1
|
Eroglu MN, Rodríguez-Longobardo C, Ramírez-Adrados A, Colina-Coca C, Burgos-Postigo S, López-Torres O, Fernández-Elías VE. The Effects of 24-h Fasting on Exercise Performance and Metabolic Parameters in a Pilot Study of Female CrossFit Athletes. Nutrients 2023; 15:4841. [PMID: 38004236 PMCID: PMC10674902 DOI: 10.3390/nu15224841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Many studies have tested intermittent fasting (IF) in athletes, but its effects on female CrossFit athletes remain relatively unexplored in the existing literature. The aim of this study was to evaluate and compare the effects of 24-h IF on the physical performance of female CrossFit practitioners. Eleven female CrossFit athletes (age: 30.91 ± 3.42, weight: 65.26 ± 7.55 kg, height: 1.66 ± 0.05 m) participated in the study. The study used a crossover design with fasting and eating conditions. Participants completed an exercise test, standing long jump, and handgrip strength assessment. Hydration status, heart rate, blood lactate, blood glucose, rates of perceived exertion, and hunger were measured. Results showed significant differences in blood lactate concentration (F = 5.435, p = 0.042, η2p = 0.352). Resting blood lactate concentration was significantly lower in the fasting trial than in the eating trial (p < 0.001), but post-exercise blood lactate concentrations were higher in the fasting trial than in the eating trial (p < 0.001). No differences were found in performance times (p > 0.05). In conclusion, this pilot study of females suggests that 24-h fasting does not impair exercise performance or negatively affect physiological parameters in CrossFit athletes.
Collapse
Affiliation(s)
- Melike Nur Eroglu
- Coaching Education Department, Sports Science Faculty, Sakarya University of Applied Sciences, Serdivan 54050, Turkey;
| | - Celia Rodríguez-Longobardo
- Social Sciences of Physical Activity, Sport and Leisure Department, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ana Ramírez-Adrados
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| | - Clara Colina-Coca
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - Silvia Burgos-Postigo
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| | - Olga López-Torres
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| | - Valentín E. Fernández-Elías
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.R.-A.); (S.B.-P.); (V.E.F.-E.)
| |
Collapse
|
2
|
Vogt ÉL, Von Dentz MC, Rocha DS, Model JFA, Kowalewski LS, Silveira D, de Amaral M, de Bittencourt Júnior PIH, Kucharski LC, Krause M, Vinagre AS. Acute effects of a single moderate-intensity exercise bout performed in fast or fed states on cell metabolism and signaling: Comparison between lean and obese rats. Life Sci 2023; 315:121357. [PMID: 36634864 DOI: 10.1016/j.lfs.2022.121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
AIMS Although the benefits of exercise can be potentiated by fasting in healthy subjects, few studies evaluated the effects of this intervention on the metabolism of obese subjects. This study investigated the immediate effects of a single moderate-intensity exercise bout performed in fast or fed states on the metabolism of gastrocnemius and soleus of lean and obese rats. MAIN METHODS Male rats received a high-fat diet (HFD) for twelve weeks to induce obesity or were fed standard diet (SD). After this period, the animals were subdivided in groups: fed and rest (FER), fed and exercise (30 min treadmill, FEE), 8 h fasted and rest (FAR) and fasted and exercise (FAE). Muscle samples were used to investigate the oxidative capacity and gene expression of AMPK, PGC1α, SIRT1, HSF1 and HSP70. KEY FINDINGS In relation to lean animals, obese animals' gastrocnemius glycogen decreased 60 %, triglycerides increased 31 %; glucose and alanine oxidation decreased 26 % and 38 %, respectively; in soleus, triglycerides reduced 46 % and glucose oxidation decreased 37 %. Exercise and fasting induced different effects in glycolytic and oxidative muscles of obese rats. In soleus, fasting exercise spared glycogen and increased palmitate oxidation, while in gastrocnemius, glucose oxidation increased. In obese animals' gastrocnemius, AMPK expression decreased 29 % and SIRT1 increased 28 % in relation to lean. The AMPK response was more sensitive to exercise and fasting in lean than obese rats. SIGNIFICANCE Exercise and fasting induced different effects on the metabolism of glycolytic and oxidative muscles of obese rats that can promote health benefits in these animals.
Collapse
Affiliation(s)
- Éverton Lopes Vogt
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maiza Cristina Von Dentz
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Santos Rocha
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jorge Felipe Argenta Model
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diane Silveira
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Carlos Kucharski
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anapaula Sommer Vinagre
- Comparative Endocrinology and Metabolism Laboratory (LAMEC), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Zouhal H, Saeidi A, Salhi A, Li H, Essop MF, Laher I, Rhibi F, Amani-Shalamzari S, Ben Abderrahman A. Exercise Training and Fasting: Current Insights. Open Access J Sports Med 2020; 11:1-28. [PMID: 32021500 PMCID: PMC6983467 DOI: 10.2147/oajsm.s224919] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Fasting is defined as the abstinence from consuming food and/or beverages for different periods of time. Both traditional and modern healthcare systems recommend fasting as a therapeutic intervention for the management of several chronic, non-infectious diseases. Exercising during a fasting state increases lipolysis in adipose tissue while also stimulating peripheral fat oxidation, resulting in increased fat utilization and weight loss. A key focus of this review is to assess whether endurance training performed while fasting induces specific training adaptations, where increased fat oxidation improves long-term endurance levels. Fasting decreases body weight, lean body and fat content in both trained and untrained individuals. Several studies indicate a broader impact of fasting on metabolism, with effects on protein and glucose metabolism in sedentary and untrained subjects. However, there are conflicting data regarding the effects of fasting on glucose metabolism in highly trained athletes. The effects of fasting on physical performance indicators also remain unclear, with some reporting a decreased performance, while others found no significant effects. Differences in experimental design, severity of calorie restriction, duration, and participant characteristics could, at least in part, explain such discordant findings. Our review of the literature suggests that there is little evidence to support the notion of endurance training and fasting-mediated increases in fat oxidation, and we recommend that endurance athletes should avoid high intensity training while fasting.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé), University of Rennes, Rennes F-35000, France
| | - Ayoub Saeidi
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | - Amal Salhi
- Department of Medicine Physical and Functional Rehabilitation of the National Institute of Orthopedics "M.T. Kassab", Tunis, Tunisia
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Fatma Rhibi
- M2S (Laboratoire Mouvement, Sport, Santé), University of Rennes, Rennes F-35000, France
| | - Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Physical Education & Sports Science, Kharazmi University, Tehran, Iran
| | | |
Collapse
|
10
|
Ferguson LM, Rossi KA, Ward E, Jadwin E, Miller TA, Miller WC. Effects of caloric restriction and overnight fasting on cycling endurance performance. J Strength Cond Res 2009; 23:560-70. [PMID: 19197210 DOI: 10.1519/jsc.0b013e31818f058b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to aerobic endurance and anaerobic capacity, high power-to-weight ratio (PWR) is important for cycling performance. Cyclists often try to lose weight before race season to improve body composition and optimize PWR. Research has demonstrated body fat-reducing benefits of exercise after fasting overnight. We hypothesized that fasted-state exercise in calorie-restricted trained cyclists would not result in performance decrements and that their PWR would improve significantly. We also hypothesized that substrate use during fasted-state submaximal endurance cycling would shift to greater reliance on fat. Ten trained, competitive cyclists completed a protocol consisting of baseline testing, 3 weeks of caloric restriction (CR), and post-CR testing. The testing sessions measured pre- and post-CR values for resting metabolic rate (RMR), body composition, VO2, PWR and power-to-lean weight ratio (PLWR), and power output, as well as 2-hour submaximal cycling performance, rating of perceived exertion (RPE), and respiratory exchange ratio (RER). There were no significant differences between baseline and post-CR for submaximal trial RER, power output, VO2, RMR, VO2max, or workload at VO2max. However, RPE was significantly lower, and PWR was significantly higher post-CR, whereas RER did not change. The cyclists' PWR and body composition improved significantly, and their overall weight, fat weight, and body fat percentage decreased. Lean mass was maintained. The cyclists' RPE decreased significantly during 2 hours of submaximal cycling post-CR, and there was no decrement in submaximal or maximal cycling performance after 3 weeks of CR combined with overnight fasting. Caloric restriction (up to 40% for 3 weeks) and exercising after fasting overnight can improve a cyclist's PWR without compromising endurance cycling performance.
Collapse
Affiliation(s)
- Lisa M Ferguson
- Department of Exercise Science, The George Washington University, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
12
|
Oliver SJ, Laing SJ, Wilson S, Bilzon JLJ, Walsh N. Endurance Running Performance after 48 h of Restricted Fluid and/or Energy Intake. Med Sci Sports Exerc 2007; 39:316-22. [PMID: 17277596 DOI: 10.1249/01.mss.0000241656.22629.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine the effect of a 48-h period of either fluid restriction (FR), energy restriction (ER), or fluid and energy restriction (F + ER) on 30-min treadmill time trial (TT) performance in temperate conditions. METHODS Thirteen males participated in four randomized 48-h trials (mean +/- SD: age, 21 +/- 3 yr; VO2max 50.9 +/- 4.3 mL x kg(-1) x min(-1)). Control (CON) participants received their estimated energy (2903 +/- 199 kcal x d(-1)) and water (3912 +/- 500 mL x d(-1)) requirements. For FR, participants received their energy requirements and 193 +/- 50 mL x d(-1) water to drink, and for ER, participants received their water requirements and 290 +/- 20 kcal x d(-1). F + ER was a combination of FR and ER. After 48 h, participants performed a 30-min treadmill TT in temperate conditions (19.7 +/- 0.6 degrees C). A separate investigation (N = 10) showed the TT to be highly reproducible (CV 1.6%). RESULTS Body mass loss (BML) was 0.6 +/- 0.4% (CON), 3.2 +/- 0.5% (FR), 3.4 +/- 0.3% (ER), and 3.6 +/- 0.3% (F + ER). Compared with CON (6295 +/- 513 m), less distance was completed on ER (10.3%) and F + ER (15.0%: P < 0.01). Although less distance was completed on FR (2.8%), this was not significantly different from CON. CONCLUSIONS These results show a detrimental effect of a 48-h period of ER but no significant effect of FR on 30-min treadmill TT performance in temperate conditions. Therefore, these results do not support the popular contention that modest hypohydration (2-3% BML) significantly impairs endurance performance in temperate conditions.
Collapse
Affiliation(s)
- Samuel J Oliver
- School of Sport, Health and Exercise Sciences, University of Wales, Bangor, United Kingdom
| | | | | | | | | |
Collapse
|