1
|
Gatti M, Pea F. The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: how the ugly duckling turned into a swan. Expert Rev Clin Pharmacol 2023; 16:1035-1051. [PMID: 37874608 DOI: 10.1080/17512433.2023.2274984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION The growing spread of infections caused by multidrug-resistant pathogens makes the need of tailoring antimicrobial therapies by means of a 'patient-centered' approach fundamental. In this scenario, therapeutic drug monitoring (TDM) of emerging antimicrobial candidates may be a valuable approach, but expert interpretation of TDM results should be granted for making them more clinically useful. The MD Clinical Pharmacologist may take over this task since this specialist may couple PK/PD expertise on drugs with a medical background and may provide expert interpretation of TDM results of antimicrobials for tailoring therapy on real-time in each single patient based on specific both drug/pathogen issues and patient issues. AREAS COVERED This article aims to highlight the main key-points and organizational aspects for implementing a successful TDM-based expert clinical pharmacological advice (ECPA) program for tailoring antimicrobial therapies on real-time in different hospitalized patient special populations. EXPERT OPINION TDM-based ECPA programs lead by the MD Clinical Pharmacologist may represent a way forward for maximizing clinical efficacy and for minimizing the risk of resistance developments and/or toxicity of antimicrobials. Stakeholders should be aware of the fact that this innovative approach may be cost-effective.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Green Automated Solid Phase Extraction to Measure Levofloxacin in Human Serum via Liquid Chromatography with Fluorescence Detection for Pharmacokinetic Study. SEPARATIONS 2023. [DOI: 10.3390/separations10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
A simple, selective, rapid, sensitive and less costly green automated solid phase extraction bio-analytical high-performance liquid chromatographic-based technique with fluorescence detection (Aut-SPE-BA-HPLC-FL) for the quantification of levofloxacin in human serum samples has been developed and validated. The serum samples were loaded into the chromatographic system without prior treatment and then injected into short (20 mm × 4.6 mm, 20 µm) protein-coated (PC) µBondapak CN (µBCN) silica pre-column (PC-µBCN-pre-column). Levofloxacin was retained and pre-concentrated on the head of the PC-µBCN-pre-column, while proteins and other polar components were eliminated using phosphate buffer saline (PBS), pH 7.4, as the first mobile phase in the extraction step. Levofloxacin is then transferred to the analytical column; ZORBAX Eclipse XDB-C18 (150 mm × 46 mm, 5 µm), through the aid of a column-switching valve technique, on-throughs the elution mode using the second mobile phase containing a methanol and phosphate buffer (0.05 M, pH 5) in a ratio of 70:30 (v/v). Levofloxacin signals were detected using a fluorescence detector operated at excitation/emission wavelengths of 295/500 nm. The proposed Aut-SPE-BA-HPLC-FL methodology showed linearity over a levofloxacin concentration range of 10–10,000 ng/mL (r2 = 0.9992), with good recoveries ranging from 87.12 to 97.55%. Because of the validation qualities in terms of linearity, recovery, precision, accuracy, selectivity and robustness, the Aut-SPE-BA-HPLC-FL method has been used in some clinical trials for therapeutic drug monitoring and the pharmacokinetic study of levofloxacin in human serum.
Collapse
|
3
|
Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, Akkerman OW, Aleksa A, van Altena R, de Oñata WA, Bhavani PK, Van't Boveneind-Vrubleuskaya N, Carvalho ACC, Centis R, Chakaya JM, Cirillo DM, Cho JG, D Ambrosio L, Dalcolmo MP, Denti P, Dheda K, Fox GJ, Hesseling AC, Kim HY, Köser CU, Marais BJ, Margineanu I, Märtson AG, Torrico MM, Nataprawira HM, Ong CWM, Otto-Knapp R, Peloquin CA, Silva DR, Ruslami R, Santoso P, Savic RM, Singla R, Svensson EM, Skrahina A, van Soolingen D, Srivastava S, Tadolini M, Tiberi S, Thomas TA, Udwadia ZF, Vu DH, Zhang W, Mpagama SG, Schön T, Migliori GB. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis 2022; 26:483-499. [PMID: 35650702 PMCID: PMC9165737 DOI: 10.5588/ijtld.22.0188] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice´ for dosing and management of TB drugs.METHODS: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.RESULTS: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.CONCLUSION: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
Collapse
Affiliation(s)
- J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - S L Stocker
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia, St Vincent´s Clinical Campus, University of NSW, Kensington, NSW, Australia
| | - L Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Sweden, Department of Infectious Diseases Karolinska University Hospital, Solna, Sweden
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - R E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands, University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - A Aleksa
- Educational Institution "Grodno State Medical University", Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM) in Yangon, Myanmar
| | - W Arrazola de Oñata
- Belgian Scientific Institute for Public Health (Belgian Lung and Tuberculosis Association), Brussels, Belgium
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - N Van't Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - J M Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J G Cho
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - P Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - K Dheda
- Centre for Lung Infection and Immunity, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, University of Cape Town Lung Institute & South African MRC Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G J Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - H Y Kim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - C U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - B J Marais
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee against Tuberculosis (DZK), Berlin, Germany
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, Division of Pulmonary and Critical Care Medicine, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - A Skrahina
- The Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D van Soolingen
- National Institute for Public Health and the Environment, TB Reference Laboratory (RIVM), Bilthoven, The Netherlands
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - W Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People´s Republic of China
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - T Schön
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden, Institute of Biomedical and Clinical Sciences, Division of Infection and Inflammation, Linköping University, Linköping, Sweden, Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| |
Collapse
|
4
|
McAleenan A, Ambrose PG, Bhavnani SM, Drusano GL, Hope WW, Mouton JW, Higgins JPT, MacGowan AP. Methodological features of clinical pharmacokinetic-pharmacodynamic studies of antibacterials and antifungals: a systematic review. J Antimicrob Chemother 2021; 75:1374-1389. [PMID: 32083674 DOI: 10.1093/jac/dkaa005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pharmacokinetic (PK)-pharmacodynamic (PD) indices relate measures of drug exposure to antibacterial effect. Clinical PK-PD studies aim to correlate PK-PD indices with outcomes in patients. Optimization of dosing based on pre-clinical studies means that PK-PD relationships are difficult to establish; therefore studies need to be designed and reported carefully to validate pre-clinical findings. OBJECTIVES To describe the methodological features of clinical antibacterial and antifungal PK-PD studies that reported the relationship between PK-PD indices and clinical or microbiological responses. METHODS Studies published between 1980 and 2015 were identified through systematic searches. Methodological features of eligible studies were extracted. RESULTS We identified 85 publications containing 97 PK-PD analyses. Most studies were small, with fewer than 100 patients. Around a quarter were performed on patients with infections due to a single specific pathogen. In approximately one-third of studies, patients received concurrent antibiotics/antifungals and in some other studies patients received other treatments that may confound the PK-PD-outcome relationship. Most studies measured antimicrobial concentrations in blood/serum and only four measured free concentrations. Most performed some form of regression, time-to-event analysis or used the Hill/Emax equation to examine the association between PK-PD index and outcome. Target values of PK-PD indices that predict outcomes were investigated in 52% of studies. Target identification was most commonly done using recursive partitioning or logistic regression. CONCLUSIONS Given the variability in conduct and reporting, we suggest that an agreed set of standards for the conduct and reporting of studies should be developed.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, Bristol BS8 2PS, UK
| | - Paul G Ambrose
- Institute of Clinical Pharmacodynamics, 242 Broadway, Schenectady, New York 12305, USA
| | - Sujata M Bhavnani
- Institute of Clinical Pharmacodynamics, 242 Broadway, Schenectady, New York 12305, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida, UF Research and Academic Center at Lake Nowa, 6550 Sanger Road, Orlando, Florida 32827, USA
| | - William W Hope
- Centre for Antimicrobial Pharmacodynamics, Institute of Translational Medicine, University of Liverpool, Liverpool L69 4BX, UK
| | - Johan W Mouton
- Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Centre, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, Bristol BS8 2PS, UK
| | - Alasdair P MacGowan
- Bristol Centre for Antimicrobial Research & Evaluation, Infection Sciences, Pathology Science Quarter, North Bristol NHS Trust, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK
| |
Collapse
|
5
|
Lin Z, Chen DY, Zhu YW, Jiang ZL, Cui K, Zhang S, Chen LH. Population pharmacokinetic modeling and clinical application of vancomycin in Chinese patients hospitalized in intensive care units. Sci Rep 2021; 11:2670. [PMID: 33514803 PMCID: PMC7846798 DOI: 10.1038/s41598-021-82312-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
Management of vancomycin administration for intensive care units (ICU) patients remains a challenge. The aim of this study was to describe a population pharmacokinetic model of vancomycin for optimizing the dose regimen for ICU patients. We prospectively enrolled 466 vancomycin-treated patients hospitalized in the ICU, collected trough or approach peak blood samples of vancomycin and recorded corresponding clinical information from July 2015 to December 2017 at Tai Zhou Hospital of Zhejiang Province. The pharmacokinetics of vancomycin was analyzed by nonlinear mixed effects modeling with Kinetica software. Internal and external validation was evaluated by the maximum likelihood method. Then, the individual dosing regimens of the 92 patients hospitalized in the ICU whose steady state trough concentrations exceeded the target range (10–20 μg/ml) were adjusted by the Bayes feedback method. The final population pharmacokinetic model show that clearance rate (CL) of vancomycin will be raised under the conditions of dopamine combined treatment, severe burn status (Burn-S) and increased total body weight (TBW), but reduced under the conditions of increased serum creatinine (Cr) and continuous renal replacement therapy status; Meanwhile, the apparent distribution volume (V) of vancomycin will be enhanced under the terms of increased TBW, however decreased under the terms of increased age and Cr. The population pharmacokinetic parameters (CL and V) according to the final model were 3.16 (95%CI 2.83, 3.40) L/h and 60.71 (95%CI 53.15, 67.46). The mean absolute prediction error for external validation by the final model was 12.61% (95CI 8.77%, 16.45%). Finally, the prediction accuracy of 90.21% of the patients’ detected trough concentrations that were distributed in the target range of 10–20 μg/ml after dosing adjustment was found to be adequate. There is significant heterogeneity in the CL and V of vancomycin in ICU patients. The constructed model is sufficiently precise for the Bayesian dose prediction of vancomycin concentrations for the population of ICU Chinese patients.
Collapse
Affiliation(s)
- Zhong Lin
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Ximen Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Dan-Yang Chen
- Rehabilitation Department, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Yan-Wu Zhu
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Ximen Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Zheng-Li Jiang
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Ximen Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Ke Cui
- Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Sheng Zhang
- Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Li-Hua Chen
- Public Scientific Research Platform, Taizhou Hospital of Zhejiang Province Affiliated To Wenzhou Medical University, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China.
| |
Collapse
|
6
|
Irie K, Nakagawa A, Fujita H, Tamura R, Eto M, Ikesue H, Muroi N, Tomii K, Hashida T. Pharmacokinetics of Favipiravir in Critically Ill Patients With COVID-19. Clin Transl Sci 2020; 13:880-885. [PMID: 32475019 PMCID: PMC7300626 DOI: 10.1111/cts.12827] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Since December 2019, a novel coronavirus (severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2)) infection has been rapidly spreading worldwide and causing the respiratory illness, coronavirus disease 2019 (COVID‐19). The antiretroviral drug favipiravir (FPV) has been experimentally used for COVID‐19 treatment since March 2020 in Japan. However, the pharmacokinetics of FPV in critically ill patients is unknown. We measured the serum concentration of FPV using high‐performance liquid chromatography in patients with severe COVID‐19 who were admitted to the intensive care unit and placed on mechanical ventilation. The patients were administered 1,600 mg of FPV twice daily on day 1, followed by 600 mg twice daily from day 2 to day 5 (or more if needed). Suspensions of FPV tablets were administered through a nasogastric tube. Seven patients were enrolled in this study. Forty‐nine blood samples were obtained from the eligible patients to evaluate FPV concentration. The FPV trough (after 8–12 hours) concentrations of most samples were lower than the lower limit of quantification (1 µg/mL) and half‐maximal effective concentration (9.7 µg/mL) against SARS‐CoV‐2 previously tested in vitro. FPV trough concentration in critically ill patients was much lower than that of healthy subjects in a previous clinical trial, which is a cause for great concern. Further study is required to determine the optimal strategy for treatment of patients with severe COVID‐19.
Collapse
Affiliation(s)
- Kei Irie
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan.,Department of Pharmaceutics, Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Atsushi Nakagawa
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hirotoshi Fujita
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Ryo Tamura
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masaaki Eto
- Department of Clinical Laboratory, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroaki Ikesue
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuyuki Muroi
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tohru Hashida
- Department of Pharmacy, Kobe City Hospital Organization, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
7
|
Landoni MF, Albarellos GA. Pharmacokinetics of levofloxacin after single intravenous, oral and subcutaneous administration to dogs. J Vet Pharmacol Ther 2018; 42:171-178. [DOI: 10.1111/jvp.12726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Fabiana Landoni
- Cátedra de Farmacología; Facultad de Ciencias Veterinarias; CONICET; Universidad Nacional de La Plata; La Plata Buenos Aires Argentina
| | - Gabriela Alejandra Albarellos
- Cátedra de Farmacología; Facultad de Ciencias Veterinarias; Universidad de Buenos Aires; Buenos Aires Buenos Aires Argentina
| |
Collapse
|
8
|
Cojutti PG, Ramos-Martin V, Schiavon I, Rossi P, Baraldo M, Hope W, Pea F. Population Pharmacokinetics and Pharmacodynamics of Levofloxacin in Acutely Hospitalized Older Patients with Various Degrees of Renal Function. Antimicrob Agents Chemother 2017; 61:e02134-16. [PMID: 28031199 PMCID: PMC5328580 DOI: 10.1128/aac.02134-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/17/2016] [Indexed: 01/31/2023] Open
Abstract
A retrospective study was conducted in a large sample of acutely hospitalized older patients who underwent therapeutic drug monitoring during levofloxacin treatment. The aim was to assess the population pharmacokinetics (popPK) and pharmacodynamics of levofloxacin among older patients. PopPK and Monte Carlo simulation were performed to define the permissible doses in older patients according to various degrees of renal function. Classification and regression tree (CART) analysis was used to detect the cutoff 24-hour area under the concentration-time curve (AUC24)/MIC ratio that best correlated with the clinical outcome. The probability of target attainment (PTA) of this value was calculated against different pathogens. A total of 168 patients were included, and 330 trough and 239 peak concentrations were used for the popPK analysis. Creatinine clearance (CrCL) was the only covariate that improved the model fit (levofloxacin CL = 0.399 + 0.051 × CrCLCKD-EPI [creatinine clearance estimated by means of the chronic kidney disease epidemiology]). Drug doses ranged between 500 mg every 48 h and 500 mg every 12 h in relation to different renal functions. The identified cutoff AUC24/MIC ratio (≥95.7) was the only covariate that correlated with a favorable clinical outcome in multivariate regression analysis (odds ratio [OR], 20.85; 95% confidence interval [CI], 1.56 to 186.73). PTAs were optimal (>80%) against Escherichia coli and Haemophilus influenzae, borderline against Staphylococcus aureus, and suboptimal against Pseudomonas aeruginosa The levofloxacin doses defined in our study may be effective for the treatment of infections due to bacterial pathogens, with an MIC of ≤0.5 mg/liter in older patients with various degrees of renal function, while minimizing the toxicity risk. Conversely, the addition of another active antimicrobial should be considered whenever treating infections caused by less susceptible pathogens.
Collapse
Affiliation(s)
- Pier Giorgio Cojutti
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, Udine, Italy
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Virginia Ramos-Martin
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Isabella Schiavon
- First Division of Internal Medicine Santa Maria della Misericordia University Hospital of Udine, Udine, Italy
| | - Paolo Rossi
- First Division of Internal Medicine Santa Maria della Misericordia University Hospital of Udine, Udine, Italy
| | - Massimo Baraldo
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, Udine, Italy
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Federico Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, Udine, Italy
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| |
Collapse
|
9
|
Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:48-59. [DOI: 10.1016/j.jchromb.2016.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022]
|
10
|
Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63:e61-e111. [PMID: 27418577 PMCID: PMC4981759 DOI: 10.1093/cid/ciw353] [Citation(s) in RCA: 2138] [Impact Index Per Article: 237.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.
Collapse
Affiliation(s)
- Andre C. Kalil
- Departmentof Internal Medicine, Division of Infectious Diseases,
University of Nebraska Medical Center,
Omaha
| | - Mark L. Metersky
- Division of Pulmonary and Critical Care Medicine,
University of Connecticut School of Medicine,
Farmington
| | - Michael Klompas
- Brigham and Women's Hospital and Harvard Medical School
- Harvard Pilgrim Health Care Institute, Boston,
Massachusetts
| | - John Muscedere
- Department of Medicine, Critical Care Program,Queens University, Kingston, Ontario,
Canada
| | - Daniel A. Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine,
University of California, San
Diego
| | - Lucy B. Palmer
- Department of Medicine, Division of Pulmonary Critical Care and Sleep
Medicine, State University of New York at Stony
Brook
| | - Lena M. Napolitano
- Department of Surgery, Division of Trauma, Critical Care and Emergency
Surgery, University of Michigan, Ann
Arbor
| | - Naomi P. O'Grady
- Department of Critical Care Medicine, National
Institutes of Health, Bethesda
| | - John G. Bartlett
- Johns Hopkins University School of Medicine,
Baltimore, Maryland
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari
de Bellvitge, Bellvitge Biomedical Research Institute, Spanish Network for Research in
Infectious Diseases, University of Barcelona,
Spain
| | - Ali A. El Solh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep
Medicine, University at Buffalo, Veterans Affairs Western New
York Healthcare System, New York
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious
Diseases, EVK Herne and Augusta-Kranken-Anstalt
Bochum, Germany
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of
Nebraska Medical Center, Omaha
| | | | - Marcos I. Restrepo
- Department of Medicine, Division of Pulmonary and Critical Care
Medicine, South Texas Veterans Health Care System and University
of Texas Health Science Center at San Antonio
| | - Jason A. Roberts
- Burns, Trauma and Critical Care Research Centre, The
University of Queensland
- Royal Brisbane and Women's Hospital,
Queensland
| | - Grant W. Waterer
- School of Medicine and Pharmacology, University of
Western Australia, Perth,
Australia
| | - Peggy Cruse
- Library and Knowledge Services, National Jewish
Health, Denver, Colorado
| | - Shandra L. Knight
- Library and Knowledge Services, National Jewish
Health, Denver, Colorado
| | - Jan L. Brozek
- Department of Clinical Epidemiology and Biostatistics and Department of
Medicine, McMaster University, Hamilton,
Ontario, Canada
| |
Collapse
|
11
|
Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol 2016; 9:961-79. [PMID: 27018631 DOI: 10.1586/17512433.2016.1172209] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Initial adequate anti-infective therapy is associated with significantly improved clinical outcomes for patients with severe infections. However, in critically ill patients, several pathophysiological and/or iatrogenic factors may affect the pharmacokinetics of anti-infective agents leading to suboptimal drug exposure, in particular during the early phase of therapy. Therapeutic drug monitoring (TDM) may assist to overcome this problem. We discuss the available evidence on the use of TDM in critically ill patient populations for a number of anti-infective agents, including aminoglycosides, β-lactams, glycopeptides, antifungals and antivirals. Also, we present the available evidence on the practices of anti-infective TDM and describe the potential utility of TDM to improve treatment outcome in critically ill patients with severe infections. For aminoglycosides, glycopeptides and voriconazole, beneficial effects of TDM have been established on both drug effectiveness and potential side effects. However, for other drugs, therapeutic ranges need to be further defined to optimize treatment prescription in this setting.
Collapse
Affiliation(s)
- Nynke G L Jager
- a Department of Pharmacy , Academic Medical Center , Amsterdam , The Netherlands
| | - Reinier M van Hest
- a Department of Pharmacy , Academic Medical Center , Amsterdam , The Netherlands
| | - Jeffrey Lipman
- b Burns Trauma and Critical Care Research Centre , The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - Fabio S Taccone
- d Department of Intensive Care, Hopital Erasme , Université Libre de Bruxelles (ULB) , Brussels , Belgium
| | - Jason A Roberts
- b Burns Trauma and Critical Care Research Centre , The University of Queensland , Brisbane , Australia.,c Departments of Pharmacy and Intensive Care , Royal Brisbane and Women's Hospital , Brisbane , Australia.,e School of Pharmacy , The University of Queensland , Brisbane , Australia
| |
Collapse
|
12
|
Does Critical Illness Change Levofloxacin Pharmacokinetics? Antimicrob Agents Chemother 2015; 60:1459-63. [PMID: 26666946 DOI: 10.1128/aac.02610-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Levofloxacin is commonly used in critically ill patients for which existing data suggest nonstandard dosing regimens should be used. The objective of this study was to compare the population pharmacokinetics of levofloxacin in critically ill and in non-critically ill patients. Adult patients with a clinical indication for levofloxacin were eligible for participation in this prospective pharmacokinetic study. Patients were given 500 mg or 750 mg daily by intravenous administration with up to 11 blood samples taken on day 1 or 2 of therapy. Plasma samples were analyzed and population pharmacokinetic analysis was undertaken using Pmetrics. Thirty-five patients (18 critically ill) were included. The mean (standard deviation [SD]) age, weight, and Cockcroft-Gault creatinine clearance for the critically ill and for the non-critically ill patients were 60.3 (16.4) and 72.0 (11.6) years, 78.5 (14.8) and 70.9 (15.8) kg, and 71.9 (65.8) and 68.2 (30.1) ml/min, respectively. A two-compartment linear model best described the data. Increasing creatinine clearance was the only covariate associated with increasing drug clearance. The presence of critical illness did not significantly affect any pharmacokinetic parameter. The mean (SD) parameter estimates were as follows: clearance, 8.66 (3.85) liters/h; volume of the central compartment (Vc), 41.5 (24.5) liters; intercompartmental clearance constants from central to peripheral, 2.58 (3.51) liters/h; and peripheral to central compartments, 0.90 (0.58) liters/h. Monte Carlo dosing simulations demonstrated that achievement of therapeutic exposures was dependent on renal function, pathogen, and MIC. Critical illness appears to have no independent effect on levofloxacin pharmacokinetics that cannot be explained by altered renal function.
Collapse
|
13
|
Douros A, Grabowski K, Stahlmann R. Safety issues and drug–drug interactions with commonly used quinolones. Expert Opin Drug Metab Toxicol 2014; 11:25-39. [DOI: 10.1517/17425255.2014.970166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antonios Douros
- Charité-Universitätsmedizin Berlin, Department of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany ;
| | - Katja Grabowski
- Charité-Universitätsmedizin Berlin, Department of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany ;
| | - Ralf Stahlmann
- Charité-Universitätsmedizin Berlin, Department of Clinical Pharmacology and Toxicology, Charitéplatz 1, 10117 Berlin, Germany ;
| |
Collapse
|
14
|
Safarika A, Galani I, Pistiki A, Giamarellos-Bourboulis EJ. Time–kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: synergism with imipenem and colistin. Eur J Clin Microbiol Infect Dis 2014; 34:317-23. [DOI: 10.1007/s10096-014-2231-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
|
15
|
Pai MP, Cojutti P, Pea F. Levofloxacin Dosing Regimen in Severely Morbidly Obese Patients (BMI ≥40 kg/m2) Should Be Guided by Creatinine Clearance Estimates Based on Ideal Body Weight and Optimized by Therapeutic Drug Monitoring. Clin Pharmacokinet 2014; 53:753-62. [DOI: 10.1007/s40262-014-0154-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Gao CH, Yu LS, Zeng S, Huang YW, Zhou Q. Personalized therapeutics for levofloxacin: a focus on pharmacokinetic concerns. Ther Clin Risk Manag 2014; 10:217-27. [PMID: 24707182 PMCID: PMC3972025 DOI: 10.2147/tcrm.s59079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Personalized medicine should be encouraged because patients are complex, and this complexity results from biological, medical (eg, demographics, genetics, polypharmacy, and multimorbidities), socioeconomic, and cultural factors. Levofloxacin (LVX) is a broad-spectrum fluoroquinolone antibiotic. Awareness of personalized therapeutics for LVX seems to be poor in clinical practice, and is reflected in prescribing patterns. Pharmacokinetic–pharmacodynamic studies have raised concerns about suboptimal patient outcomes with the use of LVX for some Gram-negative infections. Meanwhile, new findings in LVX therapeutics have only been sporadically reported in recent years. Therefore, an updated review on personalized LVX treatment with a focus on pharmacokinetic concerns is necessary. Methods Relevant literature was identified by performing a PubMed search covering the period from January 1993 to December 2013. We included studies describing dosage adjustment and factors determining LVX pharmacokinetics, or pharmacokinetic–pharmacodynamic studies exploring how best to prevent the emergence of resistance to LVX. The full text of each included article was critically reviewed, and data interpretation was performed. Results In addition to limiting the use of fluoroquinolones, measures such as reducing the breakpoints for antimicrobial susceptibility testing, choice of high-dose short-course of once-daily LVX regimen, and tailoring LVX dose in special patient populations help to achieve the validated pharmacokinetic–pharmacodynamic target and combat the increasing LVX resistance. Obese individuals with normal renal function cleared LVX more efficiently than normal-weight individuals. Compared with the scenario in healthy subjects, standard 2-hour spacing of calcium formulations and oral LVX was insufficient to prevent a chelation interaction in cystic fibrosis patients. Inconsistent conclusions were derived from studies of the influence of sex on the pharmacokinetics of LVX, which might be associated with sample size and administration route. Children younger than 5 years cleared LVX nearly twice as fast as adults. Patients in intensive care receiving LVX therapy showed significant pharmacokinetic differences compared with healthy subjects. Creatinine clearance explained most of the population variance in the plasma clearance of LVX. Switching from intravenous to oral delivery of LVX had economic benefits. Addition of tamsulosin to the LVX regimen was beneficial for patients with bacterial prostatitis because tamsulosin could increase the maximal concentration of LVX in prostatic tissue. Coadministration of multivalent cation-containing drugs and LVX should be avoided. For patients receiving warfarin and LVX concomitantly, caution is needed regarding potential changes in the international normalized ratio; however, it is unnecessary to seek alternatives to LVX for the sake of avoiding drug interaction with warfarin. It is unnecessary to proactively reduce the dose of cyclosporin or tacrolimus when comedicated with LVX. Transporters such as organic anion-transporting polypeptide 1A2, P-glycoprotein, human organic cation transporter 1, and multidrug and toxin extrusion protein 1 are involved in the pharmacokinetics of LVX. Conclusion Personalized LVX therapeutics are necessary for the sake of better safety, clinical success, and avoidance of resistance. New findings regarding individual dosing of LVX in special patient populations and active transport mechanisms in vivo are opening up new horizons in clinical practice.
Collapse
Affiliation(s)
- Chu-Han Gao
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lu-Shan Yu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yu-Wen Huang
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
17
|
Chant C, Leung A, Friedrich JO. Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R279. [PMID: 24289230 PMCID: PMC4056781 DOI: 10.1186/cc13134] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
Introduction The aim of this study was to determine whether using pharmacodynamic-based dosing of antimicrobials, such as extended/continuous infusions, in critically ill patients is associated with improved outcomes as compared with traditional dosing methods. Methods We searched Medline, HealthStar, EMBASE, Cochrane Clinical Trial Registry, and CINAHL from inception to September 2013 without language restrictions for studies comparing the use of extended/continuous infusions with traditional dosing. Two authors independently selected studies, extracted data on methodology and outcomes, and performed quality assessment. Meta-analyses were performed by using random-effects models. Results Of 1,319 citations, 13 randomized controlled trials (RCTs) (n = 782 patients) and 13 cohort studies (n = 2,117 patients) met the inclusion criteria. Compared with traditional non-pharmacodynamic-based dosing, RCTs of continuous/extended infusions significantly reduced clinical failure rates (relative risk (RR) 0.68; 95% confidence interval (CI) 0.49 to 0.94, P = 0.02) and intensive care unit length of stay (mean difference, −1.5; 95% CI, −2.8 to −0.2 days, P = 0.02), but not mortality (RR, 0.87; 95% CI, 0.64 to 1.19; P = 0.38). No significant between-trial heterogeneity was found for these analyses (I2 = 0). Reduced mortality rates almost achieved statistical significance when the results of all included studies (RCTs and cohort studies) were pooled (RR, 0.83; 95% CI, 0.69 to 1.00; P = 0.054). Conclusions Pooled results from small RCTs suggest reduced clinical failure rates and intensive care unit length-of-stay when using continuous/extended infusions of antibiotics in critically ill patients. Reduced mortality rates almost achieved statistical significance when the results of RCTs were combined with cohort studies. These results support the conduct of adequately powered RCTs to define better the utility of continuous/extended infusions in the era of antibiotic resistance.
Collapse
|
18
|
Reply to "Breakthrough bacteremia by linezolid-susceptible Enterococcus faecalis under linezolid treatment in a severe polytrauma patient". Antimicrob Agents Chemother 2013; 57:6413-4. [PMID: 24222609 DOI: 10.1128/aac.01587-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Chilet-Rosell E, Ruiz-Cantero MT, Pardo MA. Gender analysis of moxifloxacin clinical trials. J Womens Health (Larchmt) 2013; 23:77-104. [PMID: 24180298 DOI: 10.1089/jwh.2012.4171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To determine the inclusion of women and the sex-stratification of results in moxifloxacin Clinical Trials (CTs), and to establish whether these CTs considered issues that specifically affect women, such as pregnancy and use of hormonal therapies. Previous publications about women's inclusion in CTs have not specifically studied therapeutic drugs. Although this type of drug is taken by men and women at a similar rate, adverse effects occur more frequently in the latter. METHODS We reviewed 158 published moxifloxacin trials on humans, retrieved from MedLine and the Cochrane Library (1998-2010), to determine whether they complied with the gender recommendations published by U.S. Food and Drug Administration Guideline. RESULTS Of a total of 80,417 subjects included in the moxifloxacin CTs, only 33.7% were women in phase I, in contrast to phase II, where women accounted for 45%, phase III, where they represented 38.3% and phase IV, where 51.3% were women. About 40.9% (n=52) of trials were stratified by sex and 15.3% (n=13) and 9% (n=7) provided data by sex on efficacy and adverse effects, respectively. We found little information about the influence of issues that specifically affect women. Only 3 of the 59 journals that published the moxifloxacin CTs stated that authors should stratify their results by sex. CONCLUSIONS Women are under-represented in the published moxifloxacin trials, and this trend is more marked in phase I, as they comprise a higher proportion in the other phases. Data by sex on efficacy and adverse effects are scarce in moxifloxacin trials. These facts, together with the lack of data on women-specific issues, suggest that the therapeutic drug moxifloxacin is only a partially evidence-based medicine.
Collapse
|
20
|
Kontou P, Manika K, Chatzika K, Papaioannou M, Sionidou M, Pitsiou G, Kioumis I. Pharmacokinetics of moxifloxacin and high-dose levofloxacin in severe lower respiratory tract infections. Int J Antimicrob Agents 2013; 42:262-7. [PMID: 23830621 DOI: 10.1016/j.ijantimicag.2013.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 01/30/2023]
Abstract
This study evaluated the pharmacokinetics of intravenous moxifloxacin 400 mg once and levofloxacin 500 mg twice daily in patients with lower respiratory tract infections (LRTIs) and assessed their pharmacodynamic adequacy against common respiratory pathogens. Eighteen patients with LRTIs hospitalised in general wards were included. Serial blood samples were obtained at steady state and concentrations were determined using HPLC. Pharmacokinetic variables were estimated by a two-compartment model. The characteristic pharmacodynamic parameter for fluoroquinolones (AUC(0-24)/MIC) was calculated. Peak and trough concentrations were, respectively, 4.81 ± 1.03 and 0.59 ± 1.13 mg/L for moxifloxacin and 6.42 ± 1.08 and 0.79 ± 0.39 mg/L for levofloxacin. Pharmacokinetic data for moxifloxacin and levofloxacin, respectively, were: CL, 10.27 ± 1.24 and 22.66 ± 6.62 L/h; t1/2, 13.43 ± 5.12 and 6.75 ± 1.34 h; Vss, 163.03 ± 53.88 and 170.73 ± 39.59 L; and AUC(0-24), 39.38 ±5.28 and 47.06 ± 14.09 mg·h/L. The pharmacodynamic target was attained in all patients by both antibiotics against the majority of respiratory pathogens. Moxifloxacin proved to be pharmacodynamically efficacious against Gram-positive bacteria with MICs ≤ 0.79 mg/L and Gram-negative bacteria with MICs ≤ 0.32 mg/L. These MIC thresholds for levofloxacin were 1.1 mg/L and 0.38 mg/L, respectively. Moxifloxacin and high-dose levofloxacin show a favourable pharmacokinetic profile in plasma of patients with severe LRTIs, without significant interpatient variability. They ensure optimal pharmacodynamic exposure against the majority of microbes involved in these infections. However, the predicted efficacy against Gram-negative bacteria with MICs ≥ 0.5 mg/L appears to be low.
Collapse
Affiliation(s)
- Paschalina Kontou
- A' Intensive Care Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
21
|
Pharmacokinetics and pharmacodynamics of ciprofloxacin in critically ill patients after the first intravenous administration of 400 mg. Adv Med Sci 2012; 57:217-23. [PMID: 22968336 DOI: 10.2478/v10039-012-0028-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate the pharmacokinetics and pharmacodynamics of ciprofloxacin in critically ill patients after the first intravenous administration of 400 mg. MATERIAL/METHODS Plasma concentrations were measured in 20 critically ill patients (mean [SD]; age, 55.5 [16.5] years; weight, 80.3 [16.9] kg; and creatinine clearance, 110.0 [71.5] mL/min). Four blood samples were drawn at the following time points 0, 0.5, 6 , 8 hours after infusion. Ciprofloxacin concentrations were determined by high-performance liquid chromatography. RESULTS In the cases where ciprofloxacin was applied in targeted antibiotic therapy the minimum inhibitory concentrations (MIC) were ≤0.5 mg/l. The maximum and minimum plasma concentrations of ciprofloxacin were 1.74 (0.58-7.90) and 0.45 (0.16-2.96) mg/l, respectively. The main pharmacokinetic parameters for ciprofloxacin in the analyzed patients were as follows: k(el), 0.21 h-1; t(1/2kel), 3.37 h; AUC(0-inf), 10.10 mg×h/l; AUMC(0-last), 15.36 mg×h(2)/l; MRT, 1.71 h; V(d), 214.8 l; Cl, 39.70 l/h. Considering the maximum value of MIC (0.5 mg/l) only 30% and 25% of analyzed patients had desired values of the PK/PD indexes AUIC>125 and C(max) /MIC>10, respectively. CONCLUSIONS The target plasma concentrations after the first dose of ciprofloxacin were reached only in a few critically ill patients. Considerable inter-subject variability for PK/PD parameters in ICU patients requires systematic monitoring.
Collapse
|
22
|
Abstract
Critically ill patients admitted to the intensive care unit (ICU) are frequently treated with antimicrobials. The appropriate and judicious use of antimicrobial treatment in the ICU setting is a constant clinical challenge for healthcare staff due to the appearance and spread of new multiresistant pathogens and the need to update knowledge of factors involved in the selection of multiresistance and in the patient's clinical response. In order to optimize the efficacy of empirical antibacterial treatments and to reduce the selection of multiresistant pathogens, different strategies have been advocated, including de-escalation therapy and pre-emptive therapy as well as measurement of pharmacokinetic and pharmacodynamic (pK/pD) parameters for proper dosing adjustment. Although the theoretical arguments of all these strategies are very attractive, evidence of their effectiveness is scarce. The identification of the concentration-dependent and time-dependent activity pattern of antimicrobials allow the classification of drugs into three groups, each group with its own pK/pD characteristics, which are the basis for the identification of new forms of administration of antimicrobials to optimize their efficacy (single dose, loading dose, continuous infusion) and to decrease toxicity. The appearance of new multiresistant pathogens, such as imipenem-resistant Pseudomonas aeruginosa and/or Acinetobacter baumannii, carbapenem-resistant Gram-negative bacteria harbouring carbapenemases, and vancomycin-resistant Enterococcus spp., has determined the use of new antibacterials, the reintroduction of other drugs that have been removed in the past due to toxicity or the use of combinations with in vitro synergy. Finally, pharmacoeconomic aspects should be considered for the choice of appropriate antimicrobials in the care of critically ill patients.
Collapse
Affiliation(s)
- Francisco Álvarez-Lerma
- Service of Intensive Care Medicine, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
23
|
Sousa J, Alves G, Fortuna A, Falcão A. Analytical methods for determination of new fluoroquinolones in biological matrices and pharmaceutical formulations by liquid chromatography: a review. Anal Bioanal Chem 2012; 403:93-129. [DOI: 10.1007/s00216-011-5706-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/24/2011] [Accepted: 12/29/2011] [Indexed: 11/25/2022]
|
24
|
Pharmacokinetics of intravenous levofloxacin administered at 750 milligrams in obese adults. Antimicrob Agents Chemother 2011; 55:3240-3. [PMID: 21576432 DOI: 10.1128/aac.01680-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiochemical properties of levofloxacin suggest that it is an agent which may exhibit altered pharmacokinetics in obese individuals. The purpose of this study was to describe the pharmacokinetics of a single 750-mg intravenous dose of levofloxacin in both hospitalized and ambulatory obese individuals. The hypothesis was that a standard dose of levofloxacin in obese individuals would achieve serum concentrations likely to be therapeutic. A single levofloxacin dose of 750 mg was infused over 90 min, and seven serial serum samples were subsequently obtained to evaluate the pharmacokinetics after the first dose. The peak concentrations of levofloxacin were comparable to those seen with normal-weight individuals. However, the area under the concentration-time curve and clearance were quite variable. Accelerated clearance was evident in the ambulatory obese individuals. Further investigation of the effects of obesity on the pharmacokinetics of levofloxacin is necessary to ensure optimal dosing.
Collapse
|
25
|
Bhagunde P, Singh R, Ledesma KR, Chang KT, Nikolaou M, Tam VH. Modelling biphasic killing of fluoroquinolones: guiding optimal dosing regimen design. J Antimicrob Chemother 2011; 66:1079-86. [DOI: 10.1093/jac/dkr054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Impact of recA on levofloxacin exposure-related resistance development. Antimicrob Agents Chemother 2010; 54:4262-8. [PMID: 20660686 DOI: 10.1128/aac.00168-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic mutations are one of the major mechanisms by which bacteria acquire drug resistance. One of the known mechanisms for inducing mutations is the SOS response system. We investigated the effect of disrupting recA, an inducer of the SOS response, on resistance development using an in vitro hollow-fiber infection model. A clinical Staphylococcus aureus isolate and a laboratory wild-type strain of Escherichia coli were compared to their respective recA-deleted isogenic daughter isolates. Approximately 2 × 10(5) CFU/ml of bacteria were subjected to escalating levofloxacin exposures for up to 120 h. Serial samples were obtained to ascertain simulated drug exposures and total and resistant bacterial burdens. Quinolone resistance determining regions of gyrA and grlA (parC for E. coli) in levofloxacin-resistant isolates were sequenced to confirm the mechanism of resistance. The preexposure MICs of the recA-deleted isolates were 4-fold lower than those of their respective parents. In S. aureus, a lower area under the concentration-time curve over 24 h at steady state divided by the MIC (AUC/MIC) was required to suppress resistance development in the recA-deleted mutant (an AUC/MIC of >23 versus an AUC/MIC of >32 was necessary in the mutant versus the parent isolate, respectively), and a prominent difference in the total bacterial burden was observed at 72 h. Using an AUC/MIC of approximately 30, E. coli resistance emergence was delayed by 24 h in the recA-deleted mutant. Diverse mutations in gyrA were found in levofloxacin-resistant isolates recovered. Disruption of recA provided additional benefits apart from MIC reduction, attesting to its potential role for pharmacologic intervention. The clinical relevance of our findings warrants further investigations.
Collapse
|
27
|
|
28
|
|
29
|
Pea F, Viale P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock--does the dose matter? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:214. [PMID: 19519961 PMCID: PMC2717408 DOI: 10.1186/cc7774] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Appropriate antibiotic therapy in patients with severe sepsis and septic shock should mean prompt achievement and maintenance of optimal exposure at the infection site with broad-spectrum antimicrobial agents administered in a timely manner. Once the causative pathogens have been identified and tested for in vitro susceptibility, subsequent de-escalation of antimicrobial therapy should be applied whenever feasible. The goal of appropriate antibiotic therapy must be pursued resolutely and with continuity, in view of the ongoing explosion of antibiotic-resistant infections that plague the intensive care unit setting and of the continued decrease in new antibiotics emerging. This article provides some principles for the correct handling of antimicrobial dosing regimens in patients with severe sepsis and septic shock, in whom various pathophysiological conditions may significantly alter the pharmacokinetic behaviour of drugs.
Collapse
Affiliation(s)
- Federico Pea
- Department of Experimental and Clinical Pathology, Institute of Clinical Pharmacology & Toxicology, Medical School, University of Udine, 33100 Udine, Italy.
| | | |
Collapse
|
30
|
Viale P, Furlanut M, Scudeller L, Pavan F, Negri C, Crapis M, Zamparini E, Zuiani C, Cristini F, Pea F. Treatment of pyogenic (non-tuberculous) spondylodiscitis with tailored high-dose levofloxacin plus rifampicin. Int J Antimicrob Agents 2009; 33:379-82. [DOI: 10.1016/j.ijantimicag.2008.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/23/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
|
31
|
Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37:840-51; quiz 859. [PMID: 19237886 DOI: 10.1097/ccm.0b013e3181961bff] [Citation(s) in RCA: 582] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To discuss the altered pharmacokinetic properties of selected antibiotics in critically ill patients and to develop basic dose adjustment principles for this patient population. DATA SOURCES PubMed, EMBASE, and the Cochrane-Controlled Trial Register. STUDY SELECTION Relevant papers that reported pharmacokinetics of selected antibiotic classes in critically ill patients and antibiotic pharmacodynamic properties were reviewed. Antibiotics and/or antibiotic classes reviewed included aminoglycosides, beta-lactams (including carbapenems), glycopeptides, fluoroquinolones, tigecycline, linezolid, lincosamides, and colistin. DATA SYNTHESIS Antibiotics can be broadly categorized according to their solubility characteristics which can, in turn, help describe possible altered pharmacokinetics that can be caused by the pathophysiological changes common to critical illness. Hydrophilic antibiotics (e.g., aminoglycosides, beta-lactams, glycopeptides, and colistin) are mostly affected with the pathphysiological changes observed in critically ill patients with increased volumes of distribution and altered drug clearance (related to changes in creatinine clearance). Lipophilic antibiotics (e.g., fluoroquinolones, macrolides, tigecycline, and lincosamides) have lesser volume of distribution alterations, but may develop altered drug clearances. Using antibiotic pharmacodynamic bacterial kill characteristics, altered dosing regimens can be devised that also account for such pharmacokinetic changes. CONCLUSIONS Knowledge of antibiotic pharmacodynamic properties and the potential altered antibiotic pharmacokinetics in critically ill patients can allow the intensivist to develop individualized dosing regimens. Specifically, for renally cleared drugs, measured creatinine clearance can be used to drive many dose adjustments. Maximizing clinical outcomes and minimizing antibiotic resistance using individualized doses may be best achieved with therapeutic drug monitoring.
Collapse
Affiliation(s)
- Jason A Roberts
- University of Queensland, Pharmacy Department, Royal Brisbane and Women's Hospital, Herston, Australia
| | | |
Collapse
|
32
|
Scaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents 2008; 32:294-301. [PMID: 18621508 DOI: 10.1016/j.ijantimicag.2008.03.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 12/18/2022]
Abstract
Patients admitted to Intensive Care Units (ICUs) are at very high risk of developing severe nosocomial infections. Consequently, antimicrobials are among the most important and commonly prescribed drugs in the management of these patients. Critically ill patients in ICUs include representatives of all age groups with a range of organ dysfunction related to severe acute illness that may complicate long-term illness. The range of organ dysfunction, together with drug interactions and other therapeutic interventions (e.g. haemodynamically active drugs and continuous renal replacement therapies), may strongly impact on antimicrobial pharmacokinetics in critically ill patients. In the last decade, it has become apparent that the intrinsic pharmacokinetic (PK) and pharmacodynamic (PD) properties are the major determinants of in vivo efficacy of antimicrobial agents. PK/PD parameters are essential in facilitating the translation of microbiological activity into clinical situations, ensuring a successful outcome. In this review, we analyse the typical patterns of antimicrobial activity and the corresponding PK/PD parameters, with a special focus on a PK/PD dosing approach of the antimicrobial agent classes commonly utilised in the ICU setting.
Collapse
Affiliation(s)
- Francesco Scaglione
- Department of Pharmacology, Chemotherapy and Toxicology, Faculty of Medicine, University of Milan, Milan, Italy.
| | | |
Collapse
|
33
|
Benko R, Matuz M, Doro P, Peto Z, Molnar A, Hajdu E, Nagy E, Gardi J, Soos G. Pharmacokinetics and pharmacodynamics of levofloxacin in critically ill patients with ventilator-associated pneumonia. Int J Antimicrob Agents 2007; 30:162-8. [PMID: 17570646 DOI: 10.1016/j.ijantimicag.2007.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/08/2007] [Accepted: 03/23/2007] [Indexed: 11/22/2022]
Abstract
The pharmacokinetics of levofloxacin and outcome of levofloxacin therapy in critically ill patients with ventilator-associated pneumonia (VAP) were assessed. Further theoretical considerations regarding the pharmacokinetic/pharmacodynamic (PK/PD) appropriateness of levofloxacin therapy were made. Twelve patients completed the study, all of whom were treated with a standard intravenous levofloxacin regimen (2x500 mg on Day 1, then 1x500 mg daily). The maximum free plasma levofloxacin concentration (fC(max,ss)) and the area under the free concentration-time curve (fAUC) were 8.13+/-1.64 mg/L and 49.63+/-15.60 mgh/L, respectively. Optimal PK/PD target parameters were achieved in 10 patients; clinical success was attained in 11 of the 12 patients who completed the study. Bacterial eradication was obtained in 9 of the 11 cases with microbiologically confirmed bacteriological aetiology. Intravenous levofloxacin therapy (500 mg/day) was proven to be an effective regimen in this limited number of patients with VAP. However, theoretical considerations based on PK/PD indices predict that, with the current susceptibility breakpoint of 2mg/L, even higher levofloxacin doses (e.g. 1000 mg) could result in treatment failures in infections caused by pathogens labelled as levofloxacin-susceptible in the microbiology report.
Collapse
Affiliation(s)
- Ria Benko
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, H-6725 Szeged, Szikra u. 8, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nikolaou M, Schilling AN, Vo G, Chang KT, Tam VH. Modeling of microbial population responses to time-periodic concentrations of antimicrobial agents. Ann Biomed Eng 2007; 35:1458-70. [PMID: 17431788 DOI: 10.1007/s10439-007-9306-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
We present the development and first experimental validation of a mathematical modeling framework for predicting the eventual response of heterogeneous (distributed-resistance) microbial populations to antimicrobial agents at time-periodic (hence pharmacokinetically realistic) concentrations. Our mathematical model predictions are validated in a hollow-fiber in vitro experimental infection model. They are in agreement with the threshold levofloxacin exposure necessary to suppress resistance development of Pseudomonas aeruginosa in a murine thigh infection model. Predictions made by the proposed mathematical modeling framework can offer guidance for targeted testing of promising regimens. This can aid the development and clinical use of antimicrobial agents that combat microbial resistance.
Collapse
Affiliation(s)
- Michael Nikolaou
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| | | | | | | | | |
Collapse
|
35
|
Alvarez-Lerma F, Grau S, Alvarez-Beltrán M. Levofloxacin in the treatment of ventilator-associated pneumonia. Clin Microbiol Infect 2006; 12 Suppl 3:81-92. [PMID: 16669931 DOI: 10.1111/j.1469-0691.2006.01399.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of levofloxacin in critically ill patients has progressively increased since commercial marketing of the drug in 1999, despite the fact that few studies have been designed to assess the use of levofloxacin in this population. Pharmacological characteristics, broad spectrum of activity, and tolerability account for the high interest in the drug for the treatment of different infectious diseases, including ventilator-associated pneumonia (VAP), and the recommendation of levofloxacin in guidelines developed by a number of scientific societies. According to pharmacokinetic-pharmacodynamic data, it seems reasonable to assume that an increase in activity follows from a larger dose, so that 500 mg/12 h is adequate in patients with VAP. In critically ill patients with VAP, levofloxacin monotherapy is indicated for empirical treatment of patients with early onset pneumonia without risk factors for multiresistant pathogens, and in combination therapy for late onset VAP or for patients at risk for multiresistant pathogens. The use of levofloxacin in combination therapy is supported by multiple reasons, including: increased empirical coverage in infections with suspected intracellular pathogens; substitution for more toxic antimicrobial agents (e.g., aminoglycosides) in patients with renal dysfunction and in those at risk for renal insufficiency; and severity of systemic response to infection (septic shock) that justifies multiple treatment with better tolerated antibiotics. The availability of the oral formulation allows sequential therapy, switching from the intravenous route to the oral route. Levofloxacin is well tolerated by critically ill patients, with few adverse events of mild to moderate severity.
Collapse
Affiliation(s)
- F Alvarez-Lerma
- Service of Intensive Care Medicine, Hospital del Mar, Universitat Autònoma de Barcelona, Spain.
| | | | | |
Collapse
|
36
|
Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokinetic-pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin Infect Dis 2006; 42:1764-71. [PMID: 16705585 DOI: 10.1086/504383] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/21/2006] [Indexed: 11/03/2022] Open
Abstract
Until recently, the in vitro susceptibility of microorganisms was considered the only fundamental aspect for antibiotic efficacy in treating pneumonia. However, the relevance of pharmacokinetic-pharmacodynamic relationships in optimizing drug exposure has been progressively highlighted. Antimicrobial agents were divided into concentration-dependent or time-dependent groups, with the most consistently relevant pharmacodynamic parameters for efficacy being either the ration of the plasma peak concentration to the minimum inhibitory concentration or the time the plasma concentration persists above the minimum inhibitory concentration of the etiological agent, respectively. For the adequate treatment of pneumonia, optimal pharmacodynamic exposure should be ensured also at the infection site. To investigate this, a methodologically correct approach may be to detect drug concentration levels in the epithelial lining fluid and in the alveolar macrophages for extracellular and intracellular pathogens, respectively. From this perspective, the pharmacokinetic factors--only in some instances--support the achievement of optimal exposure during the treatment of pneumonia with fixed standard dosing regimens of antimicrobials; conversely, in other instances, the pharmacokinetic factors suggest the need for an implemented dosage regimen or even the choice of a different drug.
Collapse
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Pathology and Medicine, University of Udine, Udine, Italy.
| | | |
Collapse
|
37
|
Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 2006; 44:1009-34. [PMID: 16176116 DOI: 10.2165/00003088-200544100-00002] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antimicrobials are among the most important and commonly prescribed drugs in the management of critically ill patients. Selecting the appropriate antimicrobial at the commencement of therapy, both in terms of spectrum of activity and dose and frequency of administration according to concentration or time dependency, is mandatory in this setting. Despite appropriate standard dosage regimens, failure of the antimicrobial treatment may occur because of the inability of the antimicrobial to achieve adequate concentrations at the infection site through alterations in its pharmacokinetics due to underlying pathophysiological conditions. According to the intrinsic chemicophysical properties of antimicrobials, hydrophilic antimicrobials (beta-lactams, aminoglycosides, glycopeptides) have to be considered at much higher risk of inter- and intraindividual pharmacokinetic variations than lipophilic antimicrobials (macrolides, fluoroquinolones, tetracyclines, chloramphenicol, rifampicin [rifampin]) in critically ill patients, with significant frequent fluctuations of plasma concentrations that may require significant dosage adjustments. For example, underexposure may occur because of increased volume of distribution (as a result of oedema in sepsis and trauma, pleural effusion, ascites, mediastinitis, fluid therapy or indwelling post-surgical drainage) and/or enhanced renal clearance (as a result of burns, drug abuse, hyperdynamic conditions during sepsis, acute leukaemia or use of haemodynamically active drugs). On the other hand, overexposure may occur because of a drop in renal clearance caused by renal impairment. Care with all these factors whenever choosing an antimicrobial may substantially improve the outcome of antimicrobial therapy in critically ill patients. However, since these situations may often coexist in the same patient and pharmacokinetic variability may be unpredictable, the antimicrobial policy may further benefit from real-time application of therapeutic drug monitoring, since this practice, by tailoring exposure to the individual patient, may consequently be helpful both in improving the outcome of antimicrobial therapy and in containing the spread of resistance in the hospital setting.
Collapse
Affiliation(s)
- Federico Pea
- Department of Experimental and Clinical Pathology and Medicine, Medical School, Institute of Clinical Pharmacology and Toxicology, University of Udine, Udine, Italy
| | | | | |
Collapse
|
38
|
Albarellos GA, Ambros LA, Landoni MF. Pharmacokinetics of levofloxacin after single intravenous and repeat oral administration to cats. J Vet Pharmacol Ther 2005; 28:363-9. [PMID: 16050816 DOI: 10.1111/j.1365-2885.2005.00669.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pharmacokinetic properties of the fluoroquinolone levofloxacin, were investigated in five cats after single intravenous and repeat oral administration at a daily dose of 10 mg/kg. Levofloxacin serum concentration was analyzed by microbiological assay using Klebsiella pneumoniae ATCC 10031 as test microorganism. Serum levofloxacin disposition after intravenous and oral dosing was best fitted to a bicompartmental and a monocompartmental open models with first-order elimination, respectively. After intravenous administration, distribution was rapid (t(1/2(d)) 0.26 +/- 0.18 h) and wide as reflected by the steady-state volume of distribution of 1.75 +/- 0.42 L/kg. Drug elimination was slow with a total body clearance of 0.14 +/- 0.04 L/h.kg and a t(1/2) for this process of 9.31 +/- 1.63 h. The mean residence time was of 12.99 +/- 2.12 h. After repeat oral administration, absorption half-life was of 0.18 +/- 0.12 h and Tmax of 1.62 +/- 0.84 h. The bioavailability was high (86.27 +/- 43.73%) with a peak plasma concentration at the steady state of 4.70 +/- 0.91 microg/mL. Drug accumulation was not significant after four oral administrations. Estimated efficacy predictors for levofloxacin after either intravenous or oral administration indicate a good profile against bacteria with a MIC value below of 0.5 microg/mL. However, for microorganisms with MIC values of 1 microg/mL it would be efficacious only when administered intravenously.
Collapse
Affiliation(s)
- G A Albarellos
- Departamento de Fisiopatología y Etiopatogenia, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
39
|
Pea F, Ferrari E, Pavan F, Roman-Pognuz D, Bandello F, Furlanut M. Levofloxacin disposition over time in aqueous humor of patients undergoing cataract surgery. Antimicrob Agents Chemother 2005; 49:2554-7. [PMID: 15917572 PMCID: PMC1140509 DOI: 10.1128/aac.49.6.2554-2557.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ocular disposition of levofloxacin in patients receiving two 500-mg oral doses 10 h apart before cataract surgery was assessed with the intent of defining drug ocular exposure over time. The mean aqueous humor concentrations persisted above 1.5 mg/liter between 1.5 and 6.0 h after the second dose, with average aqueous-to-plasma ratios ranging between 0.33 and 0.57. This favorable ocular disposition provides support for trials of systemic levofloxacin for prophylaxis of postoperative endophthalmitis in selected patients or as adjunctive therapy for the treatment of this potentially devastating infective complication.
Collapse
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology and Toxicology, DPMSC, University of Udine, P. le S. Maria della Misericordia 3, 33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Boselli E, Breilh D, Rimmelé T, Djabarouti S, Saux MC, Chassard D, Allaouchiche B. Pharmacokinetics and intrapulmonary diffusion of levofloxacin in critically ill patients with severe community-acquired pneumonia. Crit Care Med 2005; 33:104-9. [PMID: 15644655 DOI: 10.1097/01.ccm.0000150265.42067.4c] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the steady-state plasma and epithelial lining fluid concentrations of intravenous levofloxacin, 500 mg, administered once or twice daily in critically ill patients with severe community-acquired pneumonia. DESIGN Prospective, open-label study. SETTING An intensive care unit and a clinical pharmacokinetic laboratory in two university hospitals. PATIENTS Twenty-four adult patients with severe community-acquired pneumonia and receiving mechanical ventilation were enrolled. INTERVENTIONS All subjects received 1-hr intravenous infusions of 500 mg levofloxacin once or twice daily. The plasma and epithelial lining fluid levofloxacin concentrations were determined at steady-state after 2 days of therapy with high-performance liquid chromatography. MEASUREMENTS AND MAIN RESULTS The median (interquartile range [IQR]) plasma and epithelial lining fluid peak levofloxacin concentrations were 12.6 (IQR, 12.0-14.1) and 11.9 (IQR, 8.7-13.7) mg/L, respectively, in the once-daily group and 19.7 (IQR, 19.0-22.0) and 17.8 (IQR, 16.2-23.5) mg/L in the twice-daily group, showing a pulmonary percentage penetration of >100% in both groups. The median (IQR) total body exposures were 151 (IQR, 137-174) and 416 (IQR, 406-472) mg.hr/L, respectively, in the once-daily and twice-daily groups. CONCLUSIONS Our results suggest that in critically ill patients who are receiving mechanical ventilation and have severe community-acquired pneumonia and creatinine clearance of >40 mL/min, the administration of 500 mg of intravenous levofloxacin once and twice daily allows for the exceeding of pharmacodynamic thresholds predictive of outcome (i.e., peak concentration to minimum inhibitory concentration ratio of >10 or area under concentration-time curve to minimal inhibitory concentration ratio of >125 hrs) both in serum and epithelial lining fluid for pathogens with minimum inhibitory concentration values of < or =1 mg/L and >1 mg/L, respectively.
Collapse
Affiliation(s)
- Emmanuel Boselli
- Department of Anesthesiology and Intensive Care, Hôtel-Dieu Hospital, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Pea F, Pavan F, Di Qual E, Brollo L, Nascimben E, Baldassarre M, Furlanut M. Urinary pharmacokinetics and theoretical pharmacodynamics of intravenous levofloxacin in intensive care unit patients treated with 500 mg b.i.d. for ventilator-associated pneumonia. J Chemother 2004; 15:563-7. [PMID: 14998081 DOI: 10.1179/joc.2003.15.6.563] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study assessed the urinary pharmacokinetics and theoretical pharmacodynamics of levofloxacin in ICU patients treated with 500 mg b.i.d. i.v. for ventilator associated pneumonia to evaluate if this high dosage regimen might ensure appropriate exposure in the treatment of severe UTIs in ICU patients. Nineteen patients (11M, 8F; age, 52 +/- 21 years; weight, 75 +/- 16 kg) presenting with normal renal function (estimated creatinine clearance, 1.83 +/- 0.61 ml/min/kg; diuresis, 1709 +/- 643ml / 24h) were assessed. In steady-state conditions, urine samples were collected at 0-2h, 2-4h, 4-8h and 8-12h during a dosing interval, and urinary concentrations of levofloxacin were assayed by HPLC. Mean (+/- SD) levofloxacin urinary concentrations were 329.1 +/- 159.9, 388.6 +/- 143.5, 266.0 +/- 102.8 and 168.1 +/- 93.3mg/L at 0-2h, 2-4h, 4-8h and 8-12h, respectively, with urinary AUC0-tau of 3171.4 +/- 1192.1mg/L x h. Mean (+/- SD) levofloxacin excretion rates were 44.1 +/- 20.7, 42.8 +/- 8.2, 31.7 +/- 5.8 and 19.8 +/- 4.2 mg/h during the 0-2h, 2-4, 4-8h and 8-12h interval, respectively. Our findings suggest that, consistently with levofloxacin showing high renal excretion as unmodified drug, 500mg b.i.d. i.v. of levofloxacin ensure and maintain urinary concentrations at least 50-fold higher than the MIC90 of most sensitive uropathogens during the overall dosing interval in ICU patients with normal renal function. Considering the major pharmacodynamic determinants for the concentration-dependent bactericidal activity of levofloxacin as applicable at the urinary level (CU/MIC of >12.2 and/or AUC24h U /MIC of >125h), this high dosage regimen may ensure optimal exposure for the treatment of catheter-related and severe lower UTIs not only against sensitive microorganisms, but probably also whenever microorganisms usually considered as intermediate susceptible or resistant to levofloxacin may be involved.
Collapse
Affiliation(s)
- F Pea
- Institute of Clinical Pharmacology & Toxicology, Department of Experimental and Clinical Pathology and Medicine, Medical School, University of Udine, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Pea F, Pavan F, Nascimben E, Benetton C, Scotton PG, Vaglia A, Furlanut M. Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother 2004; 47:3104-8. [PMID: 14506016 PMCID: PMC201115 DOI: 10.1128/aac.47.10.3104-3108.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro levofloxacin exhibits both potent or intermediate activity against most of the pathogens frequently responsible for acute bacterial meningitis and synergistic activity with some beta-lactams. Since levofloxacin was shown to penetrate the cerebrospinal fluid (CSF) during meningeal inflammation both in animals and in humans, the disposition of levofloxacin in CSF was studied in 10 inpatients with external ventriculostomy because of communicating hydrocephalus related to subarachnoid occlusion due to cerebral accidents who were treated with 500 mg of levofloxacin intravenously twice a day because of extracerebral infections. Plasma and CSF concentration-time profiles and pharmacokinetics were assessed at steady state. Plasma and CSF levofloxacin concentrations were analyzed by high-pressure liquid chromatography. The peak concentration of levofloxacin at steady state (C(max ss))was 10.45 mg/liter in plasma and 4.06 mg/liter in CSF, respectively, with the ratio of the C(max ss) in CSF to the C(max ss) in plasma being 0.47. The areas under the concentration-time curves during the 12-h dosing interval (AUC(0-tau)s) were 47.69 mg. h/liter for plasma and 33.42 mg. h/liter for CSF, with the ratio of the AUC(0-tau) for CSF to the AUC(0-tau) for plasma being 0.71. The terminal-phase half-life of levofloxacin in CSF was longer than that in plasma (7.02 +/- 1.57 and 5.51 +/- 1.36 h, respectively; P = 0.034). The ratio of the levofloxacin concentration in CSF to the concentration in plasma progressively increased with time, from 0.30 immediately after dosing to 0.99 at the end of the dosing interval. In the ventricular CSF of patients with uninflamed meninges, levofloxacin was shown to provide optimal exposure, which approximately corresponded to the level of exposure of the unbound drug in plasma. The findings provide support for trials of levofloxacin with twice-daily dosing in combination with a reference beta-lactam for the treatment of bacterial meningitis in adults. This cotreatment could be useful both for overcoming Streptococcus pneumoniae resistance and for enabling optimal exposure of the CSF to at least one antibacterial agent for the overall treatment period.
Collapse
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology & Toxicology, Department of Experimental and Clinical Pathology and Medicine, Medical School, University of Udine, Udine, Italy.
| | | | | | | | | | | | | |
Collapse
|