1
|
Abstract
Nanotechnology could offer a new complementary strategy for the treatment of vascular diseases including coronary, carotid, or peripheral arterial disease due to narrowing or blockage of the artery caused by atherosclerosis. These arterial diseases manifest correspondingly as angina and myocardial infarction, stroke, and intermittent claudication of leg muscles during exercise. The pathogenesis of atherosclerosis involves biological events at the cellular and molecular level, thus targeting these using nanomaterials precisely and effectively could result in a better outcome. Nanotechnology can mitigate the pathological events by enhancing the therapeutic efficacy of the therapeutic agent by delivering it at the point of a lesion in a controlled and efficacious manner. Further, combining therapeutics with imaging will enhance the theranostic ability in atherosclerosis. Additionally, nanoparticles can provide a range of delivery systems for genes, proteins, cells, and drugs, which individually or in combination can address various problems within the arteries. Imaging studies combined with nanoparticles helps in evaluating the disease progression as well as the response to the treatment because imaging and diagnostic agents can be delivered precisely to the targeted destinations via nanocarriers. This review focuses on the use of nanotechnology in theranostics of coronary artery and peripheral arterial disease.
Collapse
|
2
|
Chen S, Xing C, Huang D, Zhou C, Ding B, Guo Z, Peng Z, Wang D, Zhu X, Liu S, Cai Z, Wu J, Zhao J, Wu Z, Zhang Y, Wei C, Yan Q, Wang H, Fan D, Liu L, Zhang H, Cao Y. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. SCIENCE ADVANCES 2020; 6:eaay6825. [PMID: 32284997 PMCID: PMC7141822 DOI: 10.1126/sciadv.aay6825] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/14/2020] [Indexed: 05/05/2023]
Abstract
Two-dimensional nanomaterial-based photothermal therapy (PTT) is currently under intensive investigation as a promising approach toward curative cancer treatment. However, high toxicity, moderate efficacy, and low uniformity in shape remain critical unresolved issues that hamper their clinical application. Thus, there is an urgent need for developing versatile nanomaterials to meet clinical expectations. To achieve this goal, we developed a stable, highly uniform in size, and nontoxic nanomaterials made of tellurium-selenium (TeSe)-based lateral heterojunction. Systemic delivery of TeSe nanoparticles in mice showed highly specific accumulation in tumors relative to other healthy tissues. Upon exposure to light, TeSe nanoparticles nearly completely eradicated lung cancer and hepatocellular carcinoma in preclinical models. Consistent with tumor suppression, PTT altered the tumor microenvironment and induced immense cancer cell apoptosis. Together, our findings demonstrate an exciting and promising PTT-based approach for cancer eradication.
Collapse
Affiliation(s)
- Shiyou Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Chenyang Xing
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Center for Stretchable Electronics and Nanoscale Systems, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Dazhou Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chuanhong Zhou
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bo Ding
- Department of Respiratory Disease, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Ziheng Guo
- Department Pancreatic Surgery, West China School of Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nanoscale Systems, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Dou Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P.R. China
| | - Shuzhen Liu
- Weifang People’s Hospital, Weifang 261041, P.R. China
| | - Zhen Cai
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen 518000, Guangdong Province, P.R. China
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jiaqi Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Zongze Wu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Yuhua Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Chaoying Wei
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Qiaoting Yan
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Hongzhong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
| | - Dianyuan Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, P.R. China
- Corresponding author. (Y.C.); (H.Z.); (L.L.)
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Corresponding author. (Y.C.); (H.Z.); (L.L.)
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Corresponding author. (Y.C.); (H.Z.); (L.L.)
| |
Collapse
|
3
|
Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm 2019; 558:413-425. [PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
Collapse
Affiliation(s)
- Kei Xian Tan
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, United States.
| |
Collapse
|
4
|
Poupot R, Bergozza D, Fruchon S. Nanoparticle-Based Strategies to Treat Neuro-Inflammation. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E270. [PMID: 29425146 PMCID: PMC5848967 DOI: 10.3390/ma11020270] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
Neuro-inflammation is a pivotal physio-pathological feature of brain disorders, including neurodegenerative diseases. As such, it is a relevant therapeutic target against which drugs have to be proposed. Targeting neuro-inflammation implies crossing the Blood-Brain Barrier (BBB) to reach the Central Nervous System (CNS). Engineered nanoparticles (ENPs) are promising candidates to carry and deliver drugs to the CNS by crossing the BBB. There are several strategies to design ENPs intended for crossing through the BBB. Herein, we first put nanotechnologies back in their historical context and introduce neuro-inflammation and its consequences in terms of public health. In a second part, we explain how ENPs can get access to the brain and review this area by highlighting recent papers in the field. Finally, after pointing out potential guidelines for preclinical studies involving ENPs, we conclude by opening the debate on the questions of nanosafety and toxicity of these ENPs and in particular on ecotoxicity related to regulatory issues and public concerns.
Collapse
Affiliation(s)
- Rémy Poupot
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Dylan Bergozza
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| | - Séverine Fruchon
- INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France.
| |
Collapse
|
5
|
Pro-Inflammatory Versus Anti-Inflammatory Effects of Dendrimers: The Two Faces of Immuno-Modulatory Nanoparticles. NANOMATERIALS 2017; 7:nano7090251. [PMID: 28862693 PMCID: PMC5618362 DOI: 10.3390/nano7090251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023]
Abstract
Dendrimers are soft matter, hyperbranched, and multivalent nanoparticles whose synthesis theoretically affords monodisperse compounds. They are built from a core on which one or several successive series of branches are engrafted in an arborescent way. At the end of the synthesis, the tunable addition of surface groups gives birth to multivalent nano-objects which are generally intended for a specific use. For these reasons, dendrimers have received a lot of attention from biomedical researchers. In particular, some of us have demonstrated that dendrimers can be intrinsically drug-candidate for the treatment of inflammatory disorders, amongst others, using relevant preclinical animal models. These anti-inflammatory dendrimers are innovative in the pharmaceutical field. More recently, it has appeared that some dendrimers (even among those which have been described as anti-inflammatory) can promote inflammatory responses in non-diseased animals. The main corpus of this concise review is focused on the reports which describe anti-inflammatory properties of dendrimers in vivo, following which we review the few recent articles that show pro-inflammatory effects of our favorite molecules, to finally discuss this duality in immuno-modulation which has to be taken into account for the preclinical and clinical developments of dendrimers.
Collapse
|
6
|
Ambesh P, Campia U, Obiagwu C, Bansal R, Shetty V, Hollander G, Shani J. Nanomedicine in coronary artery disease. Indian Heart J 2017; 69:244-251. [PMID: 28460774 PMCID: PMC5414944 DOI: 10.1016/j.ihj.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 01/21/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Nanomedicine is one of the most promising therapeutic modalities researchers are working on. It involves development of drugs and devices that work at the nanoscale (10-9m). Coronary artery disease (CAD) is responsible for more than a third of all deaths in age group >35 years. With such a huge burden of mortality, CAD is one of the diseases where nanomedicine is being employed for preventive and therapeutic interventions. Nanomedicine can effectively deliver focused drug payload at sites of local plaque formation. Non-invasive strategies include thwarting angiogenesis, intra-arterial thrombosis and local inflammation. Invasive strategies following percutaneous coronary intervention (PCI) include anti-restenosis and healing enhancement. However, before practical application becomes widespread, many challenges need to be dealt with. These include manufacturing at the nanoscale, direct nanomaterial cellular toxicity and visualization.
Collapse
Affiliation(s)
- Paurush Ambesh
- Department of Internal Medicine, Maimonides Medical Center, New York City, USA.
| | - Umberto Campia
- Department of Cardiology, Brigham and Women's Hospital, Boston, USA
| | - Chukwudi Obiagwu
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| | - Rashika Bansal
- Department of Internal Medicine, St. Joseph Regional Medical Center, NJ, USA
| | - Vijay Shetty
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| | - Gerald Hollander
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| | - Jacob Shani
- Department of Cardiology, Maimonides Medical Center, New York City, USA
| |
Collapse
|
7
|
Ambesh P, Angeli DG. Nanotechnology in neurology: Genesis, current status, and future prospects. Ann Indian Acad Neurol 2015; 18:382-6. [PMID: 26713006 PMCID: PMC4683873 DOI: 10.4103/0972-2327.169535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology is a promising, novel field of technological development. There is great potential in research and clinical applications for neurological diseases. Here we chronicle the inception of nanotechnology, discuss its integration with neurology, and highlight the challenges in current application. Some of the problems involving practical use of neuronanotechnology are direct biological toxicity, visualization of the nanodevice, and the short life expectancy of nanomachinery. Neuron cell therapy is an upcoming field for the treatment of challenging problems in neurology. Peptide nanofibers based on amphiphilic molecules have been developed that can autoregulate their structure depending on the conditions of the surrounding milieu. Such frameworks are promising for serving as drug delivery systems or communication bridges between damaged neurons. For common disabling diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), recent developments have seen revolutionary nanotech-based novelties, which are discussed here in detail. Bioimaging integrated with nanoneuromedicine has opened up new doors for cancer and infection therapeutics.
Collapse
Affiliation(s)
- Paurush Ambesh
- Department of Internal Medicine, Moti Lal Nehru Medical College, Allahabad, Uttar Pradesh, India
| | | |
Collapse
|
8
|
Mühlebach S, Borchard G, Yildiz S. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. Nanomedicine (Lond) 2015; 10:659-74. [PMID: 25723097 DOI: 10.2217/nnm.14.189] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanomedicines are highly complex products and are the result of difficult to control manufacturing processes. Nonbiological complex drugs and their biological counterparts can comprise nanoparticles and therefore show nanomedicine characteristics. They consist of not fully known nonhomomolecular structures, and can therefore not be characterized by physicochemical means only. Also, intended copies of nanomedicines (follow-on similars) may have clinically meaningful differences, creating the regulatory challenge of how to grant a high degree of assurance for patients' benefit and safety. As an example, the current regulatory approach for marketing authorization of intended copies of nonbiological complex drugs appears inappropriate; also, a valid strategy incorporating the complexity of such systems is undefined. To demonstrate sufficient similarity and comparability, a stepwise quality, nonclinical and clinical approach is necessary to obtain market authorization for follow-on products as therapeutic alternatives, substitution and/or interchangeable products. To fill the regulatory gap, harmonized and science-based standards are needed.
Collapse
Affiliation(s)
- Stefan Mühlebach
- Department of Global Regulatory Affairs, Vifor Pharma Ltd, Glattbrugg, Switzerland
| | | | | |
Collapse
|
9
|
Nanomedicine applied to translational oncology: A future perspective on cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:81-103. [PMID: 26370707 DOI: 10.1016/j.nano.2015.08.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/17/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023]
Abstract
The high global incidence of cancer is associated with high rates of mortality and morbidity worldwide. By taking advantage of the properties of matter at the nanoscale, nanomedicine promises to develop innovative drugs with greater efficacy and less side effects than standard therapies. Here, we discuss both clinically available anti-cancer nanomedicines and those en route to future clinical application. The properties, therapeutic value, advantages and limitations of these nanomedicine products are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies. The main regulatory challenges toward the translation of innovative, clinically effective nanotherapeutics are discussed, with a view to improving current approaches to the clinical management of cancer. Ultimately, it becomes clear that the critical steps for clinical translation of nanotherapeutics require further interdisciplinary and international effort, where the whole stakeholder community is involved from bench to bedside. From the Clinical Editor: Cancer is a leading cause of mortality worldwide and finding a cure remains the holy-grail for many researchers and clinicians. The advance in nanotechnology has enabled novel strategies to develop in terms of cancer diagnosis and therapy. In this concise review article, the authors described current capabilities in this field and outlined comparisons with existing drugs. The difficulties in bringing new drugs to the clinics were also discussed.
Collapse
|
10
|
Woods A, Patel A, Spina D, Riffo-Vasquez Y, Babin-Morgan A, de Rosales RTM, Sunassee K, Clark S, Collins H, Bruce K, Dailey LA, Forbes B. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. J Control Release 2015; 210:1-9. [PMID: 25980621 PMCID: PMC4674532 DOI: 10.1016/j.jconrel.2015.05.269] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023]
Abstract
The development of clinically acceptable albumin-based nanoparticle formulations for use in pulmonary drug delivery has been hindered by concerns about the toxicity of nanomaterials in the lungs combined with a lack of information on albumin nanoparticle clearance kinetics and biodistribution. In this study, the in vivo biocompatibility of albumin nanoparticles was investigated following a single administration of 2, 20, and 390 μg/mouse, showing no inflammatory response (TNF-α and IL-6, cellular infiltration and protein concentration) compared to vehicle controls at the two lower doses, but elevated mononucleocytes and a mild inflammatory effect at the highest dose tested. The biodistribution and clearance of 111In labelled albumin solution and nanoparticles over 48 h following a single pulmonary administration to mice was investigated by single photon emission computed tomography and X-ray computed tomography imaging and terminal biodistribution studies. 111In labelled albumin nanoparticles were cleared more slowly from the mouse lung than 111In albumin solution (64.1 ± 8.5% vs 40.6 ± 3.3% at t = 48 h, respectively), with significantly higher (P < 0.001) levels of albumin nanoparticle-associated radioactivity located within the lung tissue (23.3 ± 4.7%) compared to the lung fluid (16.1 ± 4.4%). Low amounts of 111In activity were detected in the liver, kidneys, and intestine at time points > 24 h indicating that small amounts of activity were cleared from the lungs both by translocation across the lung mucosal barrier, as well as mucociliary clearance. This study provides important information on the fate of albumin vehicles in the lungs, which may be used to direct future formulation design of inhaled nanomedicines.
Collapse
Affiliation(s)
- A Woods
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - A Patel
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A Babin-Morgan
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R T M de Rosales
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - K Sunassee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - S Clark
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - H Collins
- Division of Immunology, Infection & Inflammatory Diseases, Guy's Campus, King's College London, 15-16 Newcomen Street, London SE1 1UL, United Kingdom
| | - K Bruce
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - L A Dailey
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - B Forbes
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| |
Collapse
|
11
|
Le Roux R. A matter of accuracy. Nanobiochips in diagnostics and in research: ethical issues as value trade-offs. SCIENCE AND ENGINEERING ETHICS 2015; 21:343-358. [PMID: 24793012 DOI: 10.1007/s11948-014-9550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/13/2014] [Indexed: 06/03/2023]
Abstract
The paper deals with the introduction of nanotechnology in biochips. Based on interviews and theoretical reflections, it explores blind spots left by technology assessment and ethical investigations. These have focused on possible consequences of increased diffusability of a diagnostic device, neglecting both the context of research as well as increased accuracy, despite it being a more essential feature of nanobiochip projects. Also, rather than one of many parallel aspects (technical, legal and social) in innovation processes, ethics is considered here as a ubiquitous system of choices between sometimes antagonistic values. Thus, the paper investigates what is at stake when accuracy is balanced with other practical values in different contexts. Dramatic nanotechnological increase of accuracy in biochips can raise ethical issues, since it is at odds with other values such as diffusability and reliability. But those issues will not be as revolutionary as is often claimed: neither in diagnostics, because accuracy of measurements is not accuracy of diagnostics; nor in research, because a boost in measurement accuracy is not sufficient to overcome significance-chasing malpractices. The conclusion extends to methodological recommendations.
Collapse
Affiliation(s)
- Ronan Le Roux
- UMR CNRS 8085 Printemps / 7219 Sphere, Paris, France,
| |
Collapse
|
12
|
Sun Y, Guo F, Zou Z, Li C, Hong X, Zhao Y, Wang C, Wang H, Liu H, Yang P, Han Z, Liu K, Kuba K, Song B, Gao J, Mo Z, Li D, Li B, Li Q, Zhong N, Wang C, Penninger JM, Jiang C. Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol 2015; 12:4. [PMID: 25890286 PMCID: PMC4395934 DOI: 10.1186/s12989-015-0080-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 01/27/2015] [Indexed: 02/05/2023] Open
Abstract
Background Nanoparticles have become a key technology in multiple industries. However, there are growing reports of the toxicity of nanomaterials to humans. In particular, nanomaterials have been linked to lung diseases. The molecular mechanisms of nanoparticle toxicity are largely unexplored. Methods Acute lung injury was induced in wild-type mice and angiotensin-coverting enzyme 2 (ACE2) knockout mice by the intratracheal instillation of cationic polyamidoamine dendrimer (PAMAM) nanoparticles. For rescue experiments, losartan (15 mg/kg in PBS) was injected intraperitoneally 30 min before nanoparticle administration. Results Some PAMAM nanoparticles, but not anionic PAMAM nanoparticles or carbon nanotubes, triggered acute lung failure in mice. Mechanistically, cationic nanoparticles can directly bind ACE2, decrease its activity and down-regulate its expression level in lung tissue, resulting in deregulation of the renin-angiotensin system. Gene inactivation of Ace2 can exacerbate lung injury. Importantly, the administration of losartan, which is an angiotensin II type I receptor antagonist, can ameliorate PAMAM nanoparticle-induced lung injury. Conclusions Our data provide molecular insight into PAMAM nanoparticle-induced lung injury and suggest potential therapeutic and screening strategies to address the safety of nanomaterials. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0080-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Feng Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Zhen Zou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Chenggang Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Xiaoxu Hong
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences, No. 379, Jiaoling Road, Kunming, Yunnan, 650118, China. .,Chinese Pharmacopeia Commission, No. 11 Building Fahuananli Chongwen District, Beijing, 100060, China.
| | - Yan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Hongliang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Haolin Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Peng Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Zongsheng Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Kangtai Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Keiji Kuba
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse3, A-1030, Vienna, Austria.
| | - Bin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China.
| | - Jinming Gao
- Center for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Ziyao Mo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou, Guangdong, 510120, China.
| | - Dangsheng Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, No. 379, Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Rd, Guangzhou, Guangdong, 510120, China.
| | - Chen Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse3, A-1030, Vienna, Austria.
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005, China. .,Center for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China. .,State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
13
|
Sakuma S, Kumagai H, Shimosato M, Kitamura T, Mohri K, Ikejima T, Hiwatari KI, Koike S, Tobita E, McClure R, Gore JC, Pham W. Toxicity studies of coumarin 6-encapsulated polystyrene nanospheres conjugated with peanut agglutinin and poly(N-vinylacetamide) as a colonoscopic imaging agent in rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1227-36. [PMID: 25725490 DOI: 10.1016/j.nano.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/31/2015] [Accepted: 02/12/2015] [Indexed: 11/25/2022]
Abstract
UNLABELLED We are investigating an imaging agent that detects early-stage primary colorectal cancer on the mucosal surface in real time under colonoscopic observation. The imaging agent, which is named the nanobeacon, is fluorescent nanospheres conjugated with peanut agglutinin and poly(N-vinylacetamide). Its potential use as an imaging tool for colorectal cancer has been thoroughly validated in numerous studies. Here, toxicities of the nanobeacon were assessed in rats. The nanobeacon was prepared according to the synthetic manner which is being established as the Good Manufacturing Practice-guided production. The rat study was performed in accordance with Good Laboratory Practice regulations. No nanobeacon treatment-related toxicity was observed. The no observable adverse effect levels (NOAEL) of the nanobeacon in 7-day consecutive oral administration and single intrarectal administration were estimated to be more than 1000mg/kg/day and 50mg/kg/day, respectively. We concluded that the nanobeacon could be developed as a safe diagnostic agent for colonoscopy applications. FROM THE CLINICAL EDITOR Colon cancer remains a major cause of death. Early detection can result in early treatment and thus survival. In this article, the authors tested potential systemic toxicity of coumarin 6-encapsulated polystyrene nanospheres conjugated with peanut agglutinin (PNA) and poly(N-vinylacetamide) (PNVA), which had been shown to bind specifically to colonic cancer cells and thus very promising in colonoscopic detection of cancer cells.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka Japan.
| | | | - Moe Shimosato
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka Japan
| | - Tokio Kitamura
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka Japan
| | - Kohta Mohri
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka Japan
| | | | | | - Seiji Koike
- Life Science Materials Laboratory, ADEKA Co., Tokyo, Japan
| | - Etsuo Tobita
- Life Science Materials Laboratory, ADEKA Co., Tokyo, Japan
| | - Richard McClure
- Institute of Imaging Science, Medical Center, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Institute of Imaging Science, Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Wellington Pham
- Institute of Imaging Science, Medical Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Zhang Z, Cao H, Jiang S, Liu Z, He X, Yu H, Li Y. Nanoassembly of probucol enables novel therapeutic efficacy in the suppression of lung metastasis of breast cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4735-4745. [PMID: 24930590 DOI: 10.1002/smll.201400799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/10/2014] [Indexed: 06/03/2023]
Abstract
Metastasis is one of the major obstacles hindering the success of cancer therapy. The directed nanoassembly of probucol results in the "DNP" system, which greatly improves the oral delivery of probucol and subsequently leads to a novel therapeutic efficacy of probucol in the suppression of lung metastasis of breast cancer. DNP is formed by employing the intermolecular hydrophobic interactions between probucol and polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (also known as Triton X-100). After oral administration, the probucol concentration in the intestines is surprisingly about 200 times higher if it is applied as DNP rather than free probucol; it can be absorbed into intestinal enterocytes via clathrin-mediated endocytosis and transported into the systemic circulation through the lymphatic pathway. Moreover, the oral bioavailability of probucol is significantly higher-13.55 times higher-when applied as DNP in place of free probucol. The drug concentration in major organs is also significantly increased. The in vitro measurements show that the migration and invasion abilities of 4T1 cells are obviously inhibited by DNP. In particular, in an orthotopic metastatic breast cancer model, the notable suppression of lung metastasis from DNP is observed, but no effect is seen from the free-probucol suspension. As a result, the directed drug nanoassembly may open a new route for enhancing oral drug delivery and enable new therapeutic abilities for probucol against cancer metastasis.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Jin HJ, Zhang H, Sun ML, Zhang BG, Zhang JW. Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. J Thromb Thrombolysis 2014; 36:458-68. [PMID: 23728739 DOI: 10.1007/s11239-013-0951-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blood reperfusion of affected limbs is the most effective therapy for peripheral vascular thrombotic disease, restoring nutrition and blood flow to threatened tissues. Because it is more cost-effective than other thrombolytics, urokinase (UK) is widely used to treat venous thrombosis in China. However, its use is limited because of the risk of UK-related hemorrhagic complications. UK-coated nanoparticles (NPs) may decrease adverse effects while simultaneously increasing thrombolytic benefits. The aim of this study was to combine the sustained-release properties of NPs with the clinical benefits of catheter-directed thrombolysis (CDT) to create a promising new therapy. NPs were prepared via self-assembled chitosan and tripolyphosphate, introduced into a thrombosis model in New Zealand white rabbits, and the ratio of the residual thrombus cross-sectional area to the vascular cross-sectional area was calculated. The NPs had a drug-bearing efficiency of 14.5 ± 1.3%, an encapsulation efficiency of 94.8 ± 2.1% while the particle size of UK-coated NPs was 236 nm. Transmission electron microscopy results showed that the shape of the NPs were spherical and regular. Whether delivered by intravenation or catheter, UK-coated NPs produced a significant increase in the thrombolytic effect compared with free UK and confirmed the superiority of CDT for improving clot lysis over drug-induced systemic thrombolysis. The intravenous NPs caused an abnormal increase in fibrinogen. In conclusion, a water-soluble UK-WCS-NP suspension with good encapsulation efficiency was easily prepared UK-WCS-NPs were capable of maintaining UK activity, provided sustained-release of UK and exhibited better thrombolytic function than free UK.
Collapse
Affiliation(s)
- Hai-jiang Jin
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, No. 145 Shandong Middle Road, Shanghai, China
| | | | | | | | | |
Collapse
|
16
|
Smith MJ, Brown JM, Zamboni WC, Walker NJ. From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol Sci 2014; 138:249-55. [PMID: 24431216 DOI: 10.1093/toxsci/kfu005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The potential for human exposure to the diverse and ever-changing world of nanoscale materials has raised concerns about their influence on health and disease. The novel physical and chemical properties of these materials, which are associated with their small size, complicate toxicological evaluations. Further, these properties may make engineered nanomaterials (ENMs) a prime target for interaction with the immune system following uptake by phagocytes. Undesired effects on antigen-presenting cells and other phagocytic cells are of concern due to the high likelihood of ENM uptake by these cells. In addition, ENM interactions with lymphocytes and other cell types can contribute to a varied spectrum of possible effects, including inflammation, hypersensitivity, and immunomodulation. Furthermore, the mast cell (a type of immune cell traditionally associated with allergy) appears to contribute to certain inflammatory and toxic effects associated with some ENMs. Although incidental exposure may be undesirable, nanomedicines engineered for various clinical applications provide opportunities to develop therapies that may or may not intentionally target the immune system. The interaction between ENMs and the immune system and the resulting pharmacokinetic and phenotypic responses are critical factors that dictate the balance between toxicity and clinical efficacy of nanotherapeutics.
Collapse
|
17
|
Zarbin MA, Arlow T, Ritch R. Regenerative nanomedicine for vision restoration. Mayo Clin Proc 2013; 88:1480-90. [PMID: 24290123 DOI: 10.1016/j.mayocp.2013.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
Herein, we discuss recent applications of nanotechnology to ophthalmology, including nanoparticles for drug, gene, and trophic factor delivery; regenerative medicine (in the areas of optogenetics and optic nerve regeneration); and diagnostics (eg, minimally invasive biometric monitoring). Specific applications for the management of choroidal neovascularization, retinal neovascularization, oxidative damage, optic nerve damage, and retinal degenerative disease are considered. Nanotechnology will play an important role in early- and late-stage interventions in the management of blinding diseases.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, NJ.
| | | | | |
Collapse
|
18
|
Kang SG, Huynh T, Zhou R. Metallofullerenol Gd@C₈₂(OH)₂₂ distracts the proline-rich-motif from putative binding on the SH3 domain. NANOSCALE 2013; 5:2703-2712. [PMID: 23423582 DOI: 10.1039/c3nr33756a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials.
Collapse
Affiliation(s)
- Seung-gu Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | | | | |
Collapse
|
19
|
Daughton CG. Pharmaceuticals in the Environment. ANALYSIS, REMOVAL, EFFECTS AND RISK OF PHARMACEUTICALS IN THE WATER CYCLE - OCCURRENCE AND TRANSFORMATION IN THE ENVIRONMENT 2013. [DOI: 10.1016/b978-0-444-62657-8.00002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Pinheiro M, Lúcio M, Lima JLFC, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond) 2012; 6:1413-28. [PMID: 22026379 DOI: 10.2217/nnm.11.122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
TB is an infectious disease that is far from being eradicated and controlled. The treatment for TB is associated with noncompliance to therapy because it consists of a long-term treatment with a multidrug combination and is associated with the appearance of several side effects. Liposomal formulations are being developed with first- and second-line antibiotics, and might be an extremely useful alternative to current therapies. This article will thus focus on the role of liposomes as nanodelivery systems for the treatment of TB. Among several advantages, these nanocarriers allow an increase in the bioavailability of antibiotics, which may lead to a reduction in the time of treatment. Results obtained with such nanosystems, although preliminary, are promising and are perspective of the use of inhalation for TB treatment.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
| | | | | | | |
Collapse
|
21
|
Fatehi L, Wolf SM, McCullough J, Hall R, Lawrenz F, Kahn JP, Jones C, Campbell SA, Dresser RS, Erdman AG, Haynes CL, Hoerr RA, Hogle LF, Keane MA, Khushf G, King NMP, Kokkoli E, Marchant G, Maynard AD, Philbert M, Ramachandran G, Siegel RA, Wickline S. Recommendations for nanomedicine human subjects research oversight: an evolutionary approach for an emerging field. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:716-750. [PMID: 23289677 PMCID: PMC4467171 DOI: 10.1111/j.1748-720x.2012.00703.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The nanomedicine field is fast evolving toward complex, "active," and interactive formulations. Like many emerging technologies, nanomedicine raises questions of how human subjects research (HSR) should be conducted and the adequacy of current oversight, as well as how to integrate concerns over occupational, bystander, and environmental exposures. The history of oversight for HSR investigating emerging technologies is a patchwork quilt without systematic justification of when ordinary oversight for HSR is enough versus when added oversight is warranted. Nanomedicine HSR provides an occasion to think systematically about appropriate oversight, especially early in the evolution of a technology, when hazard and risk information may remain incomplete. This paper presents the consensus recommendations of a multidisciplinary, NIH-funded project group, to ensure a science-based and ethically informed approach to HSR issues in nanomedicine, and to integrate HSR analysis with analysis of occupational, bystander, and environmental concerns. We recommend creating two bodies, an interagency Human Subjects Research in Nanomedicine (HSR/N) Working Group and a Secretary's Advisory Committee on Nanomedicine (SAC/N). HSR/N and SAC/N should perform 3 primary functions: (1) analysis of the attributes and subsets of nanomedicine interventions that raise HSR challenges and current gaps in oversight; (2) providing advice to relevant agencies and institutional bodies on the HSR issues, as well as federal and federal-institutional coordination; and (3) gathering and analyzing information on HSR issues as they emerge in nanomedicine. HSR/N and SAC/N will create a home for HSR analysis and coordination in DHHS (the key agency for relevant HSR oversight), optimize federal and institutional approaches, and allow HSR review to evolve with greater knowledge about nanomedicine interventions and greater clarity about attributes of concern.
Collapse
|
22
|
Marchant GE, Lindor RA. Prudent precaution in clinical trials of nanomedicines. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:831-840. [PMID: 23289685 DOI: 10.1111/j.1748-720x.2012.00711.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Clinical trials of nanotechnology medical products present complex risk management challenges that involve many uncertainties and important risk-risk trade-offs. This paper inquires whether the precautionary principle can help to inform risk management approaches to nanomedicine clinical trials. It concludes that prudent precaution may be appropriate for ensuring the safety of such trials, but that the precautionary principle itself, especially in its more extreme forms, does not provide useful guidance for specific safety measures.
Collapse
Affiliation(s)
- Gary E Marchant
- Center for Law, Science, and Innovation, Sandra Day O'Connor College of Law, Arizona State University, AZ, USA
| | | |
Collapse
|
23
|
Wolf SM, Jones C. Designing Oversight for Nanomedicine Research in Human Subjects: Systematic Analysis of Exceptional Oversight for Emerging Technologies. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2011; 13:1449-1465. [PMID: 23226969 PMCID: PMC3515054 DOI: 10.1007/s11051-011-0237-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The basic procedures and rules for oversight of U.S. human subjects research have been in place since 1981. Certain types of human subjects research, however, have provoked creation of additional mechanisms and rules beyond the Department of Health & Human Services (DHHS) Common Rule and Food and Drug Administration (FDA) equivalent. Now another emerging domain of human subjects research-nanomedicine-is prompting calls for extra oversight. However, in 30 years of overseeing research on human beings, we have yet to specify what makes a domain of scientific research warrant extra oversight. This failure to systematically evaluate the need for extra measures, the type of extra measures appropriate for different challenges, and the usefulness of those measures hampers efforts to respond appropriately to emerging science such as nanomedicine. This article evaluates the history of extra oversight, extracting lessons for oversight of nanomedicine research in human beings. We argue that a confluence of factors supports the need for extra oversight, including heightened uncertainty regarding risks, fast-evolving science yielding complex and increasingly active materials, likelihood of research on vulnerable participants including cancer patients, and potential risks to others beyond the research participant. We suggest the essential elements of the extra oversight needed.
Collapse
Affiliation(s)
- Susan M. Wolf
- Consortium on Law and Values in Health, Environment & the Life Sciences; Law School; Medical School; Center for Bioethics, University of Minnesota, Minneapolis, MN 55455
- To whom correspondence should be addressed. ; telephone: 612-625-0055; fax: 612-624-9143
| | | |
Collapse
|
24
|
Hubbs AF, Mercer RR, Benkovic SA, Harkema JACK, Sriram K, Schwegler-Berry D, Goravanahally MP, Nurkiewicz TR, Castranova V, Sargent LM. Nanotoxicology--a pathologist's perspective. Toxicol Pathol 2011; 39:301-24. [PMID: 21422259 PMCID: PMC9808592 DOI: 10.1177/0192623310390705] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in chemistry and engineering have created a new technology, nanotechnology, involving the tiniest known manufactured products. These products have a rapidly increasing market share and appear poised to revolutionize engineering, cosmetics, and medicine. Unfortunately, nanotoxicology, the study of nanoparticulate health effects, lags behind advances in nanotechnology. Over the past decade, existing literature on ultrafine particles and respirable durable fibers has been supplemented by studies of first-generation nanotechnology products. These studies suggest that nanosizing increases the toxicity of many particulates. First, as size decreases, surface area increases, thereby speeding up dissolution of soluble particulates and exposing more of the reactive surface of durable but reactive particulates. Second, nanosizing facilitates movement of particulates across cellular and intracellular barriers. Third, nanosizing allows particulates to interact with, and sometimes even hybridize with, subcellular structures, including in some cases microtubules and DNA. Finally, nanosizing of some particulates, increases pathologic and physiologic responses, including inflammation, fibrosis, allergic responses, genotoxicity, and carcinogenicity, and may alter cardiovascular and lymphatic function. Knowing how the size and physiochemical properties of nanoparticulates affect bioactivity is important in assuring that the exciting new products of nanotechnology are used safely. This review provides an introduction to the pathology and toxicology of nanoparticulates.
Collapse
Affiliation(s)
- Ann F. Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Stanley A. Benkovic
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - JACK Harkema
- Michigan State University, East Lansing, Michigan, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Madhusudan P. Goravanahally
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Linda M. Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
25
|
Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 2010; 150:144-162.e2. [PMID: 20670739 DOI: 10.1016/j.ajo.2010.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/23/2022]
Abstract
PURPOSE To review the fields of nanotechnology and nanomedicine as they relate to the development of treatments for vision-threatening disorders. DESIGN Perspective following literature review. METHODS Analysis of relevant publications in the peer-reviewed scientific literature. RESULTS Nanotechnology involves the creation and use of materials and devices at the size scale of intracellular structures and molecules and involves systems and constructs on the order of <100 nm. The aim of nanomedicine is the comprehensive monitoring, control, construction, repair, defense, and improvement of human biological systems at the molecular level, using engineered nanodevices and nanostructures, operating massively in parallel at the single cell level, ultimately to achieve medical benefit. The earliest impact of nanomedicine is likely to involve the areas of biopharmaceuticals (eg, drug delivery, drug discovery), implantable materials (eg, tissue regeneration scaffolds, bioresorbable materials), implantable devices (eg, intraocular pressure monitors, glaucoma drainage valves), and diagnostic tools (eg, genetic testing, imaging, intraocular pressure monitoring). Nanotechnology will bring about the development of regenerative medicine (ie, replacement and improvement of cells, tissues, and organs), ultrahigh-resolution in vivo imaging, microsensors and feedback devices, and artificial vision. "Regenerative nanomedicine," a new subfield of nanomedicine, uses nanoparticles containing gene transcription factors and other modulating molecules that allow for the reprogramming of cells in vivo. CONCLUSIONS Nanotechnology already has been applied to the measurement and treatment of different disease states in ophthalmology (including early- and late-stage disease), and many additional innovations will occur during the next century.
Collapse
|
26
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2010. [DOI: 10.1002/pds.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Yuan H, Gao F, Zhang Z, Miao L, Yu R, Zhao H, Lan M. Study on Controllable Preparation of Silica Nanoparticles with Multi-sizes and Their Size-dependent Cytotoxicity in Pheochromocytoma Cells and Human Embryonic Kidney Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huihui Yuan
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test
- Key Laboratory for Ultrafine Materials of Ministry of Education
- The Institute of Applied Chemistry
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology
| | - Zhigang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test
| | - Lede Miao
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test
| | - Ronghua Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test
- Key Laboratory for Ultrafine Materials of Ministry of Education
| |
Collapse
|
28
|
D'Souza GGM, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 2009; 6:1135-48. [DOI: 10.1517/17425240903236101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Journal Watch. Pharmaceut Med 2009. [DOI: 10.1007/bf03256774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|