1
|
Sameni M, Moradbeigi P, Hosseini S, Ghaderian SMH, Jajarmi V, Miladipour AH, Basati H, Abbasi M, Salehi M. ZIF-8 Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-Mediated Gene Transfer. Biol Proced Online 2024; 26:4. [PMID: 38279129 PMCID: PMC10811821 DOI: 10.1186/s12575-024-00229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials with unique characteristics that make them well-suited for drug delivery and gene therapy applications. Among the MOFs, zeolitic imidazolate framework-8 (ZIF-8) has emerged as a promising candidate for delivering exogenous DNA into cells. However, the potential of ZIF-8 as a vector for sperm-mediated gene transfer (SMGT) has not yet been thoroughly explored.This investigation aimed to explore the potential of ZIF-8 as a vector for enhancing genetic transfer and transgenesis rates by delivering exogenous DNA into sperm cells. To test this hypothesis, we employed ZIF-8 to deliver a plasmid expressing green fluorescent protein (GFP) into mouse sperm cells and evaluated the efficiency of DNA uptake. Our findings demonstrate that ZIF-8 can efficiently load and deliver exogenous DNA into mouse sperm cells, increasing GFP expression in vitro. These results suggest that ZIF-8 is a valuable tool for enhancing genetic transfer in SMGT, with important implications for developing genetically modified animals for research and commercial purposes. Additionally, our study highlights the potential of ZIF-8 as a novel class of vectors for gene delivery in reproductive biology.Overall, our study provides a foundation for further research into using ZIF-8 and other MOFs as gene delivery systems in reproductive biology and underscores the potential of these materials as promising vectors for gene therapy and drug delivery.
Collapse
Affiliation(s)
- Marzieh Sameni
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Moradbeigi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hasti Noavaran Gene Royan, Tehran, Iran
| | | | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miladipour
- Department of Nephrology, Clinical Research and Development Center at Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojat Basati
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Maryam Abbasi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Zhino-Gene Research Services Co, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Dubruille R, Herbette M, Revel M, Horard B, Chang CH, Loppin B. Histone removal in sperm protects paternal chromosomes from premature division at fertilization. Science 2023; 382:725-731. [PMID: 37943933 PMCID: PMC11180706 DOI: 10.1126/science.adh0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
The global replacement of histones with protamines in sperm chromatin is widespread in animals, including insects, but its actual function remains enigmatic. We show that in the Drosophila paternal effect mutant paternal loss (pal), sperm chromatin retains germline histones H3 and H4 genome wide without impairing sperm viability. However, after fertilization, pal sperm chromosomes are targeted by the egg chromosomal passenger complex and engage into a catastrophic premature division in synchrony with female meiosis II. We show that pal encodes a rapidly evolving transition protein specifically required for the eviction of (H3-H4)2 tetramers from spermatid DNA after the removal of H2A-H2B dimers. Our study thus reveals an unsuspected role of histone eviction from insect sperm chromatin: safeguarding the integrity of the male pronucleus during female meiosis.
Collapse
Affiliation(s)
- Raphaälle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Maxime Revel
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Holmlund H, Yamauchi Y, Ruthig VA, Cocquet J, Ward MA. Return of the forgotten hero: the role of Y chromosome-encoded Zfy in male reproduction. Mol Hum Reprod 2023; 29:gaad025. [PMID: 37354519 PMCID: PMC10695432 DOI: 10.1093/molehr/gaad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
The Y-linked zinc finger gene ZFY is conserved across eutherians and is known to be a critical fertility factor in some species. The initial studies of the mouse homologues, Zfy1 and Zfy2, were performed using mice with spontaneous Y chromosome mutations and Zfy transgenes. These studies revealed that Zfy is involved in multiple processes during spermatogenesis, including removal of germ cells with unpaired chromosomes and control of meiotic sex chromosome inactivation during meiosis I, facilitating the progress of meiosis II, promoting spermiogenesis, and improving assisted reproduction outcomes. Zfy was also identified as a key gene in Y chromosome evolution, protecting this chromosome from extinction by serving as the executioner responsible for meiosis surveillance. Studies with targeted Zfy knock-outs revealed that mice lacking both homologues have severe spermatogenic defects and are infertile. Based on protein structure and in vitro assays, Zfy is expected to drive spermatogenesis as a transcriptional regulator. The combined evidence documents that the presence of at least one Zfy homologue is required for male fertility and that Zfy2 plays a more prominent role. This knowledge reinforces the importance of these factors for mouse spermatogenesis and informs our understanding of the human ZFY variants, which are homologous to the mouse Zfy1 and Zfy2.
Collapse
Affiliation(s)
- Hayden Holmlund
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Victor A Ruthig
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Julie Cocquet
- Institut Cochin, INSERM, U1016, CNRS UMR8104, Universite Paris Cite, Paris, France
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
4
|
Lourenço ML, de Moura GA, Rocha YM, Rodrigues JPV, Monteiro PB. Impact of sperm DNA fragmentation on the clinical outcome of assisted reproduction techniques: a systematic review of the last five years. JBRA Assist Reprod 2023; 27:282-291. [PMID: 36749810 PMCID: PMC10279435 DOI: 10.5935/1518-0557.20220057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/03/2022] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE To elucidate through a systematic literature review the impact sperm DNA fragmentation has on embryos from assisted reproduction techniques. DATA SOURCE Studies from the "PubMed", "Embase", and "BVS" databases were analyzed. STUDIES SELECTION The articles selected in the review included: cohort and case-control studies that addressed the proposed theme, published between January 1, 2017, and January 31, 2022, in English, Portuguese, and Spanish. As inclusion criteria: cohort and case-control articles. As exclusion criteria: articles outside the scope of the research, review articles, case reports, articles using animal models, abstracts, letters to the editor, and articles found duplicates in the databases. DATA COLLECTION Number of couples or cycles; age (men/women); collection type; DNA damage (%); assisted reproduction activity and techniques. DATA SYNTHESIS In in vitro fertilization, a reduction in fertilization rate, blastocyst rate, and embryo quality was observed. In addition to implantation and increased abortion rates in patients with high sperm DNA fragmentation. High rates of sperm DNA fragmentation in intracytoplasmic sperm injection led to reduced blastocyst production rate, embryo quality, implantation, and live birth rate, and in intrauterine insemination, a reduction in pregnancy rate. CONCLUSION Sperm DNA fragmentation was a potential limiting factor for assisted reproduction techniques.
Collapse
|
5
|
Baran V, Mayer A. Checkpoint Kinase 1 Is a Key Signal Transducer of DNA Damage in the Early Mammalian Cleavage Embryo. Int J Mol Sci 2023; 24:ijms24076778. [PMID: 37047751 PMCID: PMC10095474 DOI: 10.3390/ijms24076778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genome is essential for the successful initiation of mitotic activity in the fertilized oocyte and subsequent proliferative activity of the early embryo. Despite the fact that the molecular mechanisms of cell cycle control in early mammalian embryos are in principle comparable to those in somatic cells, there are differences resulting from the specific nature of the gene totipotency of the blastomeres of early cleavage embryos. In this review, we focus on the Chk1 kinase as a key transduction factor in monitoring the integrity of DNA molecules during early embryogenesis.
Collapse
Affiliation(s)
- Vladimír Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4, 040 00 Košice, Slovakia
| | - Alexandra Mayer
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University, 12000 Prague, Czech Republic
| |
Collapse
|
6
|
Carranza-Martin AC, Fabra MC, Urrutia Luna N, Farnetano N, Anchordoquy JP, Anchordoquy JM, Picco SJ, Furnus CC, Nikoloff N. In vitro adverse effects of amitraz on semen quality: Consequences in bovine embryo development. Theriogenology 2023; 199:106-113. [PMID: 36716591 DOI: 10.1016/j.theriogenology.2023.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Veterinary drugs are potential environmental pollutants that interfere with male reproductive function. Infertility has increased, and it is known that environmental toxins contribute to declining sperm parameters. Amitraz {N,N-[(methylamino) dimeth-ylidyne] di-2,4-xylidine} (AMZ) is a formamidine pesticide widely used as an insecticide and an acaricide. The aim of this study was to evaluate the toxicity of AMZ in bovine sperm. Three experiments using frozen-thawed bovine semen incubated with AMZ for 2 h were carried out. Negative and solvent (dimethyl sulfoxide) controls were run simultaneously with treatments. In experiment 1, the AMZ concentrations used were 10, 15 and 25 μg AMZ/ml and the sperm parameters evaluated were viability, mitochondrial activity, acrosomal status, functional membrane integrity and apoptosis. In experiments 2 and 3, 25 μg AMZ/ml was used to evaluate fertilizing capacity, embryo development and blastocyst DNA damage. In experiment 1, 25 μg AMZ/ml decreased sperm viability (P = 0.01), reduced mitochondrial activity (P = 0.03) and induced apoptosis (P < 0.01). Also, 15 and 25 μg AMZ/ml affected functional membrane integrity (P < 0.01). In experiment 2, AMZ did not alter sperm-zona binding (P = 0.40) and pronucleus formation (P = 0.36). In experiment 3, 25 μg AMZ/ml decreased the rate of embryo development (P < 0.01) and increased apoptosis (P = 0.03). These results suggest that AMZ induced alterations in bovine sperm, probably affecting male fertility at concentrations that could be present in the environment.
Collapse
Affiliation(s)
- Ana Cristina Carranza-Martin
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mariana Carolina Fabra
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Naiara Urrutia Luna
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Nicolás Farnetano
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sebastián Julio Picco
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cecilia Cristina Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
7
|
Newman H, Catt S, Vining B, Vollenhoven B, Horta F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol Hum Reprod 2021; 28:6483093. [PMID: 34954800 DOI: 10.1093/molehr/gaab071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm DNA damage is considered a predictive factor for the clinical outcomes of patients undergoing ART. Laboratory evidence suggests that zygotes and developing embryos have adopted specific response and repair mechanisms to repair DNA damage of paternal origin. We have conducted a systematic review in accordance with guidelines from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify and review the maternal mechanisms used to respond and repair sperm DNA damage during early embryonic development, how these mechanisms operate and their potential clinical implications. The literature search was conducted in Ovid MEDLINE and Embase databases until May 2021. Out of 6297 articles initially identified, 36 studies were found to be relevant through cross referencing and were fully extracted. The collective evidence in human and animal models indicate that the early embryo has the capacity to repair DNA damage within sperm by activating maternally driven mechanisms throughout embryonic development. However, this capacity is limited and likely declines with age. The link between age and decreased DNA repair capacity could explain decreased oocyte quality in older women, poor reproductive outcomes in idiopathic cases, and patients who present high sperm DNA damage. Ultimately, further understanding mechanisms underlying the maternal repair of sperm DNA damage could lead to the development of targeted therapies to decrease sperm DNA damage, improved oocyte quality to combat incoming DNA insults or lead to development of methodologies to identify individual spermatozoa without DNA damage.
Collapse
Affiliation(s)
- H Newman
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - S Catt
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - B Vining
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - B Vollenhoven
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia.,Women's and Newborn Program, Monash Health, VIC, 3169, Australia
| | - F Horta
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia
| |
Collapse
|
8
|
De Win G, De Neubourg D, De Wachter S, Vaganée D, Punjabi U. Peak retrograde flow a potential objective management tool to identify young adults with varicocele 'at risk' for a high sperm DNA fragmentation. J Pediatr Urol 2021; 17:760.e1-760.e9. [PMID: 34627700 DOI: 10.1016/j.jpurol.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/30/2021] [Accepted: 09/19/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Determining which patients are negatively affected by varicocele would enable clinicians to better select those men who would benefit most from surgery. Since conventional semen parameters, have been limited in their ability to evaluate the negative effects of varicocele on fertility, specialized laboratory tests have emerged. OBJECTIVE To identify clinical and ultrasound parameters (including PRF) which would negatively influence standard and functional semen variables in young adults with a varicocele. DESIGN Prospective, cross-sectional observational study. SETTING Antwerp University Hospital, Belgium. PATIENT(S) Young volunteers between 16 and 26 years, Tanner 5, were recruited. INTERVENTION(S) Every participant had a scrotal ultrasound to calculate testicular volumes. If a varicocele was present, the grade, vein diameter, peak retrograde flow (PRF) in supine position and spontaneous reflux in standing position were measured. All participants provided a semen sample. Standard semen parameters were analyzed and sperm DNA fragmentation. MAIN OUTCOME MEASURE(S) Of all clinical and ultrasound parameters tested, PRF was an objective tool identifying young adults with a varicocele. PRF was highlighted by the prevalence of SDF, both in the total and vital fractions of the spermatozoa, providing opportunities to manage such 'at-risk' adolescents/young adults. RESULT(S) Total SDF was significantly increased in grade 3 varicocele compared to grade 1 and 2 but no significant difference with vital SDF or standard descriptive semen parameters was seen. Total and vital SDF on the other hand were significantly increased when PRF was above 38.4 cm/s. Standard semen analysis showed no difference with PRF as an independent predictor. Testicular atrophy index, varicocele vein diameter and spontaneous reflux revealed no significant differences in both the descriptive and functional semen variables. DISCUSSION Descriptive semen parameters showed no significant difference between the non-varicocele controls and the varicocele group with low and high PRF. Increased PRF negatively influenced sperm quality via increased DNA fragmentation both in the total as in the vital fractions of the semen. CONCLUSION(S) Of all clinical and ultrasound parameters tested, PRF was an objective non-invasive tool to identify varicocele patients at risk for a high SDF.
Collapse
Affiliation(s)
- G De Win
- Department of Urology, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium; Department of Urology, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, Wilrijk, Belgium.
| | - D De Neubourg
- Centre for Reproductive Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium; Department of Reproductive Medicine, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, Wilrijk, Belgium
| | - S De Wachter
- Department of Urology, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium; Department of Urology, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, Wilrijk, Belgium
| | - D Vaganée
- Department of Urology, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - U Punjabi
- Centre for Reproductive Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium; Department of Reproductive Medicine, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, Wilrijk, Belgium
| |
Collapse
|
9
|
Global Methylation and Protamine Deficiency in Ram Spermatozoa Correlate with Sperm Production and Quality but Are Not Influenced by Melatonin or Season. Animals (Basel) 2020; 10:ani10122302. [PMID: 33291841 PMCID: PMC7762013 DOI: 10.3390/ani10122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Though environmental factors can alter the epigenome of mammalian spermatozoa, it is currently unclear whether these epigenetic changes are linked to sperm production, quality and fertility. This study aimed to identify whether the hormone melatonin, responsible for upregulating ram reproductive function, is able to alter broad epigenetic markers in spermatozoa, namely sperm global methylation and protamine deficiency. It was also investigated whether these parameters corresponded to ram endocrinology, semen production and quality. Though no effects of season or melatonin were found, both sperm global methylation and protamine deficiency correlated with several semen production and quality parameters. These moderate associations with sperm production and quality support that sperm protamine deficiency and global methylation are broadly indicative of testicular function. Abstract This study assessed whether the seasonal effects of melatonin that upregulate ram reproductive function alter sperm global methylation or protamine deficiency and whether these parameters corresponded to ram endocrinology, semen production and quality. Ejaculates were assessed from rams that received melatonin implants (n = 9) or no implants (n = 9) during the non-breeding season. Ejaculates (n = 2/ram/week) were collected prior to implantation (week 0), 1, 6 and 12 weeks post implantation and during the following breeding season (week 30). Flow cytometry was used to assess the sperm global methylation and protamine deficiency in each ejaculate, which had known values for sperm concentration, motility, morphology, DNA fragmentation, seminal plasma levels of melatonin, anti-Mullerian hormone and inhibin A. Serum levels of testosterone and melatonin were also evaluated. Though there was no effect of melatonin or season, sperm protamine deficiency was negatively correlated with sperm production and seminal plasma levels of anti-Mullerian hormone and positively correlated with sperm DNA fragmentation and morphology. Global methylation of spermatozoa was positively correlated with sperm DNA fragmentation, morphology and serum testosterone and negatively correlated with sperm motility. These moderate associations with sperm production and quality suggest that sperm protamine deficiency and global methylation are indicative of ram testicular function.
Collapse
|
10
|
Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART. Hum Reprod Update 2020; 25:180-201. [PMID: 30541031 DOI: 10.1093/humupd/dmy040] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/27/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA integrity and stability are critical determinants of cell viability. This is especially true in the female germline, wherein DNA integrity underpins successful conception, embryonic development, pregnancy and the production of healthy offspring. However, DNA is not inert; rather, it is subject to assault from various environment factors resulting in chemical modification and/or strand breakage. If structural alterations result and are left unrepaired, they have the potential to cause mutations and propagate disease. In this regard, reduced genetic integrity of the female germline ranks among the leading causes of subfertility in humans. With an estimated 10% of couples in developed countries taking recourse to ART to achieve pregnancy, the need for ongoing research into the capacity of the oocyte to detect DNA damage and thereafter initiate cell cycle arrest, apoptosis or DNA repair is increasingly more pressing. OBJECTIVE AND RATIONALE This review documents our current knowledge of the quality control mechanisms utilised by the female germline to prevent and remediate DNA damage during their development from primordial follicles through to the formation of preimplantation embryos. SEARCH METHODS The PubMed database was searched using the keywords: primordial follicle, primary follicle, secondary follicle, tertiary follicle, germinal vesical, MI, MII oocyte, zygote, preimplantation embryo, DNA repair, double-strand break and DNA damage. These keywords were combined with other phrases relevant to the topic. Literature was restricted to peer-reviewed original articles in the English language (published 1979-2018) and references within these articles were also searched. OUTCOMES In this review, we explore the quality control mechanisms utilised by the female germline to prevent, detect and remediate DNA damage. We follow the trajectory of development from the primordial follicle stage through to the preimplantation embryo, highlighting findings likely to have important implications for fertility management, age-related subfertility and premature ovarian failure. In addition, we survey the latest discoveries regarding DNA repair within the metaphase II (MII) oocyte and implicate maternal stores of endogenous DNA repair proteins and mRNA transcripts as a primary means by which they defend their genomic integrity. The collective evidence reviewed herein demonstrates that the MII oocyte can engage in the activation of major DNA damage repair pathway(s), therefore encouraging a reappraisal of the long-held paradigm that oocytes are largely refractory to DNA repair upon reaching this late stage of their development. It is also demonstrated that the zygote can exploit a number of protective strategies to mitigate the risk and/or effect the repair, of DNA damage sustained to either parental germline; affirming that DNA protection is largely a maternally driven trait but that some aspects of repair may rely on a collaborative effort between the male and female germlines. WIDER IMPLICATIONS The present review highlights the vulnerability of the oocyte to DNA damage and presents a number of opportunities for research to bolster the stringency of the oocyte's endogenous defences, with implications extending to improved diagnostics and novel therapeutic applications to alleviate the burden of infertility.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, Australia
| |
Collapse
|
11
|
Harada Y, Kinutani M, Horiuchi T. Time-lapse monitoring of mouse embryos produced by injecting sonicated, frozen-thawed sperm heads with high or low chromosomal integrity. Reprod Med Biol 2020; 19:171-177. [PMID: 32273823 PMCID: PMC7138947 DOI: 10.1002/rmb2.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate the first-division kinetics and in vitro development of embryos produced by injecting sonicated sperm heads with high or low chromosomal integrity into oocytes. METHODS Mouse spermatozoa were frozen after separating the sperm heads from the tails by sonication in an EGTA solution (EGTA group) or M2 medium (M2 group). The chromosomal integrity of sonicated mouse spermatozoa was analyzed by injecting the sperm heads into fresh mouse oocytes. The developmental potential of spermatozoa was examined by injecting the sperm heads into vitrified-warming mouse oocytes. We used a time-lapse monitoring system to compare the first-division kinetics. RESULTS Chromosomal integrity was preserved significantly more frequently in the EGTA group (90.6%) than in the M2 group (32.7%). Blastocysts developed significantly more often in the EGTA group (80.8%) than in the M2 group (39.6%). In the M2 group, with frequent chromosome aberrations, the time between the sperm injection and first cleavage was delayed (18.4 hours), compared to the EGTA group (16.5 hours). All results of the EGTA group were similar to that of fresh epididymal spermatozoa. CONCLUSION The EGTA solution for sonication maintained the integrity of sperm chromosomes. Our results revealed a relationship between sperm chromosome integrity and first-division kinetics.
Collapse
Affiliation(s)
- Yoshihisa Harada
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaHiroshimaJapan
- Kinutani Women’s ClinicHiroshimaJapan
| | | | - Toshitaka Horiuchi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaHiroshimaJapan
| |
Collapse
|
12
|
Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Sci Rep 2019; 9:7492. [PMID: 31097741 PMCID: PMC6522556 DOI: 10.1038/s41598-019-43981-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/25/2019] [Indexed: 01/12/2023] Open
Abstract
Subjects increasing sperm DNA fragmentation (sDF) during Density Gradient Centrifugation (DGC), a common sperm selection procedure in Assisted Reproduction Techniques (ARTs), experience a 50% lower probability of pregnancy. Hence, identification of these subjects is of clinical importance. Here, we investigated whether such subjects are identified with higher accuracy detecting DNA fragmentation in viable (viable sDF) instead of total spermatozoa (total sDF) and whether swim up, an alternative procedure to DGC, does not increase sDF. With DGC, we identified 10/20 subjects increasing total sDF, and 2 more subjects using viable sDF. With swim up, we identified 8/40 subjects increasing total sDF, and 8 more subjects using viable sDF. In addition, viable sDF reveals more accurately the increase of the damage when it occurs. Finally, a multivariate analysis demonstrated that the proportional increase of sDF was higher after DGC respect to swim up. In conclusion, viable sDF is a more accurate parameter to reveal the increase of the damage by selection both with swim up and DGC. Swim up increases sDF in some samples, although at a lesser extent than DGC, suggesting that it should be used to select spermatozoa for ARTs when possible.
Collapse
|
13
|
Improved methods of DNA extraction from human spermatozoa that mitigate experimentally-induced oxidative DNA damage. PLoS One 2018; 13:e0195003. [PMID: 29579126 PMCID: PMC5868848 DOI: 10.1371/journal.pone.0195003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/14/2018] [Indexed: 11/19/2022] Open
Abstract
Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.
Collapse
|
14
|
Bittner L, Wyck S, Herrera C, Siuda M, Wrenzycki C, van Loon B, Bollwein H. Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos. Reprod Fertil Dev 2018; 30:1359-1368. [DOI: 10.1071/rd17533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress in spermatozoa has effects on subsequent embryo development. The aim of the present study was to elucidate whether sperm oxidative stress results in increased DNA damage in the embryo. To this end, bovine spermatozoa were incubated for 1 h at 37°C without or with 100 µM H2O2, resulting in non-oxidised (NOX-S) and oxidised (OX-S) spermatozoa respectively. Non-incubated spermatozoa served as the control group (CON-S). After IVF, developmental rates 30, 46 and 60 h and 7 days after IVF were assessed. DNA damage was analysed in embryos using the comet assay and a DNA damage marker (γH2AX immunostaining); the apoptotic index was determined in blastocysts. Exposure of spermatozoa to H2O2 induced a significant amount of sperm chromatin damage. The use of OX-S in IVF resulted in significantly reduced cleavage and blastocyst rates compared with the use of CON-S and NOX-S. Furthermore, in embryos resulting from the use of OX-S, a developmental delay was evident 30 and 46 h after IVF. γH2AX immunostaining was lower in blastocysts than in early embryos. In blastocysts, the comet and apoptotic indices were significantly higher in embryos resulting from the use of OX-S than CON-S and NOX-S. In conclusion, oxidative stress in spermatozoa induces developmental abnormalities and is a source of DNA damage in the resulting embryos.
Collapse
|
15
|
De Martin H, Cocuzza MS, Tiseo BC, Wood GJA, Miranda EP, Monteleone PAA, Soares JM, Serafini PC, Srougi M, Baracat EC. Positive rheotaxis extended drop: a one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J Assist Reprod Genet 2017; 34:1699-1708. [PMID: 28929253 PMCID: PMC5714818 DOI: 10.1007/s10815-017-1024-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The purpose of this study was to develop a novel one-step ICSI approach to select sperm with better chromatin maturity than the conventional method. METHODS This was a pilot diagnostic study, which prospectively recruited men during a 6-month period in a University-affiliated infertility centre. Forty consecutive semen samples were provided for analysis. The positive rheotaxis extended drop (PRED) was set up creating a pressure and viscosity gradient. Each semen sample was divided into four aliquots: one aliquot for density gradient centrifugation (DGC), two aliquots for PRED (fresh semen (PRED-FS) and processed semen (PRED-DGC)), and one aliquot as the control (FS). In PRED, a mean of 200 spermatozoa were collected consecutively without selection from the outlet reservoir. The aniline blue assay was used to assess chromatin immaturity. RESULTS The mean channel length, measured from inlet to outlet, was 32.55 ± 0.86 mm, with a mean width of 1.04 ± 0.21 mm. In 82.5% of cases (33/40), at least 50 spermatozoa were captured between 15 and 30 min. Improved chromatin maturity after the DGC preparation and the PRED approach was observed in all samples. This was reflected by a mean reduction from 28.65 ± 8.97% uncondensed chromatin in the native ejaculates to 17.29 ± 7.72% in DGC and 0.89 ± 1.31% in the PRED approach (P < 0.01). CONCLUSIONS The PRED method may improve the current ICSI technique by providing it with its own sperm selection process. ICSI would probably become an even more complete technique comprising selection, capture and injection of the male gamete.
Collapse
Affiliation(s)
- Hamilton De Martin
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Marcello S Cocuzza
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil.
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Bruno C Tiseo
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Guilherme J A Wood
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Eduardo P Miranda
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Pedro A A Monteleone
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Discipline of Gynecology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - José Maria Soares
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Discipline of Gynecology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Paulo C Serafini
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Discipline of Gynecology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Miguel Srougi
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Edmund C Baracat
- Human Reproduction Center, University of Sao Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar 255, Sao Paulo, 05403-000, Brazil
- Discipline of Gynecology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
16
|
Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA, Mohey-Elsaeed O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int J Vet Sci Med 2017; 6:S49-S56. [PMID: 30761321 PMCID: PMC6161860 DOI: 10.1016/j.ijvsm.2017.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/29/2017] [Accepted: 11/12/2017] [Indexed: 11/03/2022] Open
Abstract
Semen cryopreservation is a well-established procedure used in veterinary assisted reproduction technology applications. We investigated damaging effects of cryopreservation on the structural and ultrastructural characteristics of bull sperm induced at different temperatures and steps during standard cryopreservation procedure using transmission (TEM) and scanning electron microscopy. We also examined the effect of cryopreservation on sperm DNA and chromatin integrity. Five healthy, fertile Friesian bulls were used, and the ejaculates were obtained using an artificial vagina method. The semen samples were pooled and diluted in a tris-yolk fructose (TYF) for a final concentration of 80 × 106 spermatozoa/ml. The semen samples were packed in straws (0.25 ml), and stored in liquid nitrogen (-196°C). Samples were evaluated before dilution, just after dilution (at 37°C), at 2 h and 4 h during equilibration, and after thawing (37°C for 30 s in water bath). In association with step-wise decline in motility and viability, our results showed that the plasma membrane surrounding the sperm head was the most vulnerable structure to cryo-damage with various degrees of swelling, undulation, or loss affecting about 50% of the total sperm population after equilibration and freezing. Typical acrosome reaction was limited to 10% of the spermatozoa after freezing. We also observed increased number of mitochondria with distorted cristae (15%). Chromatin damage was significantly increased by cryopreservation as evident by TEM (9%). This was mainly due to DNA breaks as confirmed by Sperm Chromatin Structure Assay (SCSA) (8.4%) whereas the chromatin structure was less affected as evaluated microscopically by toluidine blue staining. We concluded that, using standard cryopreservation protocol, the most pronounced damage induced by cryopreservation is observed in the plasma membrane. Further improvement of cryopreservation protocols should thus be targeted at reducing plasma membrane damage. Acrosomal, mitochondrial and chromatin damage are also evident but appear to be within acceptable limits as discussed.
Collapse
Affiliation(s)
- Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mostafa A. El-Harairy
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
17
|
Nguyen H, James NG, Nguyen L, Nguyen TP, Vuong C, Ortega MA, Jameson DM, Ward WS. Higher Order Oligomerization of the Licensing ORC4 Protein Is Required for Polar Body Extrusion in Murine Meiosis. J Cell Biochem 2017; 118:2941-2949. [PMID: 28230328 DOI: 10.1002/jcb.25949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
We have previously shown that the DNA replication licensing factor ORC4 forms a cage around the chromosomes that are extruded in both polar bodies during murine oogenesis, but not around the chromosomes that are retained in the oocyte or around the sperm chromatin. We termed this structure the ORC4 cage. Here, we tested whether the formation of the ORC4 cage is necessary for polar body extrusion (PBE). We first experimentally forced oocytes to extrude sperm chromatin as a pseudo-polar body and found that under these conditions the sperm chromatin did become enclosed in an ORC4 cage. Next, we attempted to prevent the formation of the ORC4 cage by injecting peptides that contained sequences of different domains of the ORC4 protein into metaphase II (MII) oocytes just before the cage normally forms. Our rationale was that the ORC4 peptides would block protein-protein interactions required for cage formation. Two out of six tested peptides prevented the ORC4 cage formation and simultaneously inhibited PBE, resulting in the formation of two pronuclei (2 PN) that were retained in the oocyte. Together, these data demonstrate that ORC4 oligomerization is required to form the ORC4 cage and that it is required for PBE. J. Cell. Biochem. 118: 2941-2949, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hieu Nguyen
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas G James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu
| | - Lynn Nguyen
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Thien P Nguyen
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Cindy Vuong
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Michael A Ortega
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu
| | - W Steven Ward
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii.,Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
18
|
Tamburrino L, Cambi M, Marchiani S, Manigrasso I, Degl'Innocenti S, Forti G, Maggi M, Baldi E, Muratori M. Sperm DNA fragmentation in cryopreserved samples from subjects with different cancers. Reprod Fertil Dev 2017; 29:637-645. [DOI: 10.1071/rd15190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
Sperm cryopreservation is widely used by cancer patients undergoing chemo- or radiotherapy. Evidence suggests that IVF outcome with cryopreserved spermatozoa from cancer patients is less successful. To determine whether sperm DNA fragmentation (SDF) is involved in the lower fertilising ability of cryopreserved spermatozoa of cancer patients, SDF was evaluated in thawed spermatozoa from 78 men affected by different cancers and 53 men with non-cancer pathologies. SDF was assessed by the terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL), propidium iodide (PI), flow cytometry procedure, which allows determination of two different cell populations (PIbrighter and PIdimmer) and thus to determine the percentage of DNA fragmented sperm in both. PIdimmer spermatozoa are totally unviable, whereas PIbrighter spermatozoa with SDF may be motile and morphologically normal, having higher biological relevance in the reproductive process. We found that the proportion of DNA fragmented PIbrighter cells was significantly higher in thawed spermatozoa from cancer than non-cancer patients. Moreover, a positive correlation was found between the degree of DNA fragmentation and sperm motility in the PIbrighter population of spermatozoa from cancer patients that wasn’t seen in non-cancer patients. The results of the present study suggest that higher SDF levels may contribute to the lower IVF success of cryopreserved spermatozoa from cancer patients and that evaluation of SDF could complement genetic counselling as part of the routine management of cancer patients who seek fertility preservation.
Collapse
|
19
|
Vecoli C, Montano L, Andreassi MG. Environmental pollutants: genetic damage and epigenetic changes in male germ cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23339-23348. [PMID: 27672044 DOI: 10.1007/s11356-016-7728-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 05/04/2023]
Abstract
About a quarter of the human diseases occurs for exposure to air pollution. The male reproductive system, and especially spermatogenesis, seems to be particularly sensitive. As result, male infertility is increasing in industrial countries becoming a top priority for public health. In addition to psychological distress and economic constraints, poorer semen quality may have trans-generational effects including congenital malformations in the offspring and predispose to later onset adult diseases. Genetic and epigenetic alterations are involved in the failure of spermatogenesis. In this paper, we reviewed the major evidences of the effects of air pollutants on male infertility as well as the role of sperm DNA damage and epigenetic changes in affecting spermatogenesis. A better knowledge on the effects of air contaminants on the molecular mechanisms leading to infertility is of huge importance to help clinicians in identifying the cause of infertility but above all, in defining preventive and therapeutic protocols.
Collapse
Affiliation(s)
- Cecilia Vecoli
- Institute of Clinical Physiology-CNR, via G.Moruzzi 1, 56124, Pisa, Italy.
| | - Luigi Montano
- Andrology Unit of the "San Francesco d'Assisi" Hospital - ASL Salerno, EcoFoodFertility Project Coordination Unit, via M. Clemente, 84020, Oliveto Citra, SA, Italy
| | | |
Collapse
|
20
|
Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology 2016; 4:789-99. [DOI: 10.1111/andr.12216] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- K. Ni
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie; Justus-Liebig-Universität; Giessen Germany
| | - A.-N. Spiess
- Department of Andrology; University Hospital Hamburg-Eppendorf; Hamburg Germany
| | - H.-C. Schuppe
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie; Justus-Liebig-Universität; Giessen Germany
| | - K. Steger
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie; Justus-Liebig-Universität; Giessen Germany
| |
Collapse
|
21
|
Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl 2016; 18:186-93. [PMID: 26732105 PMCID: PMC4770484 DOI: 10.4103/1008-682x.170441] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Varicocele has been associated with reduced male reproductive potential. With the advances in biomolecular techniques, it has been possible to better understand the mechanisms involved in testicular damage provoked by varicocele. Current evidence suggests the central role of reactive oxygen species (ROS) and the resultant oxidative stress (OS) in the pathogenesis of varicocele-associated male subfertility although the mechanisms have not yet been fully described and it is likely to be multifactorial. Excessive ROS is associated with sperm DNA fragmentation, which may mediate the clinical manifestation of poor sperm function and fertilization outcome related to varicocele. Testing of ROS/OS and DNA fragmentation has the potential to provide additional diagnostic and prognostic information compared to conventional semen analysis and may guide therapeutic management strategies in individual patient.
Collapse
Affiliation(s)
- Chak-Lam Cho
- Division of Urology, Department of Surgery, Kwong Wah Hospital, 25 Waterloo Road, Yau Ma Tei, Hong Kong
| | - Sandro C Esteves
- ANDROFERT, Center for Male Reproduction, Av. Dr. Heitor Penteado 1464, Campinas, SP 13075-460, Brazil
| | - Ashok Agarwal
- American Center for Reproductive Medicine, 10681 Carnegie Avenue, X-11, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Wu Z, Lu X, Wang M, Cheng H. Correlation between body mass index of Chinese males and assisted reproductive technology outcome. Int J Clin Exp Med 2015; 8:21472-21476. [PMID: 26885094 PMCID: PMC4723939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the relationship between male's body mass index (BMI) and the outcome of assisted reproductive technology (ART). In this retrospective study, we analyzed the data from 729 cycles of female patients aged 38 years or less, with normal BMI and who received IVF treatments between January, 2013 and June, 2014. The patients were divided into normal weight (n = 358), overweight (n = 267), and obese (n = 104) groups according to the BMI of their male partners. Embryonic development and pregnancy outcomes in these three groups were compared. RESULTS With increasing BMI, fertilization rates decreased proportionately (P < 0.05); but embryonic cleavage rates and effective embryo rates were not significantly affected (P > 0.05). There was no significant difference in implantation rates, pregnancy rates, or early miscarriage rates (P > 0.05) among the three groups. CONCLUSIONS High male BMI affects fertilization rate with ART; and we recommend that men of reproductive age adjust their lifestyles accordingly and make efforts to control their weight.
Collapse
Affiliation(s)
- Zhengmu Wu
- Reproductive Medical Center, International Peace Maternity and Child Health Hospital Affiliated, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Lu
- Reproductive Medical Center, International Peace Maternity and Child Health Hospital Affiliated, Shanghai Jiao Tong University Shanghai, China
| | - Min Wang
- Reproductive Medical Center, International Peace Maternity and Child Health Hospital Affiliated, Shanghai Jiao Tong University Shanghai, China
| | - Huaijin Cheng
- Reproductive Medical Center, International Peace Maternity and Child Health Hospital Affiliated, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
23
|
Ozkosem B, Feinstein SI, Fisher AB, O'Flaherty C. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biol 2015; 5:15-23. [PMID: 25796034 PMCID: PMC4371547 DOI: 10.1016/j.redox.2015.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 12/23/2022] Open
Abstract
Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing average maternal and paternal age in developed countries over the past 40 years has raised the question of how aging affects reproductive success of males and females. Since oxidative stress in the male reproductive tract increases with age, we investigated the impact of advanced paternal age on the integrity of sperm nucleus and reproductive success of males by using a Prdx6(-/-) mouse model. We compared sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6(-/-) males with their age-matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm motility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups per male were significantly lower in Prdx6(-/-) males compared to WT controls. These abnormal reproductive outcomes were severely affected by age in Prdx6(-/-) males. In conclusion, the advanced paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6, suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice.
Collapse
Affiliation(s)
- Burak Ozkosem
- Urology Research Laboratory, Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada; Department of Surgery (Urology Division), Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian O'Flaherty
- Urology Research Laboratory, Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada; Department of Surgery (Urology Division), Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Barkalina N, Jones C, Wood MJA, Coward K. Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature. Hum Reprod Update 2015; 21:627-39. [PMID: 26071427 DOI: 10.1093/humupd/dmv027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Currently, even the most sophisticated methods of assisted reproductive technology (ART) allow us to achieve live births in only approximately 30% of patients, indicating that our understanding of the fine mechanisms underlying reproduction is far from ideal. One of the main challenges associated with studies of gamete structure and function is that these cells are remarkably resistant towards the uptake of exogenous substances, including 'molecular research tools' such as drugs, biomolecules and intracellular markers. This phenomenon can affect not only the performance of reproductive biology research techniques, but also the outcomes of the in vitro handling of gametes, which forms the cornerstone of ART. Improvement of intra-gamete delivery in a non-aggressive fashion is vital for the investigation of gamete physiology, and the advancement of infertility treatment. In this review, we outline the current state of nanomaterial-mediated delivery into gametes and embryos in vitro, and discuss the potential of a novel exciting drug delivery technology, based upon the use of targeted 'natural' nanoparticles known as extracellular vesicles (EVs), for reproductive science and ART, given the promising emerging data from other fields. METHODS A comprehensive electronic search of PubMed and Web of Science databases was performed using the following keywords: 'nanoparticles', 'nanomaterials', 'cell-penetrating peptides', 'sperm', 'oocyte', 'egg', 'embryo', 'exosomes', 'microvesicles', 'extracellular vesicles', 'delivery', 'reproduction', to identify the relevant research and review articles, published in English up to January 2015. The reference lists of identified publication were then scanned to extract additional relevant publications. RESULTS Biocompatible engineered nanomaterials with high loading capacity, stability and selective affinity represent a potential versatile tool for the minimally invasive internalization of molecular cargo into gametes and embryos. However, it is becoming increasingly clear that the translation of these experimental tools into clinical applications is likely to be limited by their non-biodegradable nature. To allow the subsequent use of these methodologies for clinical ART, studies should utilize biodegradable delivery platforms, which mimic natural mechanisms of molecular cargo trafficking as closely as possible. Currently, EVs represent the most physiological intracellular delivery tools for reproductive science and medicine. These natural mediators of cell communication combine the benefits of engineered nanomaterials, such as the potential for in vitro production, targeting and loading, with the essential feature of biodegradability. CONCLUSION We anticipate that future investigations into the possibility of applying EVs for the intentional intracellular delivery of molecular compounds into gametes and embryos will open new horizons for reproductive science and clinical ART, ultimately leading to improvements in patient care.
Collapse
Affiliation(s)
- Natalia Barkalina
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| |
Collapse
|
25
|
Barkalina N, Jones C, Coward K. Nanomedicine and mammalian sperm: Lessons from the porcine model. Theriogenology 2015; 85:74-82. [PMID: 26116055 DOI: 10.1016/j.theriogenology.2015.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Biomedical nanotechnology allows us to engineer versatile nanosized platforms that are comparable in size to biological molecules and intracellular organelles. These platforms can be loaded with large amounts of biological cargo, administered systemically and act at a distance, target specific cell populations, undergo intracellular internalization via endogenous uptake mechanisms, and act as contrast agents or release cargo for therapeutic purposes. Over recent years, nanomaterials have been increasingly viewed as favorable candidates for intragamete delivery. Particularly in the case of sperm, nanomaterial-based approaches have been shown to improve the efficacy of existing techniques such as sperm-mediated gene transfer, loading sperm with exogenous proteins, and tagging sperm for subsequent sex- or function-based sorting. In this short review, we provide an outline of the current state of nanotechnology for biomedical applications in reproductive biology and present highlights from a series of our studies evaluating the use of specialized silica nanoparticles in boar sperm as a potential delivery vehicle into mammalian gametes. The encouraging data obtained already from the porcine model in our laboratory have formed the basis for ethical approval of similar experiments in human sperm, thereby bringing us a step closer toward the potential use of this novel technology in the clinical environment.
Collapse
Affiliation(s)
- Natalia Barkalina
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
26
|
Barkalina N, Jones C, Townley H, Coward K. Functionalization of mesoporous silica nanoparticles with a cell-penetrating peptide to target mammalian sperm in vitro. Nanomedicine (Lond) 2015; 10:1539-53. [DOI: 10.2217/nnm.14.235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: This study aimed to investigate the effects of actively targeting mesoporous silica nanoparticles (MSNPs) toward mammalian sperm with a cell-penetrating peptide (C105Y), with subsequent analysis of binding rates and nano-safety profiles. Materials & methods: Boar sperm were exposed in vitro to C105Y-functionalized MSNPs or free C105Y, in a series of increasing doses for up to 2 h, followed by the evaluation of sperm motility, kinematic parameters, acrosome morphology, MSNP-sperm binding and cell fluorescence levels. Results: C105Y-functionalized MSNPs preserved their biocompatibility with sperm, and exhibited an approximately fourfold increase in affinity toward gametes, compared with unmodified MSNPs, during the early stages of incubation. Conclusion: Our findings support the application of MSNPs and active targeting to sperm as valuable tools for reproductive biology.
Collapse
Affiliation(s)
- Natalia Barkalina
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Celine Jones
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Helen Townley
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
27
|
Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 2014; 21:209-27. [DOI: 10.1093/humupd/dmu063] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Sundquist J, Sundquist K, Ji J. Autism and attention-deficit/hyperactivity disorder among individuals with a family history of alcohol use disorders. eLife 2014; 3:e02917. [PMID: 25139954 PMCID: PMC4135348 DOI: 10.7554/elife.02917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest de novo mutations may involve the pathogenesis of autism and attention-deficit/hyperactivity disorder (ADHD). Based on the evidence that excessive alcohol consumption may be associated with an increased rate of de novo mutations in germ cells (sperms or eggs), we examine here whether the risks of autism and ADHD are increased among individuals with a family history of alcohol use disorders (AUDs). The standardized incidence ratios (SIRs) of autism and ADHD among individuals with a biological parental history of AUDs were 1.39 (95% CI 1.34–1.44) and 2.19 (95% CI 2.15–2.23), respectively, compared to individuals without an affected parent. Among offspring whose parents were diagnosed with AUDs before their birth, the corresponding risks were 1.46 (95% CI 1.36–1.58) and 2.70 (95% CI 2.59–2.81), respectively. Our study calls for extra surveillance for children with a family history of AUDs, and further studies examining the underlying mechanisms are needed. DOI:http://dx.doi.org/10.7554/eLife.02917.001 Children learn to talk, manage their emotions, and control their behavior in a period when the brain is developing rapidly. The first signs of several developmental disorders, such as autism and attention-deficit/hyperactivity disorder (ADHD), may also emerge during this period. Children with autism may have difficulties with social interactions and communication, while those with attention-deficit/hyperactivity disorder may struggle to pay attention to a task and may be more active than other children. Autism or ADHD are diagnosed based on the child's behavior because the underlying causes of the disorders are not well understood. Both genes and the environment have been linked to the conditions; and it was recently suggested that certain common genetic mutations are more common in children with ADHD or autism. However, as some of the mutations linked to autism are not found in the genes of the affected children's parents, it is likely that they occurred in either of the sperm or the egg cell from the parents. Exposure to harmful substances in the environment can cause mutations in egg or sperm cells, or alter the expression of genes without changing the gene sequence. Excessive alcohol consumption is one environmental factor that can mutate genes or alter gene expression. Here, Sundquist et al. have looked to see if there is a relationship between a child having a parent with an alcohol use problem and the child's risk of developing autism or ADHD. Examining national medical registries identified 24,157 people with autism and 49,348 with ADHD in Sweden between 1987 and 2010. Sundquist et al. discovered that autism and ADHD were more common in individuals who had a parent with a history of an alcohol use disorder than in those whose parents had no history of an alcohol use disorder. There was also an even greater risk of either condition if the parent had been diagnosed with an alcohol use problem before the birth of the child. Adopted children who had a biological parent with an alcohol use disorder were at a greater risk of autism and ADHD than those whose adoptive parent had an alcohol use disorder. However, as very few adopted parents were diagnosed with an alcohol use problem, it is important to be cautious about drawing firm conclusions from this observation. Sundquist et al. estimate that around 4% of autism cases and 11% of ADHD cases could be avoided if parents abstained from heavy alcohol consumption. Though these findings are consistent with parents with an alcohol use disorder being more likely to pass on mutations to their children, there are also other possible explanations. As such, further research examining the underlying cause is still needed. DOI:http://dx.doi.org/10.7554/eLife.02917.002
Collapse
Affiliation(s)
- Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, United States
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, United States
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Belloc S, Hazout A, Zini A, Merviel P, Cabry R, Chahine H, Copin H, Benkhalifa M. How to overcome male infertility after 40: Influence of paternal age on fertility. Maturitas 2014; 78:22-9. [DOI: 10.1016/j.maturitas.2014.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
|
30
|
Adams DH. Conceptualising a child-centric paradigm : do we have freedom of choice in donor conception reproduction? JOURNAL OF BIOETHICAL INQUIRY 2013; 10:369-381. [PMID: 23780686 DOI: 10.1007/s11673-013-9454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Since its inception, donor conception practices have been a reproductive choice for the infertile. Past and current practices have the potential to cause significant and lifelong harm to the offspring through loss of kinship, heritage, identity, and family health history, and possibly through introducing physical problems. Legislation and regulation in Australia that specifies that the welfare of the child born as a consequence of donor conception is paramount may therefore be in conflict with the outcomes. Altering the paradigm to a child-centric model, however, impinges on reproductive choice and rights of adults involved in the process. With some lobby groups pushing for increased reproductive choice while others emphasise offspring rights there is a dichotomy of interests that society and legislators need to address. Concepts pertaining to a shift toward a child-centric paradigm are discussed.
Collapse
Affiliation(s)
- Damian H Adams
- School of Nursing and Midwifery, Flinders University, Sturt Road, Bedford Park, South Australia, Australia, 5042,
| |
Collapse
|
31
|
Burruel V, Klooster KL, Chitwood J, Ross PJ, Meyers SA. Oxidative damage to rhesus macaque spermatozoa results in mitotic arrest and transcript abundance changes in early embryos. Biol Reprod 2013; 89:72. [PMID: 23904511 DOI: 10.1095/biolreprod.113.110981] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO₂ in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development.
Collapse
Affiliation(s)
- Victoria Burruel
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | | | | | | | | |
Collapse
|
32
|
Urschitz J, Moisyadi S. Transpositional transgenesis with piggyBac.. Mob Genet Elements 2013; 3:e25167. [PMID: 23956948 PMCID: PMC3742596 DOI: 10.4161/mge.25167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 02/08/2023] Open
Abstract
Transposons are mobile genetic elements that are capable of self-directed excision and subsequent reintegration within the host genome. Transposase such as piggyBac, Sleeping Beauty and Tol2 catalyze these reactions and have shown potential as tools for the stable integration of transgenes when used in the binary plasmid mode. Recent modifications to the transposase and/or the terminal repeats of the transposon have increased their integration efficiency and/or specificity. We recently described the development of a piggyBac transposase system, the helper independent, single construct self-inactivating plasmid called GENIE. Here we describe the structure, safety and function of these transpositional vectors and their use in animal transgenesis and cell transfection.
Collapse
Affiliation(s)
- Johann Urschitz
- Department of Anatomy, Biochemistry and Physiology; John A. Burns School of Medicine; Honolulu, HI USA
| | | |
Collapse
|
33
|
Nabi A, Khalili MA, Halvaei I, Roodbari F. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation. Andrologia 2013; 46:374-9. [DOI: 10.1111/and.12088] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- A. Nabi
- Research and Clinical Center for Infertility; Shahid Sadoughi University of Medical Sciences; Yazd Iran
- Department of Molecular and Cell Biology; Faculty of Basic Sciences; University of Mazandaran; Babolsar Iran
| | - M. A. Khalili
- Research and Clinical Center for Infertility; Shahid Sadoughi University of Medical Sciences; Yazd Iran
| | - I. Halvaei
- Research and Clinical Center for Infertility; Shahid Sadoughi University of Medical Sciences; Yazd Iran
| | - F. Roodbari
- Department of Molecular and Cell Biology; Faculty of Basic Sciences; University of Mazandaran; Babolsar Iran
| |
Collapse
|
34
|
Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica. Fertil Steril 2012; 98:326-33. [DOI: 10.1016/j.fertnstert.2012.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/23/2022]
|
35
|
Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, Forti G, Baldi E, Muratori M. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2011; 14:24-31. [PMID: 22138903 DOI: 10.1038/aja.2011.59] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Among the different DNA anomalies that can be present in the male gamete, DNA fragmentation is the most frequent, particularly in infertile subjects. There is now consistent evidence that a sperm containing fragmented DNA can be alive, motile, morphologically normal and able to fertilize an oocyte. There is also evidence that the oocyte is able to repair DNA damage; however, the extent of this repair depends on the type of DNA damage present in the sperm, as well as on the quality of the oocyte. Thus, it is important to understand the possible consequences of sperm DNA fragmentation (SDF) for embryo development, implantation, pregnancy outcome and the health of progeny conceived, both naturally and by assisted reproductive technology (ART). At present, data on the consequences of SDF for reproduction are scarce and, in many ways, inconsistent. The differences in study conclusions might result from the different methods used to detect SDF, the study design and the inclusion criteria. Consequently, it is difficult to decide whether SDF testing should be carried out in fertility assessment and ART. It is clear that there is an urgent need for the standardisation of the methods and for additional clinical studies on the impact of SDF on ART outcomes.
Collapse
Affiliation(s)
- Lara Tamburrino
- Department of Clinical Physiopathology, Andrology Unit, University of Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|