1
|
Ranjbar N, Ebrahimi Behnam B, Mesgari Abbasi M, Esmaeili M, Jolfaei F, Mohammadian J, Rashtchizadeh N, Ghorbanihaghjo A, Raeisi S. The possible antioxidative effects of ketogenic diet by modifying brain klotho expression: a rat model study. Nutr Neurosci 2024:1-7. [PMID: 39674922 DOI: 10.1080/1028415x.2024.2436817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Objectives: The ketogenic diet (KD) has long been used as an alternative nonpharmacological therapy to manage pharmacoresistant epilepsy. The anticonvulsant mechanisms of KD have yet to be fully elucidated. The present study explored whether a KD could exert antioxidative effects by altering brain Klotho (Kl) gene expression.Methods: Thirty male rats were divided into three groups: the normal diet (ND) group received standard rat chow; the calorie-restricted diet (CRD) group was maintained at 90% of the calculated energy need; and the KD group received a diet composed of 8% protein, 2% carbohydrates, and 90% fat (per calorie macronutrient). The levels of β-hydroxybutyrate (BHB) in the serum, Kl gene expression in the brain, and Kl protein, malondialdehyde (MDA), and protein carbonyl (PC) levels in the serum and brain were evaluated by standard methods.Results: The serum BHB levels in the KD group were significantly greater than those in the ND and CRD groups (p < 0.001). The Kl expression in the brain was significantly greater in the KD group than in the ND group (p = 0.028). The brain MDA levels in the KD group were significantly lower than those in the ND group (p = 0.006). Elevated BHB was positively correlated with brain Kl expression (r = 0.668, p < 0.001). The brain MDA levels were negatively correlated with brain Kl expression (r = -0.531, p = 0.003) and serum BHB levels (r = 0.472, p = 0.020).Discussion: KD might exert antioxidative effects by increasing BHB and upregulating Kl in the brain. This could be considered a possible anticonvulsant mechanism of KD.
Collapse
Affiliation(s)
- Nasrin Ranjbar
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahador Ebrahimi Behnam
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahsa Esmaeili
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashidi, Tabriz, Iran
| | - Fatemeh Jolfaei
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashidi, Tabriz, Iran
| | - Jamal Mohammadian
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Ghorbanihaghjo
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Raeisi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
3
|
Masalkhi M, Ong J, Waisberg E, Lee AG. Ocular oxidative changes and antioxidant therapy during spaceflight. Eye (Lond) 2024; 38:1034-1035. [PMID: 38001279 PMCID: PMC11009295 DOI: 10.1038/s41433-023-02841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Affiliation(s)
- Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Houston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
4
|
Dey S, Raychaudhuri SS. Selenium biofortification improves bioactive composition and antioxidant status in Plantago ovata Forsk., a medicinal plant. Genes Environ 2023; 45:38. [PMID: 38111072 PMCID: PMC10729483 DOI: 10.1186/s41021-023-00293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Selenium (Se) is an essential micronutrient for humans, but its deficiency as well as toxicity affects large number of people worldwide. Plantago ovata, a commercially important medicinal plant, is mainly cultivated in western regions of India, where elevated levels of Se have been found in soil. Thus, we evaluated the potential of Se biofortification in P. ovata via phytoremediation and its effect on the bioactive composition. RESULTS The results showed a significant alteration in various morphological and physiological parameters in a dose-dependent manner. The 10 µM Se dose improved seedling height, biomass and total chlorophyll content. There was a gradual increase in total Se content, with highest accumulation of 457.65 µg/g FW at 500 µM Se treatment. Se positively affected the antioxidative metabolism which was measured from the change in total antioxidant capacity, radical scavenging activity and Metallothionein 2 expression. Increasing levels of Se also affected the PAL activity, total polyphenol and flavonoid content. Caffeic acid, Coumaric acid and Rutin were found to be the most abundant phenolic compounds. CONCLUSIONS Low levels of selenium (below 50 µM) can successfully improve Se accumulation and elicit production of various polyphenols without hampering plant growth. Thus, Se fortification of P. ovata seedlings via phytoremediation appears to be a feasible and efficient way to enhance its nutraceutical value in dietary products.
Collapse
Affiliation(s)
- Sankalan Dey
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sarmistha Sen Raychaudhuri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
5
|
Liu C, Gan RY, Chen D, Zheng L, Ng SB, Rietjens IMCM. Gut microbiota-mediated metabolism of green tea catechins and the biological consequences: An updated review. Crit Rev Food Sci Nutr 2023; 64:7067-7084. [PMID: 38975869 DOI: 10.1080/10408398.2023.2180478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Multiple beneficial effects have been attributed to green tea catechins (GTCs). However, the bioavailability of GTCs is generally low, with only a small portion directly absorbed in the small intestine. The majority of ingested GTCs reaches the large intestinal lumen, and are extensively degraded via biotransformation by gut microbiota, forming many low-molecular-weight metabolites such as phenyl-γ-valerolactones, phenolic acids, butyrate, and acetate. This process not only improves the overall bioavailability of GTC-derived metabolites but also enriches the biological activities of GTCs. Therefore, the intra- and inter-individual differences in human gut microbiota as well as the resulting biological contribution of microbial metabolites are crucial for the ultimate health benefits. In this review, the microbial degradation of major GTCs was characterized and an overview of the in vitro models used for GTC metabolism was summarized. The intra- and inter-individual differences of human gut microbiota composition and the resulting divergence in the metabolic patterns of GTCs were highlighted. Moreover, the potential beneficial effects of GTCs and their gut microbial metabolites were also discussed. Overall, the microbial metabolites of GTCs with higher bioavailability and bioactive potency are key factors for the observed beneficial effects of GTCs and green tea consumption.
Collapse
Affiliation(s)
- Chen Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Division of Toxicology, Wageningen University and Research, Wageningen, the Netherlands
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zheng
- Division of Toxicology, Wageningen University and Research, Wageningen, the Netherlands
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
Liu C, Boeren S, Miro Estruch I, Rietjens IMCM. The Gut Microbial Metabolite Pyrogallol Is a More Potent Inducer of Nrf2-Associated Gene Expression Than Its Parent Compound Green Tea (-)-Epigallocatechin Gallate. Nutrients 2022; 14:nu14163392. [PMID: 36014899 PMCID: PMC9414524 DOI: 10.3390/nu14163392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) has been associated with multiple beneficial effects. However, EGCG is known to be degraded by the gut microbiota. The present study investigated the hypothesis that microbial metabolism would create major catechol-moiety-containing microbial metabolites with different ability from EGCG to induce nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated gene expression. A reporter gene bioassay, label-free quantitative proteomics and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) were combined to investigate the regulation of Nrf2-related gene expression after exposure of U2OS reporter gene or Hepa1c1c7 cells in vitro to EGCG or to its major microbial catechol-moiety-containing metabolites: (-)-epigallocatechin (EGC), gallic acid (GA) and pyrogallol (PG). Results show that PG was a more potent inducer of Nrf2-mediated gene expression than EGCG, with a 5% benchmark dose (BMD5) of 0.35 µM as compared to 2.45 µM for EGCG in the reporter gene assay. EGC and GA were unable to induce Nrf2-mediated gene expression up to the highest concentration tested (75 µM). Bioinformatical analysis of the proteomics data indicated that Nrf2 induction by PG relates to glutathione metabolism, drug and/or xenobiotics metabolism and the pentose phosphate pathway. Taken together, our findings demonstrate that the microbial metabolite PG is a more potent inducer of Nrf2-associated gene expression than its parent compound EGCG.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
- Correspondence:
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|
7
|
Oyeyinka BO, Afolayan AJ. Suitability of Banana and Plantain Fruits in Modulating Neurodegenerative Diseases: Implicating the In Vitro and In Vivo Evidence from Neuroactive Narratives of Constituent Biomolecules. Foods 2022; 11:foods11152263. [PMID: 35954031 PMCID: PMC9367880 DOI: 10.3390/foods11152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Active principles in plant-based foods, especially staple fruits, such as bananas and plantains, possess inter-related anti-inflammatory, anti-apoptotic, antioxidative, and neuromodulatory activities. Neurodegenerative diseases affect the functionality of the central and peripheral nervous system, with attendant cognitive deficits being hallmarks of these conditions. The dietary constitution of a wide range of bioactive compounds identified in this review further iterates the significance of the banana and plantain in compromising, halting, or preventing the pathological mechanisms of neurological disorders. The neuroprotective mechanisms of these biomolecules have been identified by using protein expression regulation and specific gene/pathway targeting, such as the nuclear and tumor necrosis factors, extracellular signal-regulated and mitogen-activated protein kinases, activator protein-1, and the glial fibrillary acidic protein. This review establishes the potential double-edged neuro-pharmacological fingerprints of banana and plantain fruits in their traditionally consumed pulp and less utilized peel component for human nutrition.
Collapse
|
8
|
Liu C, Boeren S, Rietjens IMCM. Intra- and Inter-individual Differences in the Human Intestinal Microbial Conversion of (-)-Epicatechin and Bioactivity of Its Major Colonic Metabolite 5-(3′,4′-Dihydroxy-Phenyl)-γ-Valerolactone in Regulating Nrf2-Mediated Gene Expression. Front Nutr 2022; 9:910785. [PMID: 35845790 PMCID: PMC9281540 DOI: 10.3389/fnut.2022.910785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
(-)-Epicatechin (EC) is one of the most popular polyphenols present in various food products in daily life. Upon intake, it is intensively metabolized by microbiota in the large intestine. In the present study, intra- and inter-individual variations in this gut microbial conversion of EC and the concomitant formation of its major metabolites, including 5-(3′,4′-dihydroxy phenyl)-γ-valerolactone (3,4-diHPV), were identified and quantified via liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) in anaerobic fecal incubations. In addition, the bioactivity of EC and 3,4-diHPV in activating Nrf2-mediated gene expression was tested quantifying their effects in the U2OS Nrf2 CALUX assay (a reporter gene assay that is used to test the potency of chemicals in activation of Nrf2 signaling), and on the expression levels of Nrf2-related proteins in Hepa1c1c7 and Caco-2 cells via nanoLC-MSMS. A quantitative real-time polymerase chain reaction (RT-qPCR) was carried out to confirm selected Nrf2-regulated gene expressions at the mRNA level. Results obtained show that both intra- and inter-individual differences exist in human gut microbial EC degradation and 3,4-diHPV formation, with inter-individual differences being more distinct than intra-individual differences. The metabolite, 3,4-diHPV, showed higher potency in the U2OS Nrf2 CALUX assay than EC itself. Among the obviously altered Nrf2-related proteins, 14 and 10 Nrf2-associated proteins were upregulated to a higher extent upon 3,4-diHPV treatment than in the EC treated group for Hepa1c1c7 and Caco-2 cells, respectively. While only three and four of these Nrf2-associated proteins were induced at a higher level upon EC than upon 3,4-diHPV treatment for Hepa1c1c7 and Caco-2 cells, respectively. RT-qPCR results showed that indeed Nrf2-mediated genes (e.g., Nqo1 and Ugt1a) were only induced significantly in 3,4-diHPV treated and not in EC treated Hepa1c1c7 cells. Taken together, the results suggest that the major colonic EC metabolite, 3,4-diHPV, was more capable of inducing Nrf2-mediated gene expression than its parent compound EC. This implies that the evident inter- and intra-individual differences in the microbial conversion of EC to this major metabolite 3,4-diHPV may affect the overall health-promoting effects of EC consumption related to the Nrf2 pathway activation.
Collapse
Affiliation(s)
- Chen Liu
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Chen Liu
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
9
|
Freitas PAD, Oliveira KAD, Magalhães LA, Neves RDJD, Maia CSC, Silveira LR, Lima TTD, Vasconcelos RP, Brito LC, Torres-Leal FL, Oliveira ACD. Improvement of 2,2'-Azobis(2-Methylpropionamidine) Dihydrochloride-Induced Hepatic Redox Imbalance in Swiss Mice and HepG2 Cells by Rutin. J Med Food 2022; 25:630-635. [PMID: 35612492 DOI: 10.1089/jmf.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Redox imbalance can lead to irreversible damages to biological functions. In this context, rutin stands out for its antioxidant potential. The objective of this study was to evaluate the acute and chronic effect of rutin on the hepatic redox imbalance. The study was performed according to three different protocols. First, healthy male Swiss mice were divided into two groups: control and rutin, the second of which received chronic oral supplementation of rutin (10 mg/kg). The second involved evaluation of the generation of reactive oxygen species (ROS) by HepG2 cells, incubated or not with rutin (20 and 40 μg/mL) for 3 h. The final protocol involved assessment of the acute effect of rutin (10 mg/kg) in mice with oxidative stress induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP). After the in vivo treatments, the livers were collected to analyze the oxidative damage by thiol, and the antioxidant defense by catalase, superoxide dismutase, and glutathione peroxidase. In the HepG2 cells, the following probes were employed to assess the ROS production: dichlorofluorescein, MitoSOX, dihydroethidium, and Amplex Red. Rutin administered chronically improved the antioxidant defense in healthy animals, and when administered acutely both inhibited the increased production of ROS in HepG2 cells and improved the redox imbalance parameters in mice with induced oxidative stress. This study suggests rutin as a protective agent for restoration of hepatic redox homeostasis in redox injury induced by ABAP in Swiss mice and HelpG2 cells.
Collapse
Affiliation(s)
| | - Keciany Alves de Oliveira
- Academic Master Course in Nutrition and Health, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| | | | | | - Carla Soraya Costa Maia
- Academic Master Course in Nutrition and Health, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| | - Leonardo Reis Silveira
- Endocrine Pancreas and Metabolism Laboratory, Campinas State University (UNICAMP), Campinas, São Paulo, Brazil
| | - Tanes Tamamura de Lima
- Endocrine Pancreas and Metabolism Laboratory, Campinas State University (UNICAMP), Campinas, São Paulo, Brazil
| | - Renata Prado Vasconcelos
- Graduate Program in Physiological Sciences, Ceará State University (UECE), Fortaleza, Ceará, Brazil
| | - Luciana Catunda Brito
- Department of Physical Education, Institute of Physical Education and Sports, Ceará Federal University (UFC), Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
10
|
Beta-carotene exerted anti-proliferative and apoptotic effect on malignant mesothelioma cells. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:407-415. [PMID: 35106627 DOI: 10.1007/s00210-022-02214-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
Abstract
High blood levels of β-carotene and increased intake in the diets are inversely proportional to incidence of many cancer types. Antioxidant activity of β-carotene was proposed to be related with its antitumor effect. Despite this plant derivative substance being sought in many cancer types, the effectiveness of β-carotene against malignant mesothelioma remained unclear. Therefore, the present study aims to explore the impact of β-carotene on cell viability, apoptosis, and oxidative stress in mesothelioma cells. Human mesothelioma cell SPC212 were treated with β-carotene (3.125-200 μM) for 24, 48, 72, and 96 h. Cytotoxicity was measured with the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide). Annexin-V/propidium iodide (PI) and caspase 3/7 biomarkers were used to identify apoptotic cells. Finally, the oxidative stress was evaluated with flow cytometry. The results of the measurements indicated a significant decline in viable mesothelioma cancer cell numbers upon β-carotene treatment in time- and concentration-dependent manner when compared to control cells. Furthermore, β-carotene treatment led to apoptosis induction according to both annexin V/PI and caspase 3/7 assays. Furthermore, β-carotene increased oxidative stress in SPC212 cells. These results show how β-carotene affects proliferative, apoptotic, and oxidative properties in SPC212 malignant pleural mesothelioma cells and provide useful insights into future studies.
Collapse
|
11
|
The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int J Mol Sci 2022; 23:ijms23063141. [PMID: 35328560 PMCID: PMC8954097 DOI: 10.3390/ijms23063141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemia–reperfusion injury is a key clinical problem of transplantology. Current achievements in optimizing organ rinse solutions and storage techniques have significantly influenced the degree of graft damage and its survival after transplantation. In recent years, intensive research has been carried out to maintain the viability of tissues and organs outside the integral environment of the body. Innovative solutions for improving the biochemical functions of the stored organ have been developed. The article discusses directions for modifying preservation solutions with antioxidants. Clinical and experimental studies aimed at optimizing these fluids, as well as perfusion and organ preservation techniques, are presented.
Collapse
|
12
|
Ghanbari-Movahed M, Mondal A, Farzaei MH, Bishayee A. Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153909. [PMID: 35092896 DOI: 10.1016/j.phymed.2021.153909] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Natural products, with incredible chemical diversity, have been widely studied for their antitumor potential. Quercetin (QU) and quercetin glycoside (rutin), both polyphenolic flavonoids, stick out amongst the natural products, through various studies. Rutin (RU) and its aglycone (QU) have various biological properties that include antioxidant, anti-inflammatory, and anticarcinogenic activities. However, several side effects have restricted the efficacy of these polyphenolic flavonoids, which makes it necessary to use new strategies involving low and pharmacological doses of QU and RU, either alone or in combination with other anticancer drugs. PURPOSE The aim of this study is to present a comprehensive and critical evaluation of the anticancer ability of different nano-formulations of RU and QU for improved treatment of various malignancies. METHODS Studies were recognized via systematic searches of ScienceDirect, PubMed, and Scopus databases. Eligibility checks were conducted based upon predefined selection criteria. Ninety articles were included in this study. RESULTS There was conclusive evidence for the association between anticancer activity and treatment with RU or QU. Furthermore, studies indicated that nano-formulations of RU and QU have greater anticancer activities in comparison to either agent alone, which leads to increased efficiency for treating cancer. CONCLUSION The results of this systematic review demonstrate the anticancer activities of nano-formulations of RU and QU and their molecular mechanisms through preclinical studies. This paper also attempts to contribute to further research by addressing the current limitations/challenges and proposing additional studies to realize the full potential of RU- and QU-based formulations for cancer treatment.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States.
| |
Collapse
|
13
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
14
|
Fei Q, Li X, Zhu Q, Wang Y, Ge R, Jin X. Rutin inhibits androgen synthesis and metabolism in rat immature Leydig cells in vitro. Andrologia 2021; 53:e14221. [PMID: 34459013 DOI: 10.1111/and.14221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the early stage of androgen-sensitive prostate cancer, cancer cells require androgens to grow. Hormone therapy that lowers androgen output or blocks androgen receptor can suppress the growth of this type of prostate cancer. Rutin, a flavonoid derivative of many plants, has numerous pharmacological effects. The objective of this study was to investigate the effect of rutin on androgen biosynthesis in Leydig cells isolated from the testes of pubertal rats. Immature Leydig cells isolated from 35 days-old male Sprague-Dawley rats were cultured in vitro with 0.5-50 μM rutin for 3 hr. Rutin significantly inhibited androgen secretion at 0.5, 5 and 50 μM under basal condition (medium only). At 50 μM, rutin also markedly compromised androgen secretion stimulated by 10 ng/ml luteinising hormone and 10 mM 8-bromoadenosine 3', 5'-cyclic monophosphate. Further analysis demonstrated that rutin compromised the transcript levels of Scarb1, Cyp11a1 and Hsd3b1 and their proteins expression. Rutin directly inhibited rat testicular CYP17A1, HSD17B3 and AKR1C14 activities at 50 μM. Rutin did not alter mitochondrial membrane potential at up to 50 μM. In conclusion, rutin suppresses androgen biosynthesis in Leydig cells through multiple mechanisms, thereby having benefits for the treatment of androgen-sensitive prostate cancer.
Collapse
Affiliation(s)
- Qianjin Fei
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renshan Ge
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Jin
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021; 26:molecules26165102. [PMID: 34443698 PMCID: PMC8401221 DOI: 10.3390/molecules26165102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are tens of thousands of scientific papers about flavonoids and their impacts on human health. However, despite the vast amount of energy that has been put toward studying these compounds, a unified molecular mechanism that explains their bioactivity remains elusive. One contributing factor to the absence of a general mechanistic explanation of their bioactivity is the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic protons, are redox active, and frequently auto-oxidize to produce an array of degradation products including electrophilic quinones. Flavonoids are also known to interact with specificity and high affinity with a variety of proteins, and there is evidence that some of these interactions may be covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In either case, these protein-flavonoid interactions would likely occur at specific binding sites and the formation of these types of products could effectively explain how flavonoids modify proteins in cells to induce downstream biochemical and cellular changes.
Collapse
Affiliation(s)
- P Matthew Joyner
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
16
|
Abstract
BACKGROUND Sepsis remains a leading cause of death in the critically ill. The combination of thiamine, vitamin C, and hydrocortisone has recently emerged as a potential adjunctive therapy and supportive care for patients with sepsis and septic shock. AREAS OF UNCERTAINTY Several randomized and observational controlled trials evaluated the role of vitamin C in sepsis and septic shock. However, there are variabilities in the findings of these studies that led to a substantial global debate on incorporating vitamin C therapy in clinical practice. DATA SOURCES A PubMed and Embase English language literature search through April 2021 was performed using the following terms: ascorbic acid, vitamin C, corticosteroid, hydrocortisone, thiamine, HAT, sepsis, and shock. Citations, including controlled trials, observational studies, review articles, guidelines, and consensus statements, were reviewed. The risk of bias for each clinical study was systematically evaluated. Relevant clinical data focusing on efficacy, safety, and special considerations regarding the use of vitamin C with and without thiamine and hydrocortisone in sepsis and septic shock were narratively summarized. RESULTS The most commonly used vitamin C dosing in sepsis and septic shock is 1.5 g every 6 hours with and without thiamine and hydrocortisone. Current literature is limited because of heterogeneity in vitamin C regimen used, initiation time, and duration of treatment. This limitation led to variability in outcomes evaluated. Vitamin C decreases proinflammatory mediators and slows the progression of endothelial injury in severe sepsis. There is an inconsistency between randomized controlled trials and observational controlled trials regarding mortality, resolution in organ failure, hospital and intensive care unit length of stay findings with the use of vitamin C in septic shock. Vitamin C seems to be safe in comparison with placebo. CONCLUSIONS Future studies with consistent end points, initiation time with an emphasis on early initiation, and standard vitamin C dosing regimen are needed to determine the overall benefit of vitamin C in sepsis.
Collapse
|
17
|
Sharma P, Shri R, Ntie-Kang F, Kumar S. Phytochemical and Ethnopharmacological Perspectives of Ehretia laevis. Molecules 2021; 26:molecules26123489. [PMID: 34201193 PMCID: PMC8228998 DOI: 10.3390/molecules26123489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Ehretia laevis Roxb. (Boraginaceae) has been extensively used as a traditional remedy for the treatment of a diverse range of ailments related to the respiratory system, the gastrointestinal tract, the reproductive system, and against several infections. This review critically assesses and documents, for the first time, the fragmented information on E. laevis, including its botanical description, folklore uses, bioactive phyto metabolites and pharmacological activities. The goal is to explore this plant therapeutically. Ethnomedicinal surveys reveal that E. laevis has been used by tribal communities in Asian countries for the treatment of various disorders. Quantitative and qualitative phytochemical investigations of E. laevis showed the presence of important phytoconstituents such as pentacyclic triterpenoids, phenolic acids, flavonoids, fatty acids, steroids, alkaloids, aliphatic alcohols, hydrocarbons, amino acids, carbohydrates, vitamins and minerals. Fresh plant parts, crude extracts, fractions and isolated compounds have been reported to exhibit broad spectrum of therapeutic activities viz., antioxidant, antiarthritic, antidiabetic, anti-inflammatory, antiulcer, antidiarrheal, antidysenteric, wound healing and anti-infective activities. E. laevis is shown to be an excellent potential source of drugs for the mitigation of jaundice, asthma, dysentery, ulcers, diarrhea, ringworm, eczema, diabetes, fissure, syphilis, cuts and wounds, inflammation, liver problems, venereal and infectious disorders. Although few investigations authenticated its traditional uses but employed uncharacterized crude extracts of the plant, the major concerns raised are reproducibility of therapeutic efficacy and safety of plant material. The outcomes of limited pharmacological screening and reported bioactive compounds of E. laevis suggest that there is an urgent need for in-depth pharmacological investigations of the plant.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India or (P.S.); (R.S.)
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India or (P.S.); (R.S.)
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
- Correspondence: (F.N.-K.); (S.K.)
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India or (P.S.); (R.S.)
- Correspondence: (F.N.-K.); (S.K.)
| |
Collapse
|
18
|
Choi YR, Shim J, Park JH, Kim YS, Kim MJ. Discovery of Orphan Olfactory Receptor 6M1 as a New Anticancer Target in MCF-7 Cells by a Combination of Surface Plasmon Resonance-Based and Cell-Based Systems. SENSORS 2021; 21:s21103468. [PMID: 34065710 PMCID: PMC8156394 DOI: 10.3390/s21103468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Olfactory receptors (ORs) account for 49% of all G protein-coupled receptors (GPCRs), which are important targets for drug discovery, and hence ORs may also be potential drug targets. Various ORs are expressed in breast cancer cells; however, most of them are orphan receptors, and thus, their functions are unknown. Herein, we present an experimental strategy using a surface plasmon resonance (SPR) system and a cell-based assay that allowed the identification of orphan OR6M1 as a new anticancer target in the MCF-7 breast cancer cell line. After the construction of stable OR6M1-expressing cells, the SPR-based screening of 108 chemicals for ligand activity was performed against OR6M1-expressing whole cells (primary screening) or membrane fragments (secondary screening). As a result, anthraquinone (AQ) and rutin were discovered to be new OR6M1 ligands. Based on calcium imaging in OR6M1-expressing Hana3A cells, AQ and rutin were classified as an OR6M1 agonist and antagonist, respectively. Cell viability and live/dead assays showed that AQ induced the death of MCF-7 cells, which was inhibited by rutin. Therefore, OR6M1 may be considered an anticancer target, and AQ may be considered a chemotherapeutic agent. This combined method can be widely used to discover the ligands and functions of other orphan GPCRs.
Collapse
Affiliation(s)
- Yae Rim Choi
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (Y.R.C.); (J.S.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Jaewon Shim
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (Y.R.C.); (J.S.)
- Department of Biochemistry, Collage of Medicine, Kosin University, Busan 49267, Korea
| | - Jae-Ho Park
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea;
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Min Jung Kim
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (Y.R.C.); (J.S.)
- Correspondence: ; Tel.: +82-63-219-9380
| |
Collapse
|
19
|
Hui MQ, Mi YN, Ma YF, Chen T, Cao YX. Preparation and Evaluation of Lipid Emulsion Containing 13 Vitamins for Injection Without Anaphylactoid Reactions. Int J Nanomedicine 2021; 16:3317-3327. [PMID: 34012261 PMCID: PMC8128444 DOI: 10.2147/ijn.s289596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Multivitamins containing Tween 80 can cause anaphylactoid reactions. The objective of this study was to develop a new lipid emulsion containing 13 fat- and water-soluble vitamins for injection (13V-LE) that were simultaneously dissolved in one bottle and to evaluate the stability of and anaphylactoid reactions to 13V-LE. Methods Particle size, ζ-potential, and polydispersity of 13V-LE were assayed with a Zetasizer Nano ZS. Entrapment efficiency of 13V-LE was determined with HPLC. Behavior, histamine, and blood pressure of beagle dogs were investigated by observation, fluorospectrophotometry, and sphygmomanometry. Results The 13V-LE with the smallest particles and highest entrapment efficiency with stable ζ-potential was composed of soybean oil, glycerin (2.25%, w:v), egg lecithin (1.2%, w:v), and purified water. There was no obvious change in characteristics of the 13V-LE samples in terms of appearance, size distribution, ζ-potential, pH value, or concentration over 6 months. In anaphylactoid reactions tests, when being administered with the multivitamin Infuvite Adult containing Tween 80, six beagles showed grade IV symptoms (P<0.01 vs control), low blood pressure, and high plasma-histamine concentrations (P<0.05 or P<0.01). However, there were no significant differences in behavior, blood pressure, or histamine concentration in the dogs before and after administration in the 13V-LE group. Conclusion The 13V-LE formulation is a suitable intravenous lipid emulsion without anaphylactoid reactions.
Collapse
Affiliation(s)
- Min-Quan Hui
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China.,Xi'an Libang Pharmaceutical, Xi'an, People's Republic of China
| | - Yan-Ni Mi
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu-Fan Ma
- Xi'an Libang Pharmaceutical, Xi'an, People's Republic of China
| | - Tao Chen
- Xi'an Libang Pharmaceutical, Xi'an, People's Republic of China
| | - Yong-Xiao Cao
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
20
|
Detection and Comparison of Bioactive Compounds in Different Extracts of Two Hazelnut Skin Varieties, Tonda Gentile Romana and Tonda Di Giffoni, Using a Metabolomics Approach. Metabolites 2021; 11:metabo11050296. [PMID: 34063124 PMCID: PMC8148165 DOI: 10.3390/metabo11050296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022] Open
Abstract
Agro-wastes are one of the major sources for nutritional and therapeutic benefits along with other beneficial properties. Dark brown pellicular pericarp (skin or testa), covering the hazelnut seed, is removed before consumption after the roasting of a kernel. Defatted skins of both hazelnut varieties, Tonda Gentile Romana and Tonda di Giffoni, were profiled by a metabolomics-based approach and this was used to discriminate between these two different hazelnut cultivars. In particular, an untargeted metabolomic extract from hazelnut by-products was investigated by UHPLC-Mass spectrometry followed by multivariate statistics analysis, and significant qualitative and quantitative metabolic differences were observed between them. Samples were also assessed for their total phenolic and antioxidant capacity using two different assays. Although no significant differences were found in total phenolic contents and antioxidant capacity, the Flavone, Flavonol, Flavonoid, and Phenylpropanoid Biosynthesis pathway was significantly higher in the Romana rather than in the Giffoni variety, whereas Myricetin and Syringetin compounds were more representative in Giffoni cultivars. These results indicated that hazelnut skin, especially from the Romana variety, could potentially be used as an ingredient in healthy food. Healthy food is a new food category with an expanding demand from future generations.
Collapse
|
21
|
Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM. Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14168-14181. [PMID: 33216536 PMCID: PMC7716348 DOI: 10.1021/acs.jafc.0c05890] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
To quantify interindividual differences in the human intestinal microbial metabolism of (-)-epicatechin (EC), in vitro anaerobic incubations with fecal inocula from 24 healthy donors were conducted. EC-derived colonic microbial metabolites were qualitatively and quantitively analyzed by liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) and liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Quantitative microbiota characterization was achieved by 16S rRNA analysis. The results obtained show 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-dihydroxyphenyl)-2-propanol (3,4-diHPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-diHPV) to be key intermediate microbial metabolites of EC and also revealed the substantial interindividual differences in both the rate of EC conversion and the time-dependent EC metabolite pattern. Furthermore, substantial differences in microbiota composition among different individuals were detected. Correlations between specific microbial phylotypes and formation of certain metabolites were established. It is concluded that interindividual differences in the intestinal microbial metabolism of EC may contribute to interindividual differences in potential health effects of EC-abundant dietary foods or drinks.
Collapse
Affiliation(s)
- Chen Liu
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Jacques Vervoort
- Laboratory
of Biochemistry, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Karsten Beekmann
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Marta Baccaro
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Lenny Kamelia
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Sebas Wesseling
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | | |
Collapse
|
22
|
Aeschimann W, Kammer S, Staats S, Schneider P, Schneider G, Rimbach G, Cascella M, Stocker A. Engineering of a functional γ-tocopherol transfer protein. Redox Biol 2020; 38:101773. [PMID: 33197771 PMCID: PMC7677715 DOI: 10.1016/j.redox.2020.101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
α-tocopherol transfer protein (TTP) was previously reported to self-aggregate into 24-meric spheres (α-TTPS) and to possess transcytotic potency across mono-layers of human umbilical vein endothelial cells (HUVECs). In this work, we describe the characterisation of a functional TTP variant with its vitamer selectivity shifted towards γ-tocopherol. The shift was obtained by introducing an alanine to leucine substitution into the substrate-binding pocket at position 156 through site directed mutagenesis. We report here the X-ray crystal structure of the γ-tocopherol specific particle (γ-TTPS) at 2.24 Å resolution. γ-TTPS features full functionality compared to its α-tocopherol specific parent including self-aggregation potency and transcytotic activity in trans-well experiments using primary HUVEC cells. The impact of the A156L mutation on TTP function is quantified in vitro by measuring the affinity towards γ-tocopherol through micro-differential scanning calorimetry and by determining its ligand-transfer activity. Finally, cell culture experiments using adherently grown HUVEC cells indicate that the protomers of γ-TTP, in contrast to α-TTP, do not counteract cytokine-mediated inflammation at a transcriptional level. Our results suggest that the A156L substitution in TTP is fully functional and has the potential to pave the way for further experiments towards the understanding of α-tocopherol homeostasis in humans.
Collapse
Affiliation(s)
- Walter Aeschimann
- University of Bern, Department of Chemistry and Biochemistry, Bern, 3012, Switzerland
| | - Stephan Kammer
- University of Bern, Department of Chemistry and Biochemistry, Bern, 3012, Switzerland
| | - Stefanie Staats
- University of Kiel, Institute of Human Nutrition and Food Science, Kiel, 24118, Germany
| | - Petra Schneider
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Gisbert Schneider
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Gerald Rimbach
- University of Kiel, Institute of Human Nutrition and Food Science, Kiel, 24118, Germany
| | - Michele Cascella
- University of Oslo, Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Achim Stocker
- University of Bern, Department of Chemistry and Biochemistry, Bern, 3012, Switzerland.
| |
Collapse
|
23
|
Resveratrol and Its Nanoformulation Attenuate Growth and the Angiogenesis of Xenograft and Orthotopic Colon Cancer Models. Molecules 2020; 25:molecules25061412. [PMID: 32244860 PMCID: PMC7144556 DOI: 10.3390/molecules25061412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is a multifactorial disorder that induces mortality worldwide, and the colorectal type is the third most common cancer globally. Resveratrol (RSV) is a natural compound with an effective anticancer effect, especially against colorectal cancer, and therefore numerous studies recommended its use in colorectal cancer prevention and treatment. The current study investigated the effect of either RSV or its nanoformulation (NP-RSV) on the growth and vascularity of xenograft and orthotopic mice models in colon cancer (COLO205-luc). Both RSV and NP-RSV induced significant reductions in tumor growth and the hemoglobin percentages of the tumor mass, but NP-RSV showed greater bioavailability and efficacy than RSV. Generally, we recommend using NP-RSV as a therapeutic to control colon cancer.
Collapse
|
24
|
Deelchand DK, Joers JM, Ravishankar A, Lyu T, Emir UE, Hutter D, Gomez CM, Bushara KO, Lenglet C, Eberly LE, Öz G. Sensitivity of Volumetric Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to Progression of Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract 2019; 6:549-558. [PMID: 31538089 DOI: 10.1002/mdc3.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) causes progressive degeneration of the cerebellum and brainstem. Volumetric magnetic resonance imaging (MRI) was shown to be more sensitive to disease progression than the most sensitive clinical measure, the Scale for the Assessment and Rating of Ataxia (SARA), in longitudinal studies, and magnetic resonance spectroscopy (MRS) was shown to detect neurochemical abnormalities with high sensitivity cross-sectionally in SCA1. Objectives The objectives of this study were to compare the sensitivities to change of volumetric MRI, MRS, and SARA in a 3-year longitudinal study in SCA1. Methods A total of 16 early-to-moderate stage patients with SCA1 (SARA 0-14) and 21 matched healthy participants were scanned up to 3 times with 1.5-year intervals. Ataxia severity was assessed with SARA. T1-weighted images and magnetic resonance spectra from the cerebellar vermis, cerebellar white matter, and pons were acquired at 3T. Results The pontine total N-acetylaspartate-to-myo-inositol ratio was the most sensitive MRS measure to change (-3.9 ± 4.6%/yr in SCA1 vs. -0.3 ± 3.5%/yr in controls; P < 0.02), and the pontine volume was the most sensitive MRI measure to change (-2.6 ± 1.2%/yr in SCA1 vs. -0.1 ± 1.2 in controls; P < 0.02). Effect size (mean percent change/standard deviation of percent change) of pontine volume was highest (-2.13) followed by pontine N-acetylaspartate-to-myo-inositol ratio (-0.84) and SARA (+0.60). The pontine N-acetylaspartate-to-myo-inositol ratio was abnormal for 1 premanifest patient at all visits and predicted study withdrawal as a result of disease progression in 3 patients. Conclusion Both MRI and MRS were more sensitive to disease progression than SARA in SCA1. Pontine volume was most sensitive to change, whereas MRS may have more sensitivity at the premanifest stage and predictive value for disease progression.
Collapse
Affiliation(s)
- Dinesh K Deelchand
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | - James M Joers
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | | | - Tianmeng Lyu
- Division of Biostatistics University of Minnesota Minneapolis MN USA
| | - Uzay E Emir
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | - Diane Hutter
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | | | - Khalaf O Bushara
- Department of Neurology University of Minnesota Minneapolis MN USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | - Lynn E Eberly
- Division of Biostatistics University of Minnesota Minneapolis MN USA
| | - Gülin Öz
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| |
Collapse
|
25
|
Liu S, Adewole D, Yu L, Sid V, Wang B, O K, Yang C. Rutin attenuates inflammatory responses induced by lipopolysaccharide in an in vitro mouse muscle cell (C2C12) model. Poult Sci 2019; 98:2756-2764. [DOI: 10.3382/ps/pez037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/22/2019] [Indexed: 01/19/2023] Open
|
26
|
Castelo-Branco PV, Alves HJ, Pontes RL, Maciel-Silva VL, Ferreira Pereira SR. Ascorbic acid reduces the genetic damage caused by miltefosine (hexadecylphosphocholine) in animals infected by Leishmania (Leishamnia) infantum without decreasing its antileishmanial activity. Int J Parasitol Drugs Drug Resist 2019; 9:8-15. [PMID: 30578864 PMCID: PMC6304451 DOI: 10.1016/j.ijpddr.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Leishamaniasis is a neglected disease caused by over 20 Leishmania species, occurring in more than a hundred countries. Miltefosine (hexadecylphosphocholine) is the single oral drug used in treatment for leshmaniases, including cases of infections resistant to pentavalent antimony. Our group has recently demonstrated the ability of miltefosine to cause genomic lesions by DNA oxidation. Acknowledging that antioxidant compounds can potentially modulate Reactive Oxygen Species (ROS), our study verified whether ascorbic acid reduces the genotoxic and mutagenic effects caused by miltefosine, and whether it interferes with drug efficacy. For this purpose, uninfected Swiss mice received simultaneous (single dose treatment) miltefosine and ascorbic acid (gavage and intraperitoneally), besides pre and post treatments (ascorbic acid 24 h before and after drug administration); furthermore, Balb/c mice infected with Leishmania infantum received miltefosine plus ascorbic acid (repeated doses treatment). We conducted comet assays, micronucleus tests, dosages of superoxide dismutase enzyme and parasitic burden by the limiting dilution assay. We observed that ascorbic acid administered intraperitoneally displayed a protective effect over damage caused by miltefosine. However, this effect was not not observed when the same doses were administered via gavage, possibly due to low serum levels of this antioxidant. Ascorbic acid's protective effect reinforces that miltefosine damages DNA by oxidizing its nitrogenous bases, which is reduced by ascorbic acid due to its ability of protecting genetic material from the action of ROS. Therefore, our results show that this drug is efficient in reducing parasitic burden of L. infantum.
Collapse
Affiliation(s)
- Patrícia Valéria Castelo-Branco
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil
| | - Hugo José Alves
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil
| | - Raissa Lacerda Pontes
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil
| | - Vera Lucia Maciel-Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil; Department of Chemistry and Biology, University of State of Maranhão, São Luís, Maranhão, Brazil
| | - Silma Regina Ferreira Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil.
| |
Collapse
|
27
|
Barry-Heffernan C, Ekena J, Dowling S, Pinkerton ME, Viviano K. Biomarkers of oxidative stress as an assessment of the redox status of the liver in dogs. J Vet Intern Med 2019; 33:611-617. [PMID: 30758875 PMCID: PMC6430861 DOI: 10.1111/jvim.15443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/23/2019] [Indexed: 11/30/2022] Open
Abstract
Background Oxidative stress is associated with a diverse group of liver disorders across species. Objectives Determine whether glutathione (GSH) concentration in plasma and red blood cells correlates with liver GSH concentration in dogs and evaluate whether other markers of systemic oxidative stress, plasma vitamin E and urine 8‐isoprostanes/creatinine (F2‐IsoPs/Cr) concentrations, correlate with liver GSH. Animals Thirty‐four client‐owned dogs undergoing clinically indicated liver biopsy and 15 healthy control dogs. Methods Prospective, observational cross‐sectional study. Urine and blood were collected before liver biopsy. Plasma, erythrocyte, and liver GSH were measured using high performance liquid chromatography (HPLC); vitamin E was measured by HPLC, and F2‐IsoPs/Cr was measured by gas chromatography/mass spectrometry. Results All dogs were treated at the discretion of the attending clinician (24/34 received antioxidants; 4/34 fed therapeutic liver diet), which included dogs with primary or secondary liver disease (inflammatory (n = 21), metabolic (n = 9), vascular (n = 2), and neoplastic (n = 2)). Median GSH concentrations in plasma, erythrocyte, and liver were 0.18 mg/dL (range 0.14 to 0.56 mg/dL), 56.7 mg/dL (18.3 to 79.2 mg/dL), and 181 mg/dL (39.9 to 527 mg/dL), respectively. No significant correlations were found between liver GSH and erythrocyte GSH, plasma GSH, vitamin E, or F2‐IsoPs/Cr. Dogs undergoing clinically indicated liver biopsy had significantly higher urine F2‐IsoPs/Cr than did healthy controls (5.89 vs 2.98 ng/mg; P < .0001). Conclusions and Clinical Importance Erythrocyte and plasma GSH are not indicative of liver GSH concentration in dogs. In addition, dogs undergoing clinically indicated liver biopsy have evidence of increased systemic oxidative stress compared to healthy controls.
Collapse
Affiliation(s)
| | - Joanne Ekena
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sarah Dowling
- Lancaster Veterinary Specialties, Lancaster, Pennsylvania
| | - Marie E Pinkerton
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Katrina Viviano
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
28
|
Saleh A, ElFayoumi HM, Youns M, Barakat W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:165-175. [PMID: 30465055 DOI: 10.1007/s00210-018-1579-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a broad term used to describe a large number of diseases characterized by uncontrolled cell proliferation that leads to tumor production. Cancer is associated with mutations in genes controlling proliferation and apoptosis, oxidative stress, fatty acid synthase (FAS) expression, and other mechanisms. Currently, most antineoplastic drugs have severe adverse effects and new effective and safe drugs are needed. This study aims to investigate the possible anticancer activity of rutin and orlistat which are both safely used clinically in humans against two breast cancer models (in vivo EAC and in vitro MCF7) and the pancreatic cancer cell line (PANC-1). Our results have shown that both rutin and orlistat exerted an in vivo anticancer activity as evidenced by the decrease in tumor volume, CEA level, cholesterol content, FAS, and the exerted antioxidant action (reduced MDA level and increased GSH content) and through histopathological examination. In addition, both were cytotoxic to MCF-7 and Panc-1 cell lines by promoting apoptosis. In conclusion, the anticancer activity of rutin and orlistat makes them promising candidates for cancer treatment alone or in combination with other anticancer drugs specially that they are used clinically with an acceptable safety profile.
Collapse
Affiliation(s)
- Amira Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hassan M ElFayoumi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Helwan, Egypt.,Department of Biochemistry, Oman Pharmacy Institute, Ministry of Health, Muscat, Oman
| | - Waleed Barakat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
29
|
Szulczewska-Remi A, Nogala-Kałucka M, Nowak KW. Study on the influence of palm oil on blood and liver biochemical parameters, beta-carotene and tocochromanols content as well as antioxidant activity in rats. J Food Biochem 2018; 43:e12707. [PMID: 31353667 DOI: 10.1111/jfbc.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022]
Abstract
In the ongoing discussion on the health properties of palm oil, a study of the effect a diet supplemented with palm oil on blood and liver biochemical parameters, beta-carotene and tocochromanols content as well as antioxidant activity was undertaken. Forty Wistar rats were randomly divided into five groups, fed with a diet supplemented with plant-based frying commercial fat, palm oil, 7.5% palm oil and 2.5% concentrate from palm oil and 10% of rapeseed oil, respectively. After 21 days, blood samples and livers were collected to determine beta-carotene and tocochromanols concentrations, antioxidant activity using DPPH* radical scavenging activity and TEAC methods, insulin, glucagon, serum triacyloglycerols and cholesterol levels, glucose in blood serum and glycogen in the livers. Research has shown valuable biological properties of palm oil in terms of plasma glucose, total cholesterol, low-density lipoprotein (LDL) cholesterol, and triacylglycerol concentrations which was related to the high content of beta-carotene and tocochromanols. PRACTICAL APPLICATION: Public concern over the health properties of palm oil has been growing. Therefore, this study supplements existing knowledge in this area based on experimental rat observations. In the presented research, plasma glucose was significantly reduced and no additional growth of total or LDL cholesterol, as well as triacylglycerol concentration, was observed after consuming a palm oil-based diet. Palm oil was a good source of beta-carotene and tocochromanols, which were preferentially distributed in rats' livers. Bioavailability of vitamin E-active compounds in palm oil supplemented rats' livers was relatively high as compared to the rapeseed oil group, therefore this observation complements literature in the field of tocotrienols and tocopherols. Studies have not confirmed the harmful effect of palm oil on rats, however in depth human studies appear to be a promising direction for further research.
Collapse
Affiliation(s)
- Aleksandra Szulczewska-Remi
- Department of Controlling, Financial Analysis and Valuation, Poznań University of Economics and Business, Poznań, Poland
| | | | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
30
|
Genistein and Ascorbic Acid Reduce Oxidative Stress-Derived DNA Damage Induced by the Antileishmanial Meglumine Antimoniate. Antimicrob Agents Chemother 2018; 62:AAC.00456-18. [PMID: 29941649 DOI: 10.1128/aac.00456-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Meglumine antimoniate (Glucantime) is a pentavalent antimonial used to treat leishmaniasis, despite its acknowledged toxic effects, such as its ability to cause oxidative damage to lipids and proteins. Recently, our group demonstrated that meglumine antimoniate causes oxidative stress-derived DNA damage. Knowing that antioxidants modulate reactive oxygen species, we evaluated the capacity of genistein and ascorbic acid for preventing genotoxicity caused by meglumine antimoniate. For that, mice (n = 5/group) received genistein (via gavage) in doses of 5, 10, and 20 mg/kg for three consecutive days. After this period, they were treated with 810 mg/kg meglumine antimoniate via intraperitoneal (i.p.) route. Furthermore, mice (n = 5/group) simultaneously received ascorbic acid (i.p.) in doses of 30, 60, and 120 mg/kg and 810 mg/kg meglumine antimoniate. We also conducted post- and pretreatment assays, in which animals received ascorbic acid (60 mg/kg) 24 h prior to or after receiving meglumine antimoniate. Genomic instability and mutagenicity were analyzed through conventional comet assay and enzymatic assay using formamide pyrimidine DNA glycosylase (Fpg) enzyme, as well as the micronucleus test, respectively. Meglumine antimoniate induced an increase in the DNA damage after digestion with Fpg, reinforcing its mutagenic potential by oxidizing DNA bases, which was prevented by genistein. Similarly, ascorbic acid was capable of reducing mutagenic effects in simultaneous treatment as well as in posttreatment. Therefore, our results demonstrate that both compounds are efficient in preventing mutations in mammalian cells treated with meglumine antimoniate.
Collapse
|
31
|
Levels and fluxes in enzymatic antioxidants following gamma irradiation are inadequate to confer radiation resistance in Drosophila melanogaster. Mol Biol Rep 2018; 45:1175-1186. [DOI: 10.1007/s11033-018-4270-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
32
|
Implications of plasma thiol redox in disease. Clin Sci (Lond) 2018; 132:1257-1280. [DOI: 10.1042/cs20180157] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.
Collapse
|
33
|
Joers JM, Deelchand DK, Lyu T, Emir UE, Hutter D, Gomez CM, Bushara KO, Eberly LE, Öz G. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol 2018; 83:816-829. [PMID: 29575033 DOI: 10.1002/ana.25212] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. METHODS A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." RESULTS MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. INTERPRETATION Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Tianmeng Lyu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Uzay E Emir
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN.,School of Health Sciences, Purdue University, West Lafayette, IN
| | - Diane Hutter
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | - Khalaf O Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
34
|
Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Keijer J, Borel P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 2017; 61:1600685. [PMID: 28101967 PMCID: PMC5516247 DOI: 10.1002/mnfr.201600685] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Carotenoid dietary intake and their endogenous levels have been associated with a decreased risk of several chronic diseases. There are indications that carotenoid bioavailability depends, in addition to the food matrix, on host factors. These include diseases (e.g. colitis), life-style habits (e.g. smoking), gender and age, as well as genetic variations including single nucleotide polymorphisms that govern carotenoid metabolism. These are expected to explain interindividual differences that contribute to carotenoid uptake, distribution, metabolism and excretion, and therefore possibly also their association with disease risk. For instance, digestion enzymes fostering micellization (PNLIP, CES), expression of uptake/efflux transporters (SR-BI, CD36, NPC1L1), cleavage enzymes (BCO1/2), intracellular transporters (FABP2), secretion into chylomicrons (APOB, MTTP), carotenoid metabolism in the blood and liver (LPL, APO C/E, LDLR), and distribution to target tissues such as adipose tissue or macula (GSTP1, StARD3) depend on the activity of these proteins. In addition, human microbiota, e.g. via altering bile-acid concentrations, may play a role in carotenoid bioavailability. In order to comprehend individual, variable responses to these compounds, an improved knowledge on intra-/interindividual factors determining carotenoid bioavailability, including tissue distribution, is required. Here, we highlight the current knowledge on factors that may explain such intra-/interindividual differences.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of HealthStrassenLuxembourg
| | | | - Lars O. Dragsted
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Charlotte S. Nielsen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology IHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ralph Rühl
- Paprika Bioanalytics BTDebrecenHungary
- MTA‐DE Public Health Research Group of the Hungarian Academy of SciencesFaculty of Public HealthUniversity of DebrecenDebrecenHungary
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Patrick Borel
- NORT, Aix‐Marseille Université, INRAINSERMMarseilleFrance
| |
Collapse
|
35
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
36
|
Böger RH, Schwedhelm E, Maas R, Quispe-Bravo S, Skamira C. ADMA and oxidative stress may relate to the progression of renal disease: rationale and design of the VIVALDI study. Vasc Med 2016. [DOI: 10.1177/1358836x0501000114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The renin angiotensin system has been shown to be involved in the patho genesis of vascular and renal sequelae of diabetes mellitus. In type 2 diabetes mel litus, angiotensin receptor blockers have been shown to exert clinical benefit by reducing the progression of diabetic nephropathy. They also improve endothelium- mediated vascular function. The latter effect is partly due to the reduction of angiotensin II-associated oxidative stress. Moreover, small clinical studies have shown that treatment with angiotensin receptor blockers also reduces the circulating levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthase. In the VIVALDI trial, the ability of the angiotensin receptor blocker telmisartan to reduce the progression of diabetic nephropathy (associated with proteinuria) in com parison with valsartan in more than 800 patients with type 2 diabetes during 1 year of treatment is being studied. In order to gain more detailed insight into the poten tial pathomechanisms associated with this effect, further end-points have been defined. Among these are the circulating levels of ADMA and the urinary excretion rate of 8-iso-prostaglandin F2α (8-iso-PGF 2α). The former is an endogenous inhibitor of NO-mediated vascular function(s) and a prospectively determined marker of major cardiovascular events and mortality; the latter is a lipid peroxidation product resulting from the nonenzymatic peroxidation of arachidonic acid, which exerts detrimental vascular effects similar to those of thromboxane A2. Urinary 8-iso-PGF 2α has been shown in clinical studies to be an independent marker of cardiovascular disease. Highlighting the effects of telmisartan on ADMA and 8-iso-PGF levels in such a large cohort of diabetic patients will enhance our understanding of the roles of dys functional NO metabolism and redox mechanisms in the pathogenesis of end-organ damage and its prevention by pharmacotherapy with angiotensin receptor blockers.
Collapse
Affiliation(s)
- Rainer H Böger
- Institute of Experimental and Clinical Pharmacology,
University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Experimental and Clinical Pharmacology,
University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology,
University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Cord Skamira
- Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany
| |
Collapse
|
37
|
Stonehouse W, Brinkworth GD, Thompson CH, Abeywardena MY. Short term effects of palm-tocotrienol and palm-carotenes on vascular function and cardiovascular disease risk: A randomised controlled trial. Atherosclerosis 2016; 254:205-214. [PMID: 27760402 DOI: 10.1016/j.atherosclerosis.2016.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS In vitro, ex vivo and animal studies suggest palm-based tocotrienols and carotenes enhance vascular function, but limited data in humans exists. The aim was to examine the effects of palm-tocotrienols (TRF- 80) and palm-carotene (CC-60) supplementation on vascular function and cardiovascular disease (CVD) risk factors in adults at increased risk of impaired vascular function. METHODS Ninety men and women (18-70 yr, 20-45 kg/m2) with type 2 diabetes, impaired fasting glucose and/or elevated waist circumference were randomised to consume either TRF-80 (420 mg/day tocotrienol + 132 mg/day tocopherol), CC-60 (21 mg/day carotenes) or placebo (palm olein) supplements for 8 weeks. Brachial artery flow-mediated dilation (FMD), other physiological and circulatory markers of vascular function, lipid profiles, glucose, insulin and inflammatory markers were assessed pre- and post-supplementation. Pairwise comparisons were performed using mixed effects longitudinal models (n = 87, n = 3 withdrew before study commencement). RESULTS Plasma α- and β-carotene and α-, δ- and γ-tocotrienol concentrations increased in CC-60 and TRF-80 groups, respectively, compared to placebo (mean ± SE difference in total plasma carotene change between CC-60 and placebo: 1.5 ± 0.13 μg/ml, p < 0.0001; total plasma tocotrienol change between TRF-80 and placebo: 0.36 ± 0.05 μg/ml, p < 0.0001). Neither FMD (treatment x time effect for CC-60 vs. placebo, p = 0.71; TRF-80 vs. placebo, p = 0.80) nor any other vascular function and CVD outcomes were affected by treatments. CONCLUSIONS CC-60 and TRF-80 supplementation increased bioavailability of palm-based carotenes and tocotrienols but had no effects, superior or detrimental, on vascular function or CVD risk factors.
Collapse
Affiliation(s)
- Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia.
| | - Grant D Brinkworth
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| | | | - Mahinda Y Abeywardena
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| |
Collapse
|
38
|
γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 2016; 115:814-24. [PMID: 27575851 PMCID: PMC5046209 DOI: 10.1038/bjc.2016.257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common malignancies worldwide and even develops resistance to chemotherapeutic agents over time. As a result survival for patients with CRC remains poor. Method: We investigated both in vitro and in vivo effects of γ-tocotrienol (γ-T3) alone and in combination with capecitabine. Apoptosis and cytotoxicity assays were performed by MTT and FACS analysis, whereas expression of proteins was investigated using western blotting and immunohistochemistry. Results: The γ-T3 inhibited the proliferation of CRC cells with wild-type or mutated KRAS. It also induced apoptosis, inhibited colony formation, and suppressed key regulators of cell survival, cell proliferation, invasion, angiogenesis, and metastasis. Furthermore, γ-T3 enhanced the anticancer effects of capecitabine in CRC cells. In a nude mouse xenograft model of human CRC, oral administration of γ-T3 inhibited tumour growth and enhanced the antitumour efficacy of capecitabine. Western blot and immunohistochemical analysis results indicated that expression of Ki-67, cyclin D1, MMP-9, CXCR4, NF-κB/p65, and VEGF was lower in tumour tissue from the combination treatment group. Combination treatment also downregulated NF-κB and NF-κB-regulated gene products. Conclusions: Our findings suggest that γ-T3 inhibited the growth of human CRC and sensitised CRC to capecitabine by regulating proteins linked to tumourigenesis.
Collapse
|
39
|
The Use of Complementary and Alternative Medicine Supplements of Potential Concern during Breast Cancer Chemotherapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4382687. [PMID: 27528880 PMCID: PMC4977399 DOI: 10.1155/2016/4382687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
Abstract
Objective. While many Complementary and Alternative Medicines (CAM) are unlikely to interact negatively with conventional oncology treatment, some ingestible CAM substances have biological activities that may reduce the effectiveness of chemotherapy or radiation. This study surveyed women with breast cancer in order to document the extent to which women with breast cancer use these CAM substances of concern concurrently with conventional treatments. Methods. A total of 398 women completed a survey describing their use of CAM at various time points in their cancer treatment. This report focuses on a subsample of 250 women receiving chemotherapy or radiation who reported using specific one or more of several chemotherapies. Results. Of those participating, 104 (43.7%) of those receiving chemotherapy (n = 238) and 45 (32.3%) of those receiving radiation (139; 58.4% of all patients) reported using one or more CAM substances that could be cause for concern when taken concurrently. Conclusion. Research is needed to understand the real risks associated with CAM and conventional polypharmacy. If risks associated with CAM conventional polypharmacy use prove to be substantial then improved systems to assure all women get advice regarding herb and supplement use during breast cancer treatment appear to be needed.
Collapse
|
40
|
Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2107-21. [PMID: 27369735 DOI: 10.1016/j.bbagen.2016.06.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Naturally occurring polyphenols found in food sources provide huge health benefits. Several polyphenolic compounds are implicated in the prevention of disease states, such as cancer. One of the mechanisms by which polyphenols exert their biological actions is by interfering in the protein kinase C (PKC) signaling pathways. PKC belongs to a superfamily of serine-threonine kinase and are primarily involved in phosphorylation of target proteins controlling activation and inhibition of many cellular processes directly or indirectly. SCOPE OF REVIEW Despite the availability of substantial literature data on polyphenols' regulation of PKC, no comprehensive review article is currently available on this subject. This article reviews PKC-polyphenol interactions and its relevance to various disease states. In particular, salient features of polyphenols, PKC, interactions of naturally occurring polyphenols with PKC, and future perspective of research on this subject are discussed. MAJOR CONCLUSIONS Some polyphenols exert their antioxidant properties by regulating the transcription of the antioxidant enzyme genes through PKC signaling. Regulation of PKC by polyphenols is isoform dependent. The activation or inhibition of PKC by polyphenols has been found to be dependent on the presence of membrane, Ca(2+) ion, cofactors, cell and tissue types etc. Two polyphenols, curcumin and resveratrol are in clinical trials for the treatment of colon cancer. GENERAL SIGNIFICANCE The fact that 74% of the cancer drugs are derived from natural sources, naturally occurring polyphenols or its simple analogs with improved bioavailability may have the potential to be cancer drugs in the future.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| | - Rashmi Ramani
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - M Olufemi Suraju
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
41
|
De Bie J, Langbeen A, Verlaet AAJ, Florizoone F, Immig I, Hermans N, Fransen E, Bols PEJ, Leroy JLMR. The effect of a negative energy balance status on β-carotene availability in serum and follicular fluid of nonlactating dairy cows. J Dairy Sci 2016; 99:5808-5819. [PMID: 27157583 DOI: 10.3168/jds.2016-10870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Maternal metabolic pressure due to a cow's negative energy balance (NEB) has a negative effect on oocyte quality as a result of increased oxidative stress. In this study, we hypothesized that a NEB status may negatively affect the availability of β-carotene (bC, an antioxidant) in the micro-environment of the oocyte or follicular fluid (FF) and that daily bC supplementation can increase bC availability. We aimed to (1) determine the effect of a nutritionally induced NEB on bC concentrations in serum and FF as well as on the presence of bC metabolites, oxidative stress levels, and follicular growth in a nonlactating dairy cow model, and (2) investigate how this effect could be altered by dietary bC supplementation. Six multiparous nonlactating Holstein Friesian cows were subjected to 4 consecutive dietary treatments, 28 d each: (1) 1.2 × maintenance (M) or positive energy balance (PEB) without bC supplement (PEB-bC), (2) 1.2 × M with daily supplement of 2,000mg of bC comparable to the level of bC intake at grazing (PEB+bC), (3) 0.6 × M with 2,000mg of bC (NEB+bC), and (4) 0.6 × M (NEB-bC). At the end of each treatment, estrous cycles were synchronized and blood and FF of the largest follicle were sampled and analyzed for bC, retinol, α-tocopherol, free fatty acids, estradiol, and progesterone. Serum cholesterol, triglycerides, urea, insulin growth factor 1, growth hormone, total antioxidant status (TAS), and red blood cell glutathione (GSH) concentrations were determined as well. All cows lost body weight during both energy restriction periods and showed increased serum free fatty acid concentrations, illustrating a NEB. A dietary induced NEB reduced FF bC, but not plasma bC or plasma and FF retinol concentrations. However, bC and retinol concentrations drastically increased in both fluid compartments after bC supplementation. Follicular diameter was increased in supplemented PEB cows. Energy restriction reduced the TAS and red blood cell GSH, whereas daily bC supplementation could restore GSH concentrations, but not the TAS, to levels present in healthy PEB cows. In conclusion, daily bC supplementation can substantially improve bC and retinol availability in the oocyte's micro-environment, irrespective of the energy balance, which may affect follicular development and oocyte quality in the presence of maternal metabolic stress. This knowledge can be of importance to optimize nutritional strategies in the dairy industry to feed for optimal oocyte quality and fertility.
Collapse
Affiliation(s)
- J De Bie
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium.
| | - A Langbeen
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - A A J Verlaet
- Laboratory of Nutrition and Functional Food Science, Department of Pharmaceutical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - F Florizoone
- DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| | - I Immig
- DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| | - N Hermans
- Laboratory of Nutrition and Functional Food Science, Department of Pharmaceutical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - E Fransen
- StatUa Center for Statistics, University of Antwerp, B-2610 Wilrijk, Belgium
| | - P E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| | - J L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
| |
Collapse
|
42
|
Abstract
The contemporary scientific community has presently recognized flavonoids to be a unique class of therapeutic molecules due to their diverse therapeutic properties. Of these, rutin, also known as vitamin P or rutoside, has been explored for a number of pharmacological effects. Tea leaves, apples, and many more possess rutin as one of the active constituents. Today, rutin has been observed for its nutraceutical effect. The present review highlights current information and health-promoting effects of rutin. Along with this, safety pharmacology issues and SAR of the same have also been discussed.
Collapse
|
43
|
Ramalingayya GV, Nampoothiri M, Nayak PG, Kishore A, Shenoy RR, Mallikarjuna Rao C, Nandakumar K. Naringin and Rutin Alleviates Episodic Memory Deficits in Two Differentially Challenged Object Recognition Tasks. Pharmacogn Mag 2016; 12:S63-70. [PMID: 27041861 PMCID: PMC4792002 DOI: 10.4103/0973-1296.176104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Cognitive decline or dementia is a debilitating problem of neurological disorders such as Alzheimer's and Parkinson's disease, including special conditions like chemobrain. Dietary flavonoids proved to be efficacious in delaying the incidence of neurodegenerative diseases. Two such flavonoids, naringin (NAR) and rutin (RUT) were reported to have neuroprotective potential with beneficial effects on spatial and emotional memories in particular. However, the efficacy of these flavonoids is poorly understood on episodic memory, which comprises an important form of autobiographical memory. Objective: This study objective is to evaluate NAR and RUT to reverse time-delay-induced long-term and scopolamine-induced short-term episodic memory deficits in Wistar rats. Materials and Methods: We have evaluated both short-term and long-term episodic memory forms using novel object recognition task. Open field paradigm was used to assess locomotor activity for any confounding influence on memory assessment. Donepezil was used as positive control and was effective in both models at 1 mg/kg, i.p. Results: Animals treated with NAR and RUT at 50 and 100 mg/kg, p.o. spent significantly more time exploring novel object compared to familiar one, whereas control animals spent almost equal time with both objects in choice trial. NAR and RUT dose-dependently increased recognition and discriminative indices in time-induced long-term as well as scopolamine-induced short-term episodic memory deficit models without interfering with the locomotor activity. Conclusion: We conclude that, NAR and RUT averted both short- and long-term episodic memory deficits in Wistar rats, which may be potential interventions for neurodegenerative diseases as well as chemobrain condition. SUMMARY Incidence of Alzheimer's disease is increasing globally and the current therapy is only symptomatic. Curative treatment is a major lacuna. NAR and RUT are natural flavonoids proven for their pleiotropic pharmacological effects with potential neuroprotective benefits. The study evaluated these flavonoids for their potential to improve the most common form of episodic memory (memory of autobiographical events in relation to time, places etc.) in two differential animal models assessing short-term and long-term memory, respectively. We also found that NAR and RUT were able to reverse both short-term and long-term memory deficits dose dependently in female Wistar rats.
Abbreviations used: AD: Alzheimer's disease, AChE: Acetylcholinesterase, COX: Cyclooxygenase, DI: Discriminative index, ITI: Inter trial interval, NAR: Naringin, RUT: Rutin, NORT: Novel object recognition task, NOS: Nitric oxide synthase, QOL: Quality of life, RI: Recognition index, WFI: Water for injection
Collapse
Affiliation(s)
- Grandhi Venkata Ramalingayya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
44
|
Zhao L, Fang X, Marshall MR, Chung S. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules 2016; 21:344. [PMID: 26978344 PMCID: PMC6274282 DOI: 10.3390/molecules21030344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Maurice R Marshall
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
45
|
Blanching alters the phenolic constituents and in vitro antioxidant and anticholinesterases properties of fireweed (Crassocephalum crepidioides). J Taibah Univ Med Sci 2015. [DOI: 10.1016/j.jtumed.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
46
|
Kopalli SR, Hwang SY, Won YJ, Kim SW, Cha KM, Han CK, Hong JY, Kim SK. Korean red ginseng extract rejuvenates testicular ineffectiveness and sperm maturation process in aged rats by regulating redox proteins and oxidative defense mechanisms. Exp Gerontol 2015; 69:94-102. [DOI: 10.1016/j.exger.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
|
47
|
Hosseinzadeh H, Nassiri-Asl M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 2014; 37:783-8. [PMID: 24879037 DOI: 10.1007/s40618-014-0096-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND In recent years, flavonoids have been revealed to be helpful in the treatment of many diseases. Rutin (3,3',4',5,7-pentahydroxyflavone-3-rhamnoglucoside) is an important flavonoid that is consumed in the daily diet. It is also known as vitamin P and quercetin-3-O-rutinoside. In addition, it is found in many food items, vegetables, and beverages. The cytoprotective effects of rutin, including gastroprotective, hepatoprotective, and anti-diabetic effects, have been shown in several studies. Furthermore, rutin has several pharmacological effects such as anti-inflammatory and anti-glycation activities. AIM This work reviewed characteristic, pharmacokinetic, and metabolic effects of rutin in all experimental and human studies. CONCLUSIONS Based on the above summarized effects of rutin, this flavonoid appears to be a potent component that could be considered in the treatment of several gastrointestinal diseases and diabetes.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | | |
Collapse
|
48
|
Motamedshariaty VS, Amel Farzad S, Nassiri-Asl M, Hosseinzadeh H. Effects of rutin on acrylamide-induced neurotoxicity. ACTA ACUST UNITED AC 2014; 22:27. [PMID: 24524427 PMCID: PMC3927829 DOI: 10.1186/2008-2231-22-27] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
Background Rutin is an important flavonoid that is consumed in the daily diet. The cytoprotective effects of rutin, including antioxidative, and neuroprotective have been shown in several studies. Neurotoxic effects of acrylamide (ACR) have been established in humans and animals. In this study, the protective effects of rutin in prevention and treatment of neural toxicity of ACR were studied. Results Rutin significantly reduced cell death induced by ACR (5.46 mM) in time- and dose-dependent manners. Rutin treatment decreased the ACR-induced cytotoxicity significantly in comparison to control (P <0.01, P < 0.001). Rutin (100 and 200 mg/kg) could prevent decrease of body weight in rats. In combination treatments with rutin (50, 100 and 200 mg/kg), vitamin E (200 mg/kg) and ACR, gait abnormalities significantly decreased in a dose-dependent manner (P < 0.01 and P < 0.001). The level of malondialdehyde significantly decreased in the brain tissue of rats in both preventive and therapeutic groups that received rutin (100 and 200 mg/kg). Conclusion It seems that rutin could be effective in reducing neurotoxicity and the neuroprotective effect of it might be mediated via antioxidant activity.
Collapse
Affiliation(s)
| | | | | | - Hossein Hosseinzadeh
- Pharmacodynamics and Toxicological Department, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Su KY, Yu CY, Chen YP, Hua KF, Chen YLS. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. Altern Ther Health Med 2014. [PMID: 24417898 DOI: 10.1186/1472-6882-14-21.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Saussurea involucrata (Kar. et Kir.) (S. involucrate), is a rare traditional Chinese medicinal herb. Rutin and hispidulin as well as their metabolites are flavonoids of the flavonol type that abound in S. involucrata, which has been reported to inhibit nonoxidative advanced glycation end products which was involved in physiological inflammation. This study aims to investigate the role of 3,4-dihydroxytoluene (DHT), a metabolite of rutin, in inflammatory inhibition and its involved mechanism. METHODS This study utilized lipopolysaccharide (LPS) stimulated murine macrophage cell line RAW 264.7 as inflammatory model. The inhibitory effects of DHT were evaluated by the expression level of several inflammation markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW264.7 after LPS treatment. In addition, underlying mechanisms, the activation of mitogen-activated protein kinases (MAPKs) and NF-κB, were also investigated. RESULTS Our results showed that DHT significantly suppressed the LPS-induced production of nitric oxide (NO), iNOS, and COX-2 in a dose-dependent manner without cytotoxicity. DHT also reduced the generation of proinflammatory cytokines majorly in tumor necrosis factor (TNF)-α and minor in interleukin (IL)-1β and IL-6. In addition, LPS-stimulated I-κBα phosphorylation and degradation followed by translocation of the nuclear factor κB (NF-kB)-p65 from the cytoplasm to the nucleus were attenuated after DHT treatment. CONCLUSIONS Combined, the results suggest that DHT might exert anti-inflammatory effects in vitro in LPS stimulated RAW 264.7 macrophages and is potential in adjuvant treatment in inflammation disease.
Collapse
Affiliation(s)
| | | | | | | | - Yi-Lin Sophia Chen
- Department of Biotechnology and Animal Science, National Ilan University, Shen-Lung Road, Ilan 260, Taiwan.
| |
Collapse
|
50
|
Su KY, Yu CY, Chen YP, Hua KF, Chen YLS. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:21. [PMID: 24417898 PMCID: PMC3900474 DOI: 10.1186/1472-6882-14-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/10/2014] [Indexed: 01/01/2023]
Abstract
Background Saussurea involucrata (Kar. et Kir.) (S. involucrate), is a rare traditional Chinese medicinal herb. Rutin and hispidulin as well as their metabolites are flavonoids of the flavonol type that abound in S. involucrata, which has been reported to inhibit nonoxidative advanced glycation end products which was involved in physiological inflammation. This study aims to investigate the role of 3,4-dihydroxytoluene (DHT), a metabolite of rutin, in inflammatory inhibition and its involved mechanism. Methods This study utilized lipopolysaccharide (LPS) stimulated murine macrophage cell line RAW 264.7 as inflammatory model. The inhibitory effects of DHT were evaluated by the expression level of several inflammation markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW264.7 after LPS treatment. In addition, underlying mechanisms, the activation of mitogen-activated protein kinases (MAPKs) and NF-κB, were also investigated. Results Our results showed that DHT significantly suppressed the LPS-induced production of nitric oxide (NO), iNOS, and COX-2 in a dose-dependent manner without cytotoxicity. DHT also reduced the generation of proinflammatory cytokines majorly in tumor necrosis factor (TNF)-α and minor in interleukin (IL)-1β and IL-6. In addition, LPS-stimulated I-κBα phosphorylation and degradation followed by translocation of the nuclear factor κB (NF-kB)-p65 from the cytoplasm to the nucleus were attenuated after DHT treatment. Conclusions Combined, the results suggest that DHT might exert anti-inflammatory effects in vitro in LPS stimulated RAW 264.7 macrophages and is potential in adjuvant treatment in inflammation disease.
Collapse
|