genes, which are novel to human NOA, have remarkable testis-specific expression, and murine functional evidence supports roles for them in spermatogenesis. Among 75 unrelated NOA subjects, we identified 4 (~5.3%) with additional recessive variants in these newly discovered genes and 6 with deleterious variants in previously reported NOA genes, yielding an overall genetic etiology for 13.3% subjects versus 0 fertile controls (p = 0.001). CONCLUSION NOA affects millions of men, many of whom remain idiopathic despite extensive laboratory evaluation. The genetic etiology for a substantial fraction of these patients (>50% familial and >10% sporadic) may be discovered by WES at the point of care.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Translational Medicine, Sidra Medical and Research Center, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | | | - Mohamed Arafa
- Department of Urology, Hamada Medical Corporation, Doha, Qatar.,Andrology Department, Cairo University, Egypt, Egypt
| | - Amal Robay
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | | | | | | | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
8
|
Robay A, Abbasi S, Akil A, El-Bardisi H, Arafa M, Crystal RG, Fakhro KA. A systematic review on the genetics of male infertility in the era of next-generation sequencing. Arab J Urol 2018; 16:53-64. [PMID: 29713536 PMCID: PMC5922186 DOI: 10.1016/j.aju.2017.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To identify the role of next-generation sequencing (NGS) in male infertility, as advances in NGS technologies have contributed to the identification of novel genes responsible for a wide variety of human conditions and recently has been applied to male infertility, allowing new genetic factors to be discovered. MATERIALS AND METHODS PubMed was searched for combinations of the following terms: 'exome', 'genome', 'panel', 'sequencing', 'whole-exome sequencing', 'whole-genome sequencing', 'next-generation sequencing', 'azoospermia', 'oligospermia', 'asthenospermia', 'teratospermia', 'spermatogenesis', and 'male infertility', to identify studies in which NGS technologies were used to discover variants causing male infertility. RESULTS Altogether, 23 studies were found in which the primary mode of variant discovery was an NGS-based technology. These studies were mostly focused on patients with quantitative sperm abnormalities (non-obstructive azoospermia and oligospermia), followed by morphological and motility defects. Combined, these studies uncover variants in 28 genes causing male infertility discovered by NGS methods. CONCLUSIONS Male infertility is a condition that is genetically heterogeneous, and therefore remarkably amenable to study by NGS. Although some headway has been made, given the high incidence of this condition despite its detrimental effect on reproductive fitness, there is significant potential for further discoveries.
Collapse
Affiliation(s)
- Amal Robay
- Department of Genetic Medicine, Weill Cornell Medical College, Qatar
| | - Saleha Abbasi
- Human Genetics Department, Sidra Medical and Research Center, Qatar
| | - Ammira Akil
- Human Genetics Department, Sidra Medical and Research Center, Qatar
| | | | - Mohamed Arafa
- Department of Urology, Hamada Medical Corporation, Doha, Qatar
- Department of Andrology, Cairo University, Cairo, Egypt
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Khalid A. Fakhro
- Department of Genetic Medicine, Weill Cornell Medical College, Qatar
- Human Genetics Department, Sidra Medical and Research Center, Qatar
| |
Collapse
|
9
|
Grudniewska M, Mouton S, Grelling M, Wolters AHG, Kuipers J, Giepmans BNG, Berezikov E. A novel flatworm-specific gene implicated in reproduction in Macrostomum lignano. Sci Rep 2018; 8:3192. [PMID: 29453392 PMCID: PMC5816591 DOI: 10.1038/s41598-018-21107-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Free-living flatworms, such as the planarian Schmidtea mediterranea, are extensively used as model organisms to study stem cells and regeneration. The majority of flatworm studies so far focused on broadly conserved genes. However, investigating what makes these animals different is equally informative for understanding its biology and might have biomedical value. We re-analyzed the neoblast and germline transcriptional signatures of the flatworm M. lignano using an improved transcriptome assembly and show that germline-enriched genes have a high fraction of flatworm-specific genes. We further identified the Mlig-sperm1 gene as a member of a novel gene family conserved only in free-living flatworms and essential for producing healthy spermatozoa. In addition, we established a whole-animal electron microscopy atlas (nanotomy) to visualize the ultrastructure of the testes in wild type worms, but also as a reference platform for different ultrastructural studies in M. lignano. This work demonstrates that investigation of flatworm-specific genes is crucial for understanding flatworm biology and establishes a basis for such future research in M. lignano.
Collapse
Affiliation(s)
- Magda Grudniewska
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Margriet Grelling
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
10
|
TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A 2017. [PMID: 28630322 PMCID: PMC5502601 DOI: 10.1073/pnas.1621279114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the "9+2" microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex (N-DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated-Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N-DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1-null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1-null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility.
Collapse
|
11
|
Li Y, Li C, Lin S, Yang B, Huang W, Wu H, Chen Y, Yang L, Luo M, Guo H, Chen J, Wang T, Ma Q, Gu Y, Mou L, Jiang Z, Xia J, Gui Y. A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol Reprod 2017; 96:587-597. [PMID: 28339613 DOI: 10.1095/biolreprod.116.141408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/24/2017] [Indexed: 02/05/2023] Open
Abstract
Phenotype-driven mutagenesis is an unbiased method to identify novel genes involved in spermatogenesis and other reproductive processes. Male repro29/repro29 mice generated by the Reproductive Genomics Program at the Jackson Laboratory were infertile with deformed sperm and poor motility. Using selected exonic capture and massively parallel sequencing technologies, we identified a nonsense mutation in the exon 6 of coiled-coil domain-containing 62 gene (Ccdc62), which results in a formation of a premature stop codon and a truncated protein. Among the tissues examined, CCDC62 was found to be expressed at the highest level in mouse testis by reverse transcriptase-PCR (RT-PCR) and Western blot analysis. With immunofluorescent staining, we demonstrated that CCDC62 was expressed in the cytoplasm and the developing acrosome in the spematids of mouse testis, and was specifically localized at the acrosome in mature sperm. The complementation analysis by mating repro29/+ mice with Ccdc62 -/- mice (generated by CRISPR-Cas9 strategy) further provided genetic proof that the infertility of repro29/repro29 mice was caused by Ccdc62 mutation. Finally, it was found that intracellular colocalization and interaction of CCDC62 and Golgi-associated PDZ and coiled-coil motif-containing protein may be important for acrosome formation. Taken together, this study identified a nonsense mutation in Ccdc62, which directly results in male infertility in repro29/repro29 mice.
Collapse
Affiliation(s)
- Yuchi Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Cailing Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
- Department of Physiology, Shantou University Medical College, Shantou, P.R. China
| | - Shouren Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Hanwei Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Yuanbin Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Lihua Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Manling Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
- Department of Physiology, Shantou University Medical College, Shantou, P.R. China
| | - Huan Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Jianbo Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Tiantian Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Yanli Gu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Lisha Mou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Jun Xia
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| |
Collapse
|
12
|
Siddall NA, Hime GR. A Drosophila toolkit for defining gene function in spermatogenesis. Reproduction 2017; 153:R121-R132. [PMID: 28073824 DOI: 10.1530/rep-16-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/15/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Expression profiling and genomic sequencing methods enable the accumulation of vast quantities of data that relate to the expression of genes during the maturation of male germ cells from primordial germ cells to spermatozoa and potential mutations that underlie male infertility. However, the determination of gene function in specific aspects of spermatogenesis or linking abnormal gene function with infertility remain rate limiting, as even in an era of CRISPR analysis of gene function in mammalian models, this still requires considerable resources and time. Comparative developmental biology studies have shown the remarkable conservation of spermatogenic developmental processes from insects to vertebrates and provide an avenue of rapid assessment of gene function to inform the potential roles of specific genes in rodent and human spermatogenesis. The vinegar fly, Drosophila melanogaster, has been used as a model organism for developmental genetic studies for over one hundred years, and research with this organism produced seminal findings such as the association of genes with chromosomes, the chromosomal basis for sexual identity, the mutagenic properties of X-irradiation and the isolation of the first tumour suppressor mutations. Drosophila researchers have developed an impressive array of sophisticated genetic techniques for analysis of gene function and genetic interactions. This review focuses on how these techniques can be utilised to study spermatogenesis in an organism with a generation time of 9 days and the capacity to introduce multiple mutant alleles into an individual organism in a relatively short time frame.
Collapse
Affiliation(s)
- N A Siddall
- Department of Anatomy and NeuroscienceThe University of Melbourne, Parkville, Victoria, Australia
| | - G R Hime
- Department of Anatomy and NeuroscienceThe University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea. PLoS Genet 2016; 12:e1006109. [PMID: 27304889 PMCID: PMC4909293 DOI: 10.1371/journal.pgen.1006109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis.
Collapse
|
14
|
O'Hara L, Smith LB. Development and Characterization of Cell-Specific Androgen Receptor Knockout Mice. Methods Mol Biol 2016; 1443:219-248. [PMID: 27246343 DOI: 10.1007/978-1-4939-3724-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conditional gene targeting has revolutionized molecular genetic analysis of nuclear receptor proteins, however development and analysis of such conditional knockouts is far from simple, with many caveats and pitfalls waiting to snare the novice or unprepared. In this chapter, we describe our experience of generating and analyzing mouse models with conditional ablation of the androgen receptor (AR) from tissues of the reproductive system and other organs. The guidance, suggestions, and protocols outlined in the chapter provide the key starting point for analyses of conditional-ARKO mice, completing them as described provides an excellent framework for further focussed project-specific analyses, and applies equally well to analysis of reproductive tissues from any mouse model generated through conditional gene targeting.
Collapse
Affiliation(s)
- Laura O'Hara
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
15
|
Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ, Shi QH. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice. Asian J Androl 2015; 16:572-80. [PMID: 24713828 PMCID: PMC4104086 DOI: 10.4103/1008-682x.125401] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Hua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China; Institute of Physics, Chinese Academy of Sciences, Hefei, China,
| |
Collapse
|
16
|
Liu Y, Tao D, Lu Y, Yang Y, Ma Y, Zhang S. Targeted disruption of the mouse testis-enriched gene Znf230 does not affect spermatogenesis or fertility. Genet Mol Biol 2014; 37:708-15. [PMID: 25505846 PMCID: PMC4261971 DOI: 10.1590/s1415-47572014005000013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 06/24/2014] [Indexed: 02/05/2023] Open
Abstract
The mouse testis-enriched Znf230 gene, which encodes a type of RING finger protein, is present primarily in the nuclei of spermatogonia, the acrosome and the tail of spermatozoa. To investigate the role of Znf230 in spermatogenesis, we generated Znf230-deficient mice by disrupting Znf230 exon-5 and exon-6 using homologous recombination. The homozygous Znf230-knockout (KO) mice did not exhibit Znf230 mRNA expression and Znf230 protein production. Znf230 KO mice exhibited no obvious impairment in body growth or fertility. Male Znf230 KO mice had integral reproductive systems and mature sperm that were regular in number and shape. The developmental stages of male germ cells of Znf230 KO mice were also normal. We further examined variations in the transcriptomes of testicular tissue between Znf230 KO and wild-type mice through microarray analysis. The results showed that the mRNA level of one unclassified transcript 4921513I08Rik was increased and that the mRNA levels of three other transcripts, i.e., 4930448A20Rik, 4931431B13Rik and potassium channel tetramerisation domain containing 14(Kctd14), were reduced more than two-fold in Znf230 KO mice compared with wild-type mice. Using our current examination techniques, these findings suggested that Znf230 deficiency in mice may not affect growth, fertility or spermatogenesis.
Collapse
Affiliation(s)
- Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Sizhong Zhang
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| |
Collapse
|
17
|
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
| |
Collapse
|
18
|
Dong WW, Huang HL, Yang W, Liu J, Yu Y, Zhou SL, Wang W, Lv XC, Li ZY, Zhang MY, Zheng ZH, Yan W. Testis-specific Fank1 gene in knockdown mice produces oligospermia via apoptosis. Asian J Androl 2014; 16:124-30. [PMID: 24369145 PMCID: PMC3901870 DOI: 10.4103/1008-682x.122592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fank1 is exclusively expressed in the testis from the meiosis phase to the haploid phase of spermatogenesis. In this study, we examined the function of Fank1 by establishing a Fank1-knockdown transgenic mouse model. The apoptotic statuses of the testes of the transgenic mice were tested using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. The FANK1 consensus DNA-binding sequence was identified using cyclic amplification of sequence target (CAST) analysis. Differentially expressed genes were examined using microarray analysis. A reduction in sperm number and an increase in apoptotic spermatocytes were observed in Fank1-knockdown mice, and the apoptotic cells were found to be primarily spermatogonia and spermatocytes. The CAST results demonstrated that the consensus DNA-binding sequence was AAAAAG, in which the percentage occurrence of each base at each position ranged from 55 to 86%. This sequence was present in the promoter regions of 10 differentially expressed genes that were examined using microarray analysis. In total, 17 genes were differentially expressed with changes in their expression levels greater than twofold. The abnormal expression of Fank1 target genes that were regulated directly or indirectly by Fank1 reduced the number of sperm in the knockdown mice. Thus, FANK1 may play a pivotal role in spermatogenesis as a transcription factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhi-Hong Zheng
- Laboratory Animal Centre; Department of Pathology and Pathophysiology Research, China Medical University, Shenyang, China
| | | |
Collapse
|
19
|
Wang J, Xia Y, Wang G, Zhou T, Guo Y, Zhang C, An X, Sun Y, Guo X, Zhou Z, Sha J. In-depth proteomic analysis of whole testis tissue from the adult rhesus macaque. Proteomics 2014; 14:1393-402. [PMID: 24610633 DOI: 10.1002/pmic.201300149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 01/22/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Gaigai Wang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xia An
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yujie Sun
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
20
|
Genomic and post-genomic leads toward regulation of spermatogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:409-22. [DOI: 10.1016/j.pbiomolbio.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023]
|
21
|
Liu Y, Tao D, Ma S, Kuang Y, Su D, Zhang H, Yang Y, Ma Y, Zhang S. A new mutant transcript generated in Znf230 exon 2 knockout mice reveals a potential exon structure in the targeting vector sequence. Acta Biochim Biophys Sin (Shanghai) 2013. [PMID: 23196134 DOI: 10.1093/abbs/gms101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Testis gene Znf230 may play a role in mammalian spermatogenesis according to previous reports. Deleting 5' important exons to block the formation of protein was a routine way in gene-knockout experiments. To investigate the physiological function of Znf230 gene, the mutant mice with disrupted exon 2 of Znf230 were generated in this study. Results showed that, mutant Znf230 mice were fertile and showed normal body, genitourinary organs, testes weights, and spermatid number but the litter size of the offspring reduced with unclear reasons. Hematoxylin and eosin staining showed that the testicular tissue of mutant mice was intact. Reverse transcriptase polymerase chain reaction analysis showed that two novel mutant transcripts appeared in the mutant mice: the short one including exon-1 and exon-3 to -6, the long one unexpectedly containing a partial sequence from the pPNT vector acting as a new exon 2. Bioinformatic analysis of the long transcript revealed that it might code a 24-kDa N-terminal mutant protein with the same 182 amino acids as that of the wild-type Znf230 in the C-terminus, indicating that the potential functional region of C3HC4-type RING finger was intact in mutant protein. Western blot and immunohistochemistry analyses also implied that this N-terminal mutation of Znf230 might not disrupt the possible role that wild-type Znf230 played in spermatogenesis. In summary, a potential exon structure in the targeting vector sequence involved in the expression of targeting Znf230 gene and disturbed the strategy of this gene-targeting experiment.
Collapse
Affiliation(s)
- Yunqiang Liu
- Department of Medical Genetics & Division of Human Morbid Genomics, State Key Laboratory of Biotherapy , West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kashir J, Jones C, Child T, Williams SA, Coward K. Viability Assessment for Artificial Gametes: The Need for Biomarkers of Functional Competency1. Biol Reprod 2012; 87:114. [DOI: 10.1095/biolreprod.112.103853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Wang J, Teves ME, Shen X, Nagarkatti-Gude DR, Hess RA, Henderson SC, Strauss JF, Zhang Z. Mouse RC/BTB2, a member of the RCC1 superfamily, localizes to spermatid acrosomal vesicles. PLoS One 2012; 7:e39846. [PMID: 22768142 PMCID: PMC3387240 DOI: 10.1371/journal.pone.0039846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/31/2012] [Indexed: 12/01/2022] Open
Abstract
Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5'-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maria E. Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xuening Shen
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David R. Nagarkatti-Gude
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Scott C. Henderson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
24
|
Batista F, Lu L, Williams SA, Stanley P. Complex N-glycans are essential, but core 1 and 2 mucin O-glycans, O-fucose glycans, and NOTCH1 are dispensable, for mammalian spermatogenesis. Biol Reprod 2012; 86:179. [PMID: 22492969 DOI: 10.1095/biolreprod.111.098103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To identify roles in spermatogenesis for major subclasses of N- and O-glycans and Notch signaling, male mice carrying floxed C1galt1, Pofut1, Notch1 or Mgat1 alleles and a testis-specific Cre recombinase transgene were generated. T-synthase (C1GALT1) transfers Gal to generate core 1 and core 2 mucin O-glycans; POFUT1 transfers O-fucose to particular epidermal growth factor-like repeats and is essential for canonical Notch signaling; and MGAT1 (GlcNAcT-I) transfers GlcNAc to initiate hybrid and complex N-glycan synthesis. Cre recombinase transgenes driven by various promoters were investigated, including Stra8-iCre expressed in spermatogonia, Sycp1-Cre expressed in spermatocytes, Prm1-Cre expressed in spermatids, and AMH-Cre expressed in Sertoli cells. All Cre transgenes deleted floxed alleles, but efficiencies varied widely. Stra8-iCre was the most effective, deleting floxed Notch1 and Mgat1 alleles with 100% efficiency and floxed C1galt1 and Pofut1 alleles with ~80% efficiency, based on transmission of deleted alleles. Removal of C1galt1, Pofut1, or Notch1 in spermatogonia had no effect on testicular weight, histology, or fertility. However, males in which the synthesis of complex N-glycans was blocked by deletion of Mgat1 in spermatogonia did not produce sperm. Spermatogonia, spermatocytes, and spermatids were generated, but most spermatids formed giant multinucleated cells or symplasts, and apoptosis was increased. Therefore, although core 1 and 2 mucin O-glycans, NOTCH1, POFUT1, O-fucose glycans, and Notch signaling are dispensable, MGAT1 and complex N-glycans are essential for spermatogenesis.
Collapse
Affiliation(s)
- Frank Batista
- Department of Cell Biology, Albert Einstein College Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
25
|
Stouffs K, Vandermaelen D, Massart A, Menten B, Vergult S, Tournaye H, Lissens W. Array comparative genomic hybridization in male infertility. Hum Reprod 2012; 27:921-9. [DOI: 10.1093/humrep/der440] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Aston KI, Carrell DT. Emerging evidence for the role of genomic instability in male factor infertility. Syst Biol Reprod Med 2011; 58:71-80. [PMID: 22142145 DOI: 10.3109/19396368.2011.635751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Male infertility is a common and complex pathology affecting about 7% of men of reproductive age. Given its complexity, the underlying etiology for male infertility is often unknown. A growing amount of evidence suggests genomic instability may be an important factor in some cases of male factor infertility. While some specific manifestations of genomic instability, such as increased sperm aneuploidy rates and increased somatic translocations and inversions in infertile men, are well established, other facets of genomic instability associated with male infertility have not been thoroughly investigated. A limited body of recent work has identified a potential association between microsatellite instability and spermatogenic failure. In addition, mutations in mismatch repair and tumor suppressor genes, which could potentially lead to genomic instability, have been identified in some infertile men and animal models. In addition, results of two epidemiologic studies suggest spermatogenic defects might be just one aspect of a more systemic problem, possibly due to increased genomic instability. In this review we discuss well-established links between genomic instability and male infertility, as well as some of the emerging but less established data to support this relationship. We also propose some important areas of future research toward a more complete understanding of the underlying mechanisms for male infertility.
Collapse
Affiliation(s)
- Kenneth I Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | |
Collapse
|
27
|
Yatsenko AN, O'Neil DS, Roy A, Arias-Mendoza PA, Chen R, Murthy LJ, Lamb DJ, Matzuk MM. Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Mol Hum Reprod 2011; 18:14-21. [PMID: 21911476 DOI: 10.1093/molehr/gar057] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nearly 7% of men are afflicted by male infertility worldwide, and genetic factors are suspected to play a significant role in the majority of these patients. Although sperm morphology is an important parameter measured in the semen analysis, only a few genetic causes of teratozoospermia are currently known. The objective of this study was to define the association between alterations in the genes encoding the Golgi-associated PDZ- and coiled-coil motif containing protein (GOPC), the protein interacting with C kinase 1 (PICK1) and the acrosomal protein zona pellucida binding protein 1 (ZPBP1/sp38) with abnormal sperm head morphology in infertile men. Previous reports demonstrated that mice lacking Gopc, Pick1 and Zpbp1 are infertile due to abnormal head morphology. Herein, using our validated RNA-based method, we studied spermatozoal cDNA encoding the human GOPC, PICK1 and ZPBP1 genes in 381 teratozoospermic and 240 controls patients via direct sequencing. Among these genes, we identified missense and splicing mutations in the sperm cDNA encoding ZPBP1 in 3.9% (15/381) of men with abnormal sperm head morphology. These mutations were not observed in 240 matched controls and the dbSNP database (χ(2) = 9.3, P = 0.002). In contrast, statistically significant and functionally relevant mutations were not discovered in the GOPC and PICK1 genes. In our study ZPBP1 mutations are associated with abnormal sperm head morphology, defined according to strict criteria, resembling the mouse Zpbp1 null phenotype. We hypothesize that missense mutations exert a dominant-negative effect due to altered ZPBP1 protein folding and protein:protein interactions in the acrosome.
Collapse
Affiliation(s)
- Alexander N Yatsenko
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ortega C, Verheyen G, Raick D, Camus M, Devroey P, Tournaye H. Absolute asthenozoospermia and ICSI: what are the options? Hum Reprod Update 2011; 17:684-92. [PMID: 21816768 DOI: 10.1093/humupd/dmr018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Complete asthenozoospermia, i.e. 100% immotile spermatozoa in the ejaculate, is reported at a frequency of 1 of 5000 men. Its diagnosis implies a poor fertility prognosis even with ICSI. It is extremely important to distinguish between two different groups of patients with complete asthenozoospermia, i.e. virtual or absolute asthenozoospermia. With the former group having some motile spermatozoa after extensive processing of the semen, absolute asthenozoospermia can be associated with metabolic deficiencies, ultrastructural abnormalities of the sperm flagellum, necrozoospermia otherwise it can be idiopathic. In the management of persistent absolute asthenozoospermia, it is very important to elucidate its nature and whenever possible to correct the potential causes. METHODS We reported data published in the literature on the aetiology of absolute asthenozoospermia and the different techniques to improve ICSI outcome. We propose an algorithm for diagnosis and treatment of this condition. RESULTS Different results regarding fertilization, cleavage and pregnancy rate have been published in patients with absolute asthenozoospermia undergoing ICSI. However, the results vary widely depending on the sperm origin and the technique applied for immotile sperm selection. The percentage of viable spermatozoa varies between 0 and 100%. CONCLUSIONS Absolute immotile spermatozoa is one of the most important causes of reduced fertilization and pregnancy rates after ICSI and different techniques are used to improve ICSI outcomes. However, it still remains unclear which is the best technique to improve the pregnancy outcomes in these couples.
Collapse
Affiliation(s)
- C Ortega
- Centre for Reproductive Medicine, University Hospital Dutch-speaking Brussels Free University, Laarbeeklaan 101, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
29
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
30
|
Sun F, Handel MA. A Mutation in Mtap2 Is Associated with Arrest of Mammalian Spermatocytes before the First Meiotic Division. Genes (Basel) 2011; 2:21-35. [PMID: 24501684 PMCID: PMC3909985 DOI: 10.3390/genes2010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In spite of evolutionary conservation of meiosis, many of the genes that control mammalian meiosis are still unknown. We report here that the ENU-induced repro4 mutation, identified in a screen to uncover genes that control mouse meiosis, causes failure of spermatocytes to exit meiotic prophase I via the G2/MI transition. Major events of meiotic prophase I occurred normally in affected spermatocytes and known regulators of the meiotic G2/MI transition were present and functional. Deep sequencing of mutant DNA revealed a mutation located in an intron of Mtap2 gene, encoding microtubule-associated protein 2, and levels of Mtap2 transcript were reduced in mutant testes. This evidence implicates MTAP2 as required directly or indirectly for completion of meiosis and normal spermatogenesis in mammals.
Collapse
Affiliation(s)
| | - Mary Ann Handel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-207-288-6778; Fax: +1-207-288-6073
| |
Collapse
|
31
|
Smith L. Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 2010; 141:151-61. [PMID: 21084571 DOI: 10.1530/rep-10-0404] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past 20 years, genetic manipulation has revolutionised our understanding of male reproductive development and function. The advent of transgenic mouse lines has permitted elegant dissection of previously intractable issues. The development of the Cre/Lox system, which has permitted spatial and temporal localisation of genetic manipulation, has expanded upon this, and now makes up one of the primary approaches underpinning our increasing understanding of testis development and function. The success of conditional gene targeting is largely reliant upon the choice of Cre recombinase expressing mouse line, which is required to specifically target the correct cell type at the correct time. Presupposition that Cre lines will behave as expected has been one of the main oversights in the design of Cre/Lox experiments, as in practice, many Cre lines are prone to ectopic expression (both temporal and spatial), transgene silencing or genetic background effects. Empirical validation of the spatiotemporal profile of Cre expression prior to undertaking conditional gene targeting studies is essential and can be achieved through a combination of molecular and immunohistochemical approaches, along with in vivo examination of reporter gene expression in targeted tissues. This paper details the key considerations associated with exploitation of the Cre/Lox system and highlights a variety of validated Cre lines that have utility for conditional gene targeting within the testis.
Collapse
Affiliation(s)
- Lee Smith
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
32
|
Current Opinion in Urology. Current world literature. Curr Opin Urol 2010; 20:533-8. [PMID: 20940575 DOI: 10.1097/mou.0b013e32834028bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Marcello MR, Evans JP. Multivariate analysis of male reproductive function in Inpp5b-/- mice reveals heterogeneity in defects in fertility, sperm-egg membrane interaction and proteolytic cleavage of sperm ADAMs. Mol Hum Reprod 2010; 16:492-505. [PMID: 20403911 DOI: 10.1093/molehr/gaq029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Past work indicated that sperm from mice deficient in the inositol polyphosphate 5-phosphatase Inpp5b have reduced ability to fertilize eggs in vitro and reduced epididymal proteolytic processing of the sperm protein A Disintegrin and A Metalloprotease 2 (ADAM2). On the basis of these data, our central working hypothesis was that reduced ADAM cleavage would correlate with reduced sperm-egg binding and fusion and in turn with reduced male fertility in Inpp5b(-/-) mice. Multiple endpoints of reproductive functions [mating trials, in vitro fertilization (IVF) assays and ADAM2 and ADAM3 cleavage] were investigated on a male-by-male basis, with pair-wise correlation analysis used to assess the relationships between these various parameters. Motile sperm from Inpp5b(-/-) mice showed significantly reduced fertilization of zona pellucida-free eggs due to reduced binding to the egg plasma membrane and subsequent fusion. Localization of a mouse sperm protein required for gamete fusion, IZUMO1, appears normal in Inpp5b-null sperm. To our surprise and differing from previous reports, we found that ADAM cleavage was only modestly impaired in numerous Inpp5b-null males and varied between individual animals. Performance in mating trials also differed from past reports. The pair-wise correlation analysis revealed that ADAM2 and ADAM3 cleavage was positively correlated, suggesting that processing of these proteins occurs by related/identical mechanisms, but otherwise, there were few correlations between the reproductive endpoints examined here. Nevertheless, this work provides detailed analysis of the Inpp5b(-/-) phenotype and also a blueprint for multivariate analysis to examine relationships between molecular characteristics and in vitro and in vivo physiological functions.
Collapse
Affiliation(s)
- Matthew R Marcello
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|