1
|
Thongpon P, Intuyod K, Pongking T, Priprem A, Chomwong S, Tanasuka P, Mahalapbutr P, Suriya U, Vaeteewoottacharn K, Pinlaor P, Pinlaor S. Curcumin-Loaded Maltodextrin-Based Proniosomes Potentially Effective against Gemcitabine-Resistant Cholangiocarcinoma. ACS APPLIED BIO MATERIALS 2025; 8:913-930. [PMID: 39772434 PMCID: PMC11752495 DOI: 10.1021/acsabm.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Cholangiocarcinoma (CCA) or bile-duct cancer is most prevalent in Southeast Asian counties including Thailand. Patients present at an advanced stage when the cancer is often drug resistant, leading to chemotherapy failure. Curcumin has therapeutic potential with various anticancer properties. However, its effectiveness is limited by its low bioavailability, poor solubility, and instability. This study aimed to synthesize, characterize and evaluate the efficacy of curcumin-loaded maltodextrin-based proniosomes (CMPNs) to overcome the limitations of curcumin for treating gemcitabine-resistant CCA cells (KKU-213BGemR) in vitro and in vivo. Various proniosome formulations were developed and tested for their efficacy against KKU-213BGemR cells using cytotoxicity, clonogenic, migration, and invasion assays. The potential mechanism involving in cell cycle arrest, apoptosis, expression of C/EBP homologous protein (CHOP), a pro-apoptotic transcription factor, and other apoptotic markers were investigated. The results showed that nanoscale CMPNs exhibited a good curcumin loading capacity and an entrapment efficiency of over 97%, as well as good stability and permeability through porcine esophageal mucosa. CMPNs inhibited proliferation, colony formation, migration/invasion and induced apoptosis in KKU-213BGemR cells. Western blot analysis revealed CMPNs significantly increased CHOP, the cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor, and caspase-3 expression in KKU-213BGemR cells. A xenograft model revealed that 62.5 mg/kg BW CMPNs significantly suppressed proliferating cell nuclear antigen and increased CHOP-mediated apoptosis, leading to significantly reduced tumor volume. In conclusion, CMPNs effectively overcome limitations of curcumin and offer an effective strategy against gemcitabine-resistant CCA via CHOP-mediated pathways. These proniosomes are promising as an alternative treatment approach for CCA.
Collapse
Affiliation(s)
- Phonpilas Thongpon
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kitti Intuyod
- Department
of Pathology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical
Sciences Program, Graduate School, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonsri Priprem
- Faculty
of Pharmacy, Mahasarakham University, Khamriang Sub-District, Kantarawichai
District, Mahasarakham 44150, Thailand
| | - Sasitorn Chomwong
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pakornkiat Tanasuka
- Department
of Pathology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Utid Suriya
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Kulthida Vaeteewoottacharn
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Centre
for Research and Development in Medical Diagnostic Laboratory, Faculty
of Associated Medical Sciences, Khon Kaen
University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Chen Y, Jin X, Kuang Y, Zhang S, Zhang C, Li C, Guo B. A Novel Oral Drugs Delivery System for Borneol Based on HiCap ®100 and Maltodextrin: Preparation, Characterization, and the Investigation as an Intestinal Absorption Enhancer. AAPS PharmSciTech 2023; 24:197. [PMID: 37783919 DOI: 10.1208/s12249-023-02654-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
The objective of this study was to create a new method for delivering oral borneol (BN) drug that would improve stability. This was accomplished through microencapsulation using HiCap®100 and maltodextrin (MD), resulting in HiCap®100/MD/BN microcapsules (MCs). The HiCap®100/MD/BN MCs were evaluated in terms of encapsulation efficiency (EE%), drug loading (DL%), morphological observations, particle size distribution, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal analysis, drug degradation rate studies, and in vitro release behavior. The effect of MCs on intestinal permeability in a rat model was assessed using the model drug "florfenicol" (FF) in single-pass intestinal perfusion (SPIP) study. The relationship between MCs and P-glycoprotein (P-gp) was further investigated in comparison with verapamil (Ver). The irritation of MCs was assessed by histological analysis. The MCs in a spherical structure with micron-scale dimensions were obtained. The EE% and DL% were (86.71 ± 0.96)% and (6.03 ± 0.32)%, respectively. MCs played a significantly protective role in drug degradation rate studies. In vitro release studies indicated that the release behavior of MCs was significantly better than BN at the three-release media, and the cumulative release rate exceeded 90% in 15 min. The SPIP studies showed that MCs significantly enhanced the absorption of FF in rats. Compared with Ver, MCs were not promoted by a single inhibition of P-gp. Hematoxylin-eosin (HE)-stained images showed that MCs had no obvious irritation and toxic effects on the intestines of rats. Thus, the preparation of HiCap®100/MD/BN MCs improves the stability of BN, which has certain scientific value for the development and application of BN, and provides unique perspectives for future BN-related researches.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmaceutics, School of Pharmacy, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaowei Jin
- Department of Pharmaceutics, School of Pharmacy, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yanhui Kuang
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Sisi Zhang
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Chuanping Zhang
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Chuyuan Li
- Guangdong Baiyun Mountain and Hutchison Whampoa Ltd., Modern Chinese Medicine Research Institute, Guangzhou, 510515, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Cai X, Jin M, Yao L, He B, Ahmed S, Safdar W, Ahmad I, Cheng DB, Lei Z, Sun T. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers. J Mater Chem B 2023; 11:716-733. [PMID: 36594785 DOI: 10.1039/d2tb02001g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a promising delivery nanosystem for drug controlled-release, nanocarriers (NCs) have been investigated widely. Although various studies have concentrated on the preparation and characterization of nanoparticles (NPs), clinical applications are rarely reported, due to the unclear distribution, absorption, metabolism, toxicology processes and drug release mechanism. The clinical application of NCs is therefore still a long way off. This review describes the effects of the properties of NCs (including size, shape, surface properties, porosity, elasticity and so on) on pharmacological and toxicological behaviours in vivo and medical applications. Moreover, this study is intended to help the readers understand the behaviours and mechanisms of NCs and positively face the challenges caused by the variety of complicated and limited processes of NCs in vivo. Importantly, this article provides some strategies for the clinical application of NCs and may provide ideas to enhance the therapeutic efficacy of NCs without increasing the toxicology, by introducing tracing technology, which can be more suitable in contributing to the development of safety and efficacy of NCs and the growth of nanotechnology.
Collapse
Affiliation(s)
- Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ijaz Ahmad
- Department of Animal Health, University of Agriculture, Peshawar, Pakistan
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
4
|
Fei Y, Ma Y, Zhang H, Li H, Feng G, Fang J. Nanotechnology for research and treatment of the intestine. J Nanobiotechnology 2022; 20:430. [PMID: 36175955 PMCID: PMC9523975 DOI: 10.1186/s12951-022-01517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of intestinal in vitro models is crucial for elucidating intestinal cell-microbe intrinsic connections and interaction mechanisms to advance normalized intestinal diagnosis and precision therapy. This review discusses the application of nanomaterials in mucosal therapy and mechanism research in combination with the study of nanoscaffold in vitro models of the gut. By reviewing the original properties of nanomaterials synthesized by different physicochemical principles and modifying the original properties, the contribution of nanomaterials to solving the problems of short survival period, low cell differentiation rate, and poor reduction ability in traditional intestinal models is explored. According to nanomaterials’ different diagnostic mediators and therapeutic targets, the current diagnostic principles in inflammatory bowel disease, intestinal cancer, and other diseases are summarized inductively. In addition, the mechanism of action of nanomedicines in repairing mucosa, inhibiting inflammation, and alleviating the disease process is also discussed. Through such systematic elaboration, it offers a basis for nanomaterials to help advance in vitro research on the intestine and provide precision treatments in the clinic.
Collapse
Affiliation(s)
- Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China
| | - Huaizu Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, Hunan, China.
| |
Collapse
|
5
|
Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TDJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022; 19:771-793. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) is the most common metabolic disease and multifactorial, harming patients worldwide. Extensive research has been carried out in the search for novel drug delivery systems offering reliable control of glucose levels for diabetics, aiming at efficient management of DM. AREAS COVERED Polymeric micelles (PMs) as smart drug delivery nanocarriers are discussed, focusing on oral drug delivery applications for the management of hyperglycemia. The most recent approaches used for the preparation of smart PMs employ molecular features of amphiphilic block copolymers (ABCs), such as stimulus sensitivity, ligand conjugation, and as a more specific example the ability to inhibit islet amyloidosis. EXPERT OPINION PMs provide a unique platform for self-regulated or spatiotemporal drug delivery, mimicking the working mode of pancreatic islets to maintain glucose homeostasis for prolonged periods. This unique characteristic is achieved by tailoring the functional chemistry of ABCs considering the physicochemical traits of PMs, including sensing capabilities, hydrophobicity, etc. In addition, the application of ABCs for the inhibition of conformational changes in islet amyloid polypeptide garnered attention as one of the root causes of DM. However, research in this field is limited and further studies at the clinical level are required.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Flavia Zacconi
- de Farmacia, Pontificia Universidad Cat´olica de ChileDepartamento de Química Org´anica, Facultad de Química y , Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Macul, Chile
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta AB, Canada
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Kharj, KSA
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Gaurav Gupta
- Department of pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Andrew Morris
- Swansea University Medical School, Swansea University, Singleton Park, Swansea
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
6
|
Zhang F, Pei X, Peng X, Gou D, Fan X, Zheng X, Song C, Zhou Y, Cui S. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery. BIOMATERIALS ADVANCES 2022; 135:212746. [PMID: 35929218 DOI: 10.1016/j.bioadv.2022.212746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Pectin-based drug delivery systems hold great potential for oral insulin delivery, since they possess excellent gelling property, good mucoadhesion and high stability in the gastrointestinal (GI) tract. However, lack of enterocyte targeting ability and premature drug release in the upper GI tract of the susceptible ionic-crosslinked pectin matrices are two major problems to be solved. To address these issues, we developed folic acid (FA)-modified pectin nanoparticles (INS/DFAN) as insulin delivery vehicles by a dual-crosslinking method using calcium ions and adipic dihydrazide (ADH) as crosslinkers. In vitro studies indicated insulin release behaviors of INS/DFAN depended on COOH/ADH molar ratio in the dual-crosslinking process. INS/DFAN effectively prevented premature insulin release in simulated GI fluids compared to ionic-crosslinked nanoparticles (INS/FAN). At an optimized COOH/ADH molar ratio, INS/DFAN with FA graft ratio of 18.2% exhibited a relatively small particle size, high encapsulation efficiency and excellent stability. Cellular uptake of INS/DFAN was FA graft ratio dependent when it was at/below 18.2%. Uptake mechanism and intestinal distribution studies demonstrated the enhanced insulin transepithelial transport by INS/DFAN via FA carrier-mediated transport pathway. In vivo studies revealed that orally-administered INS/DFAN produced a significant reduction in blood glucose levels and further improved insulin bioavailability in type I diabetic rats compared to INS/FAN. Taken together, the combination of dual crosslinking and FA modification is an effective strategy to develop pectin nano-vehicles for enhanced oral insulin delivery.
Collapse
Affiliation(s)
- Fenglei Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejing Pei
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxia Peng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dongxia Gou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiao Fan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuefei Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Sisi Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
7
|
Sarhadi S, Moosavian SA, Mashreghi M, Rahiman N, Golmohamadzadeh S, Tafaghodi M, Sadri K, Chamani J, Jaafari MR. B12-functionalized PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
9
|
Amekyeh H, Billa N. Lyophilized Drug-Loaded Solid Lipid Nanoparticles Formulated with Beeswax and Theobroma Oil. Molecules 2021; 26:908. [PMID: 33572168 PMCID: PMC7914714 DOI: 10.3390/molecules26040908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) have the potential to enhance the systemic availability of an active pharmaceutical ingredient (API) or reduce its toxicity through uptake of the SLNs from the gastrointestinal tract or controlled release of the API, respectively. In both aspects, the responses of the lipid matrix to external challenges is crucial. Here, we evaluate the effects of lyophilization on key responses of 1:1 beeswax-theobroma oil matrix SLNs using three model drugs: amphotericin B (AMB), paracetamol (PAR), and sulfasalazine (SSZ). Fresh SLNs were stable with sizes ranging between 206.5-236.9 nm. Lyophilization and storage for 24 months (4-8 °C) caused a 1.6- and 1.5-fold increase in size, respectively, in all three SLNs. Zeta potential was >60 mV in fresh, stored, and lyophilized SLNs, indicating good colloidal stability. Drug release was not significantly affected by lyophilization up to 8 h. Drug release percentages at end time were 11.8 ± 0.4, 65.9 ± 0.04, and 31.4 ± 1.95% from fresh AMB-SLNs, PAR-SLNs, and SSZ-SLNs, respectively, and 11.4 ± 0.4, 76.04 ± 0.21, and 31.6 ± 0.33% from lyophilized SLNs, respectively. Thus, rate of release is dependent on API solubility (AMB < SSZ < PAR). Drug release from each matrix followed the Higuchi model and was not affected by lyophilization. The above SLNs show potential for use in delivering hydrophilic and lipophilic drugs.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, PMB 31, Ho, Ghana;
| | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Meneguin AB, Silvestre ALP, Sposito L, de Souza MPC, Sábio RM, Araújo VHS, Cury BSF, Chorilli M. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2020; 256:117504. [PMID: 33483027 DOI: 10.1016/j.carbpol.2020.117504] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Oral administration of insulin (INS) would represent a revolution in the treatment of diabetes, considering that this route mimics the physiological dynamics of endogenous INS. Nano- and microencapsulation exploiting the advantageous polysaccharides properties has been considered an important technological strategy to protect INS against harsh conditions of gastrointestinal tract, in the same time that improve the permeability via transcellular and/or paracellular pathways, safety and in some cases even selectivity for targeting delivery of INS. In fact, some polysaccharides also give to the systems functional properties such as pH-responsiveness, mucoadhesiveness under specific physiological conditions and increased intestinal permeability. In general, all polysaccharides can be functionalized with specific molecules becoming more selective to the cells to which INS is delivered. The present review highlights the advances in the past 10 years on micro- and nanoencapsulation of INS exploiting the unique natural properties of polysaccharides, including chitosan, starch, alginate, pectin, and dextran, among others.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.
| | | | - Larissa Sposito
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
11
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
12
|
Azevedo C, Nilsen J, Grevys A, Nunes R, Andersen JT, Sarmento B. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. J Control Release 2020; 327:161-173. [DOI: 10.1016/j.jconrel.2020.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
|
13
|
Faustova M, Nikolskaya E, Sokol M, Zabolotsky A, Mollaev M, Zhunina O, Fomicheva M, Lobanov A, Severin E, Yabbarov N. High-effective reactive oxygen species inducer based on Mn-tetraphenylporphyrin loaded PLGA nanoparticles in binary catalyst therapy. Free Radic Biol Med 2019; 143:522-533. [PMID: 31520768 DOI: 10.1016/j.freeradbiomed.2019.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
Abstract
The mechanisms of binary catalyst therapy (BCT) and photodynamic therapy (PDT) are based on the formation of reactive oxygen species (ROS). This ROS formation results from specific chemical reactions. In BCT, light exposure does not necessarily initiate ROS formation and BCT application is not limited to regions of tissues that are accessible to illumination like photodynamic therapy (PDT). The principle of BCT is electron transition, resulting in the interaction of a transition metal complex (catalyst) and substrate molecule. MnIII- tetraphenylporphyrin chloride (MnClTPP) in combination with an ascorbic acid (AA) has been proposed as an appropriate candidate for cancer treatment regarding the active agents in BCT. The goal of this study was to determine whether MnClTPP in combination with AA would be a promising agent for BCT. The problem of used MnClTPP's, low solubility in water, was solved by MnClTPP loading into PLGA matrix. H2O2 produced during AA decomposition oxidized MnClTPP to high-reactive oxo-MnV species. MnClTPP in presence AA leads to the production of excessive ROS levels in vitro. ROS are mainly substrates of catalase and superoxide dismutase (H2O2 and O2●-). SOD1 and catalase were identified as the key players of the MnClTPP ROS-induced cell defense system. The cytotoxicity of MnClTPP-loaded nanoparticles (NPs) was greatly increased in the presence of specific catalase inhibitor (3-amino-1,2,4-triazole (3AT)) and superoxide dismutase 1 (SOD1) inhibitor (diethyldithiocarbamate (DDC)). Cell death resulted from the combined activation of caspase-dependent (caspase 3/9 system) and independent pathways, namely the AIF translocation to nuclei. Preliminary acute toxicity and in vivo anticancer studies have been revealed the safe and potent anticancer effect of PLGA-entrapped MnClTPP in combination with AA. The findings indicate that MnClTPP-loaded PLGA NPs are promising agents for BCT.
Collapse
Affiliation(s)
- Maria Faustova
- MIREA, Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454, Moscow, Russia
| | | | - Maria Sokol
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149, Moscow, Russia
| | | | - Murad Mollaev
- MIREA, Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454, Moscow, Russia
| | - Olga Zhunina
- Semenov Institute of Chemical Physics, 119991, Moscow, Russia
| | - Margarita Fomicheva
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149, Moscow, Russia
| | - Anton Lobanov
- Semenov Institute of Chemical Physics, 119991, Moscow, Russia
| | - Evgeniy Severin
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149, Moscow, Russia
| | - Nikita Yabbarov
- Semenov Institute of Chemical Physics, 119991, Moscow, Russia.
| |
Collapse
|
14
|
Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M, Pottoo FH, Sarafroz M, Jafar M, Umar K. Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles. Int J Biol Macromol 2019; 128:825-838. [PMID: 30690115 DOI: 10.1016/j.ijbiomac.2019.01.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Daunorubicin hydrochloride (DAUN·HCl), due to low oral bioavailability poses the hindrance to be marketed as an oral formulation. AIM OF THE STUDY To develop a natural biodegradable macromolecule i.e. Chitosan (CS)-coated-DAUN-PLGA-poly(lactic-co-glycolic acid)-Nanoparticles (NPs) with an aim to improve oral-DAUN bioavailability and to develop as well as validate UHPLC-MS/MS (ESI/Q-TOF) method for plasma quantification and pharmacokinetic analysis (PK) of DAUN. RESULTS A particle size (198.3 ± 9.21 nm), drug content (47.06 ± 1.16 mg/mg) and zeta potential (11.3 ± 0.98 mV), consisting of smooth and spherical shape was observed for developed formulation. Cytotoxicity studies for CS-DAUN-PLGA-NPs revealed; a comparative superiority over free DAUN-S (i.v.) in human breast adenocarcinoma cell lines (MCF-7) and a higher permeability i.e. 3.89 folds across rat ileum, as compared to DAUN-PLGA-NPs (p < 0.01) inhuman colon adenocarcinoma cell line (Caco-2). For PK, CS-DAUN-PLGA-NPs as compared to DAUN-S, exhibited a 10.0 fold higher bioavailability in Wister rat's plasma due to presence of a natural biodegradable macromolecule i.e. CS coated on the PLGA-NPs. With regard to bioanalytical method, easy as well as a rapid method for DAUN-plasma quantification was developed as; 2.75 min and 528.49/321.54 m/z for DAUN along with 1.94 min and 544.36/397.41 m/z for IS i.e. Doxorubicin, for elution time and transition, respectively. CONCLUSION A novel natural biodegradable approach used in the preparation of CS coated DAUN-NPs for oral administration of DAUN is reported in this study which is can be utilized as an alternate for intravenous therapy.
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida 201310, India
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
15
|
Ahmad N, Alam MA, Ahmad R, Umar S, Jalees Ahmad F. RETRACTED ARTICLE: Improvement of oral efficacy of Irinotecan through biodegradable polymeric nanoparticles through in vitro and in vivo investigations. J Microencapsul 2018; 35:327-343. [DOI: 10.1080/02652048.2018.1485755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sadiq Umar
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
16
|
Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today 2018; 23:944-959. [PMID: 28919437 PMCID: PMC7108348 DOI: 10.1016/j.drudis.2017.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/13/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
Abstract
The intracellular delivery of nanomaterials and drugs has been attracting increasing research interest, mainly because of their important effects and functions in several organelles. Targeting specific organelles can help treat or decrease the symptoms of diabetes, cancer, infectious, and autoimmune diseases. Tuning biological and chemical properties enables the creation of functionalized nanomaterials with enhanced intracellular uptake, ability to escape premature lysosome degradation, and to reach a specific target. Here, we provide an update of recent advances in the intracellular delivery mechanisms that could help drugs reach their target more efficiently.
Collapse
Affiliation(s)
- Cláudia Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Helena Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
17
|
Mahobia S, Bajpai J, Bajpai AK. Soya protein as possible potential nanocarriers for in-vitro oral delivery of insulin in simulated gastric fluids (SGFs). INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1327435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Swati Mahobia
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Jaya Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur, Jabalpur, Madhya Pradesh, India
| | - A. K. Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
18
|
Shi Y, Sun X, Zhang L, Sun K, Li K, Li Y, Zhang Q. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci Rep 2018; 8:726. [PMID: 29335533 PMCID: PMC5768888 DOI: 10.1038/s41598-018-19170-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 01/15/2023] Open
Abstract
To improve the oral efficiency of exenatide, we prepared polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) NPs modified with Fc (NPs-Fc) for exenatide oral delivery. Exenatide was encapsulated into the NPs by the w/o/w emulsion-solvent evaporation method. The particle size of the NPs-Fc was approximately 30 nm larger than that of the unmodified NPs with polydispersity indices in a narrow range (PDIs; PDI < 0.3) as detected by DLS, and the highest encapsulation efficiency of exenatide in the NPs was greater than 80%. Fc-conjugated NPs permeated Caco-2 cells faster and to a greater extent compared to unmodified NPs, as verified by CLSM and flow cytometry. Hypoglycemic effect studies demonstrated that oral administration of exenatide-loaded PEG-PLGA NPs modified by an Fc group extended the hypoglycemic effects compared with s.c. injection of the exenatide solution. Fluorescence-labeled NPs were used to investigate the effects of Fc targeting, and the results demonstrated that the NPs-Fc stayed in the gastrointestinal tract for a longer time in comparison with the unmodified NPs, as shown by the whole-body fluorescence images and fluorescence images of the dissected organs detected by in vivo imaging in live mice. Therefore, Fc-targeted nano-delivery systems show great promise for oral peptide/protein drug delivery.
Collapse
Affiliation(s)
- Yanan Shi
- School of pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Xinfeng Sun
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Liping Zhang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Kaoxiang Sun
- School of Pharmacy, Yantai University, Yantai, 264005, China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, 264003, China
| | - Keke Li
- School of pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Youxin Li
- School of Pharmacy, Yantai University, Yantai, 264005, China. .,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, 264003, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Maciel VBV, Yoshida CMP, Pereira SMSS, Goycoolea FM, Franco TT. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules 2017; 22:molecules22101707. [PMID: 29023400 PMCID: PMC6151702 DOI: 10.3390/molecules22101707] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
A polyelectrolyte complex system of chitosan-pectin nano- and microparticles was developed to encapsulate the hormone insulin. The aim of this work was to obtain small particles for oral insulin delivery without chemical crosslinkers based on natural and biodegradable polysaccharides. The nano- and microparticles were developed using chitosans (with different degrees of acetylation: 15.0% and 28.8%) and pectin solutions at various charge ratios (n⁺/n- given by the chitosan/pectin mass ratio) and total charge. Nano- and microparticles were characterized regarding particle size, zeta potential, production yield, encapsulation efficiency, stability in different media, transmission electron microscopy and cytotoxicity assays using Caco-2 cells. The insulin release was evaluated in vitro in simulated gastric and intestinal media. Small-sized particles (~240-~1900 nm) with a maximum production yield of ~34.0% were obtained. The highest encapsulation efficiency (~62.0%) of the system was observed at a charge ratio (n⁺/n-) 5.00. The system was stable in various media, particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for oral administration of bioactive peptides.
Collapse
Affiliation(s)
- Vinicius B V Maciel
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga CEP 13635-900, São Paulo, Brazil.
- School of Chemical Engineering, UNICAMP-State University of Campinas, Av. Albert Einstein, 500, Campinas CEP 13083-852, São Paulo, Brazil.
| | - Cristiana M P Yoshida
- Department of Exact and Earth Science, UNIFESP-Federal University of São Paulo, Rua São Nicolau, 210, Diadema CEP 09913-030, São Paulo, Brazil.
| | - Susana M S S Pereira
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany.
| | - Francisco M Goycoolea
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Telma T Franco
- School of Chemical Engineering, UNICAMP-State University of Campinas, Av. Albert Einstein, 500, Campinas CEP 13083-852, São Paulo, Brazil.
| |
Collapse
|
20
|
Li P, Nielsen HM, Müllertz A. Impact of Lipid-Based Drug Delivery Systems on the Transport and Uptake of Insulin Across Caco-2 Cell Monolayers. J Pharm Sci 2016; 105:2743-2751. [DOI: 10.1016/j.xphs.2016.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
21
|
Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery. Int J Pharm 2016; 511:462-472. [DOI: 10.1016/j.ijpharm.2016.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/12/2016] [Accepted: 07/09/2016] [Indexed: 01/15/2023]
|
22
|
Tariq M, Alam MA, Singh AT, Panda AK, Talegaonkar S. Surface decorated nanoparticles as surrogate carriers for improved transport and absorption of epirubicin across the gastrointestinal tract: Pharmacokinetic and pharmacodynamic investigations. Int J Pharm 2016; 501:18-31. [PMID: 26812610 DOI: 10.1016/j.ijpharm.2016.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/01/2022]
Abstract
Epirubicin (EPI) is a P-gp substrate antracycline analogue which elicits poor oral bioavailability. In the present work, EPI loaded poly-lactide-co-glycolic acid nanoparticles (PLGA-NPs) were prepared by double emulsion approach and superficially decorated with polyethylene glycol (EPI-PNPs) and mannosamine (EPI-MNPs). Average hydrodynamic particle size of EPI-PNPs and EPI-MNPs was found 248.63 ± 12.36 and 254.23 ± 15.16 nm, respectively. Cytotoxicity studies were performed against human breast adenocarcinoma cell lines (MCF-7) confirmed the superiority of EPI-PNPs and EPI-MNPs over free epirubicin solution (EPI-S). Further, confocal laser scanning microscopy (CLSM) and flow cytometric analysis (FACS) demonstrated enhanced drug uptake through EPI-PNPs and EPI-MNPs and elucidated dominance of caveolae mediated endocytosis for NPs uptake. Cellular transport conducted on human colon adenocarcinoma cell line (Caco-2) showed 2.45 and 3.17 folds higher permeability of EPI through EPI-PNPs and EPI-MNPs when compared with EPI-S (p<0.001) while permeability of EPI was found 5.23 and 5.67 folds higher across rat ileum, respectively. Furthermore, pharmacokinetic studies demonstrated 4.7 and 5.57 folds higher oral bioavailability through EPI-PNPs and EPI-MNPs when compared with EPI-S. In addition, both, EPI-PNPs and EMNPs showed tumor suppression comparable to indicated route (i.v. injection). EPI-MNPs showed 1.18 folds higher bioavailability and better tumor suppression than EPI-PNPs.
Collapse
Affiliation(s)
- Mohammad Tariq
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Md Aftab Alam
- Department Pharmacy, Galgotia University, Greater Noida, India
| | - Anu T Singh
- Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, India
| | - Amulya K Panda
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
23
|
Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: Overview and perspectives. J Control Release 2015; 240:24-37. [PMID: 26458789 DOI: 10.1016/j.jconrel.2015.10.012] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022]
Abstract
Protein-based therapeutics have made a significant impact in the treatment of a variety of important human diseases. However, given their intrinsically vulnerable structure and susceptibility to enzymatic degradation, many therapeutic proteins such as enzymes, growth factors, hormones, and cytokines suffer from poor physicochemical/biological stability and immunogenicity that may limit their potential benefits, and in some cases limit their utility. Furthermore, when protein therapeutics are developed for intracellular targets, their internalization and biological activity may be limited by inefficient membrane permeability and/or endosomal escape. Development of effective protein delivery strategies is therefore essential to further enhance therapeutic outcomes to enable widespread medical applications. This review discusses the advantages and limitations of marketed and developmental-stage protein delivery strategies, and provides a focused overview of recent advances in nanotechnology platforms for the systemic delivery of therapeutic proteins. In addition, we also highlight nanoparticle-mediated non-invasive administration approaches (e.g., oral, nasal, pulmonary, and transdermal routes) for protein delivery.
Collapse
Affiliation(s)
- Mikyung Yu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal 2015; 23:351-358. [PMID: 28911691 PMCID: PMC9351800 DOI: 10.1016/j.jfda.2015.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus is an endocrine disease in which the pancreas does not produce sufficient insulin or the body cannot effectively use the insulin it produces. Insulin therapy has been the best choice for the clinical management of diabetes mellitus. The current insulin therapy is via subcutaneous injection, which often fails to mimic the glucose homeostasis that occurs in normal individuals. This provokes numerous attempts to develop a safe and effective noninvasive route for insulin delivery. Oral delivery is the most convenient administration route. However, insulin cannot be well absorbed orally because of its rapid enzymatic degradation in the gastrointestinal tract. Therefore, nanoparticulate carriers such as polymeric nanoparticles and micelles are employed for the oral delivery of insulin. These nanocarriers protect insulin from degradation and facilitate insulin uptake via a transcellular and/or paracellular pathway. This review article focuses on the application of nanoparticles and micelles in insulin oral delivery. The recent advances in this topic are also reviewed.
Collapse
Affiliation(s)
- Milind Sadashiv Alai
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Wen Jen Lin
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, National Taiwan University, Taipei, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
25
|
Lin X, Choi D, Hong J. Insulin particles as building blocks for controlled insulin release multilayer nano-films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:239-44. [PMID: 26046287 DOI: 10.1016/j.msec.2015.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/06/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
Abstract
Insulin nanoparticles (NPs) were prepared by pH-shift precipitation and a newly developed disassembly method at room temperature. Then, an electrostatic interaction-based, layer-by-layer (LbL) multilayer film incorporating insulin NPs was fabricated with poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), which is described herein as Si/(PAH/PAA)5(PAH/PAA-insulin NPs)n. The positively charged insulin NPs were introduced into the LbL film in the form of biocompatible PAA-insulin NP aggregates at a pH of 4.5 and were released in phosphate-buffered saline (pH7.4), triggered by changes in the charges of the insulin molecules. In addition, the insulin-incorporated multilayer was swollen because of the different ionic environment, leading also to insulin release. Eighty percent of the insulin was released from the LBL film in the first stage of 3h, and sustained release could be maintained in the second stage for up to 7 days in vitro, which is very critical for specific diabetic patients. These striking findings could offer novel directions to researchers in establishing insulin delivery systems for diabetic therapy and fabricating other protein nanoparticles applied to various biomedical platforms.
Collapse
Affiliation(s)
- Xiangde Lin
- School of Chemical Engineering & Material Science, Chung-Ang University, 47 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Daheui Choi
- School of Chemical Engineering & Material Science, Chung-Ang University, 47 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jinkee Hong
- School of Chemical Engineering & Material Science, Chung-Ang University, 47 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| |
Collapse
|
26
|
Pereira C, Araújo F, Barrias CC, Granja PL, Sarmento B. Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials 2015; 56:36-45. [PMID: 25934277 DOI: 10.1016/j.biomaterials.2015.03.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/28/2015] [Indexed: 12/20/2022]
Abstract
Absorption evaluation plays an increasingly important role at the early stage of drug discovery due to its potential to scan the ADME (absorption, distribution, metabolism and excretion) properties of new drug candidates. Therefore, a new three-dimensional (3D) in vitro model replicating the intestinal functioning is herein proposed aiming to dissect the stromal-epithelial interactions and evaluate the permeation of a model drug, insulin. Inspired on the intestinal mucosal architecture, the present model comprises intestinal myofibroblasts (CCD18-Co cells) embedded in Matrigel, onto which epithelial enterocytes (Caco-2 cells) and mucus-producing cells (HT29-MTX cells) were seeded. CCD18-Co myofibroblasts showed to have a central role in the remodeling of the surrounding matrix confirmed by the production of fibronectin. Subsequently, this matrix revealed to be essential to the maintenance of the model architecture by supporting the overlying epithelial cells. In terms of functionality, this model allowed the efficient prediction of insulin permeability in which the presence of mucus, the less tight character between Caco-2 and HT29-MTX epithelial cells and the 3D assembly were critical factors. Concluding, this model constitutes a robust tool in the drug development field with potential to bridge the traditional 2D cell culture models and in vivo animal models.
Collapse
Affiliation(s)
- Carla Pereira
- I3S - Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal; FEUP - Faculdade de Engenharia, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisca Araújo
- I3S - Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Cristina C Barrias
- I3S - Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Pedro L Granja
- I3S - Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal; FEUP - Faculdade de Engenharia, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Superior de Ciências da Saúde-Norte, Rua Central de Grandra, 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
27
|
He C, Yin L, Song Y, Tang C, Yin C. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater 2015; 17:98-106. [PMID: 25662912 DOI: 10.1016/j.actbio.2015.01.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/28/2022]
Abstract
Secretion of tumor necrosis factor-α (TNF-α) by macrophages plays a predominant role in the development and progression of various inflammatory diseases. In the current contribution, multifunctional nanoparticles (NPs) containing TNF-α siRNA targeting macrophages via oral administration were developed to knockdown TNF-α expression against acute hepatic injury in rats. Mannose-modified trimethyl chitosan-cysteine (MTC) NPs were prepared by self-assembly method (sa-MTC NPs), ionic gelation and siRNA entrapment method (en-MTC NPs), and ionic gelation and siRNA adsorption method (ad-MTC NPs). Among them, en-MTC NPs demonstrated the best stability against ionic challenges with desired siRNA integrity against nucleases. By targeting normal enterocytes and M cells that express mannose receptors, en-MTC NPs notably promoted intestinal absorption of siRNA in rats. They further facilitated siRNA internalization by rat peritoneal exudate cells (PECs) via lipid-raft involved endocytosis and macropinocytosis, thus inducing effective in vitro TNF-α knockdown. Orally delivered en-MTC NPs at a low siRNA dose of 50 μg/kg inhibited systemic TNF-α production and decreased TNF-α mRNA levels in macrophage-enriched liver, spleen, and lung tissues, which consequently protected rats from acute hepatic injury. Therefore, the en-MTC NPs would provide an effective approach to orally deliver TNF-α siRNA for the anti-inflammatory therapy.
Collapse
Affiliation(s)
- Chunbai He
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lichen Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yudong Song
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
28
|
Tariq M, Alam MA, Singh AT, Iqbal Z, Panda AK, Talegaonkar S. Biodegradable polymeric nanoparticles for oral delivery of epirubicin: In vitro, ex vivo, and in vivo investigations. Colloids Surf B Biointerfaces 2015; 128:448-456. [PMID: 25769281 DOI: 10.1016/j.colsurfb.2015.02.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 11/27/2022]
Abstract
Epirubicin (EPI) is an anthracycline antineoplastic agent, commercially available for intravenous administration only and its oral ingestion continues to remain a challenge. Present investigation is aimed at the development of poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for oral bioavailability enhancement of epirubicin. Developed formulation revealed particle size, 235.3±15.12 nm, zeta potential, -27.5±0.7 mV and drug content (39.12±2.13 μg/mg), with spherical shape and smooth surface. Cytotoxicity studies conducted on human breast adenocarcinoma cell lines (MCF-7) confirmed the superiority of epirubicin loaded poly-lactic-co-glycolic acid nanoparticles (EPI-NPs) over free epirubicin solution (EPI-S). Further, flow cytometric analysis demonstrated improved drug uptake through EPI-NPs and elucidated the dominance of caveolae mediated endocytosis for nanoparticles uptake. Transport study accomplished on human colon adenocarcinoma cell line (Caco-2) showed 2.76 fold improvement in permeability for EPI-NPs as compared to EPI-S (p<0.001) whereas a 4.49 fold higher transport was observed on rat ileum; a 1.8 fold higher (p<0.01) in comparison to Caco-2 cell lines which confirms the significant role of Peyer's patches in absorption enhancement. Furthermore, in vivo pharmacokinetic studies also revealed 3.9 fold improvement in oral bioavailability of EPI through EPI-NPs. Henceforth, EPI-NPs is a promising approach to replace pre-existing intravenous therapy thus providing "patient care at home".
Collapse
Affiliation(s)
- Mohammad Tariq
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Md Aftab Alam
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Anu T Singh
- Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
29
|
Qian S, Wang Q, Zuo Z. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides. Expert Opin Drug Metab Toxicol 2014; 10:1491-508. [DOI: 10.1517/17425255.2014.956080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Silva de Melo NF, Campos EVR, Gonçalves CM, de Paula E, Pasquoto T, de Lima R, Rosa AH, Fraceto LF. Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine. Colloids Surf B Biointerfaces 2014; 121:66-73. [PMID: 24934456 DOI: 10.1016/j.colsurfb.2014.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
One of the current challenges in drug encapsulation concerns the development of carrier systems for hydrophilic compounds. Potential carriers include nanocapsules prepared with amphiphilic polymers, which consist of a polymeric coating surrounding an aqueous nucleus, or dense matrices such as nanospheres of alginate/chitosan, where the drug may be dispersed in the matrix or adsorbed on the surface. The development of new formulations of nanocarriers, for example the poly(ethylene glycol)-poly(ɛ-caprolactone) (PEG-PCL) nanocapsules and alginate/chitosan (AG/CS) nanospheres described in this work, is needed in the case of ionized drugs such as articaine. This amino amide local anesthetic is the drug of choice in dentistry for regional anesthesia as well as the relief of acute and chronic pain. Here, the physico-chemical properties of suspensions of the nanoparticles (considering diameter, polydispersion, and zeta potential) were determined as a function of time, in order to establish the stability of the systems. The formulations did not show any substantial changes in these parameters, and were stable for up to 120 days of storage at ambient temperature. Satisfactory encapsulation efficiencies were obtained for the PEG-PCL nanocapsules (60%) and the AG/CS nanospheres (45%). Cytotoxicity assays confirmed that the encapsulation of articaine reduced its toxicity, relative to the free drug. The most promising results were obtained using the vesicular system (PEG-PCL nanocapsules), which not only altered the release profile of the drug, but also resulted in the lowest toxicity. This carrier system therefore holds promise for use in future practical applications.
Collapse
Affiliation(s)
- Nathalie Ferreira Silva de Melo
- Department of Environmental Engineering, São Paulo State University, Sorocaba, SP, Brazil; Department of Biochemistry, State University of Campinas, Campinas, SP, Brazil
| | - Estefânia Vangelie Ramos Campos
- Department of Environmental Engineering, São Paulo State University, Sorocaba, SP, Brazil; Department of Biochemistry, State University of Campinas, Campinas, SP, Brazil
| | | | - Eneida de Paula
- Department of Biochemistry, State University of Campinas, Campinas, SP, Brazil
| | - Tatiane Pasquoto
- Department of Biotechnology, University of Sorocaba, Sorocaba, SP, Brazil
| | - Renata de Lima
- Department of Biotechnology, University of Sorocaba, Sorocaba, SP, Brazil; São Carlos Federal University, Sorocaba, SP, Brazil
| | - André Henrique Rosa
- Department of Environmental Engineering, São Paulo State University, Sorocaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University, Sorocaba, SP, Brazil; Department of Biochemistry, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
31
|
Ramesan RM, Sharma CP. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev Med Devices 2014; 6:665-76. [DOI: 10.1586/erd.09.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Li X, Guo S, Zhu C, Zhu Q, Gan Y, Rantanen J, Rahbek UL, Hovgaard L, Yang M. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials 2013; 34:9678-87. [DOI: 10.1016/j.biomaterials.2013.08.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/19/2013] [Indexed: 01/20/2023]
|
33
|
Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, Hsu LW, Sung HW. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013; 65:865-79. [PMID: 23159541 DOI: 10.1016/j.addr.2012.10.010] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/24/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Chitosan (CS), a cationic polysaccharide, is widely regarded as a safe and efficient intestinal absorption enhancer of therapeutic macromolecules, owing to its inherent mucoadhesive feature and ability to modulate the integrity of epithelial tight junctions reversibly. By using CS-based nanoparticles, many studies have attempted to protect the loaded macromolecules against acidic denaturation and enzymatic degradation, prolong their intestinal residence time, and increase their absorption by the intestinal epithelium. Derivatives of CS such as quaternized CS, thiolated CS and carboxylated CS have also been examined to further enhance its effectiveness in oral absorption of macromolecular drugs. This review article describes the synthesis of these CS derivatives and their characteristics, as well as their potential transport mechanisms of macromolecular therapeutics across the intestinal biological membrane. Recent advances in using CS and its derivatives as carriers for oral delivery of hydrophilic macromolecules and their effects on drug transport are also reviewed.
Collapse
|
34
|
Burova TV, Grinberg NV, Tur DR, Papkov VS, Dubovik AS, Shibanova ED, Bairamashvili DI, Grinberg VY, Khokhlov AR. Ternary interpolyelectrolyte complexes insulin-poly(methylaminophosphazene)-dextran sulfate for oral delivery of insulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2273-2281. [PMID: 23339768 DOI: 10.1021/la303860t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ternary interpolyelectrolyte complexes of insulin with biodegradable synthetic cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP), and dextran sulfate (DS) were investigated by means of turbidimetry, dynamic light scattering, phase analysis, and high-sensitivity differential scanning calorimetry. Formation of ternary insoluble stoichiometric Insulin-PMAP-DS complexes was detected under conditions imitating the human gastric environment (pH 2, 0.15 M NaCl). A complete immobilization of insulin in the complexes was observed in a wide range of the reaction mixture compositions. The ternary complexes were shown to dissolve and dissociate under conditions imitating the human intestinal environment (pH 8.3, 0.15 M NaCl). The products of the complex dissociation were free insulin and soluble binary Insulin-PMAP complexes. The conformational stability of insulin in the soluble complexes of various compositions was investigated by high-sensitivity differential scanning calorimetry. The dependence of the excess denaturation free energy of insulin in these complexes on the PMAP content was obtained. The binding constants of the folded and unfolded forms of insulin to the PMAP polycation were estimated. Proteolysis of insulin involved in the insoluble ternary complexes by pepsin was investigated under physiological conditions. It was found that the complexes ensure an almost 100% protection of insulin against proteolytic degradation. The obtained results provide a perspective basis for development of oral insulin preparations.
Collapse
Affiliation(s)
- Tatiana V Burova
- AN Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
He C, Yin L, Tang C, Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 2012; 33:8569-78. [DOI: 10.1016/j.biomaterials.2012.07.063] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/28/2012] [Indexed: 01/25/2023]
|
36
|
Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, Pan S, Wu C, Feng M. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech 2012; 13:836-45. [PMID: 22644708 PMCID: PMC3429662 DOI: 10.1208/s12249-012-9807-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/16/2012] [Indexed: 01/16/2023] Open
Abstract
In the present study, we developed novel insulin-loaded hyaluronic acid (HA) nanoparticles for insulin delivery. The insulin-loaded HA nanoparticles were prepared by reverse-emulsion-freeze-drying method. This method led to a homogenous population of small HA nanoparticles with average size of 182.2 nm and achieved high insulin entrapment efficiencies (approximately 95%). The pH-sensitive HA nanoparticles as an oral delivery carrier showed advantages in protecting insulin against the strongly acidic environment of the stomach, and not destroying the junction integrity of epithelial cells which promise long-term safety for chronic insulin treatment. The results of transport experiments suggested that insulin-loaded HA nanoparticles were transported across Caco-2 cell monolayers mainly via transcellular pathway and their apparent permeability coefficient from apical to basolateral had more than twofold increase compared with insulin solution. The efflux ratio of P (app) (B to A) to P (app) (A to B) less than 1 demonstrated that HA nanoparticle-mediated transport of insulin across Caco-2 cell monolayers underwent active transport. The results of permeability through the rat small intestine confirmed that HA nanoparticles significantly enhanced insulin transport through the duodenum and ileum. Diabetic rats treated with oral insulin-loaded HA nanoparticles also showed stronger hypoglycemic effects than insulin solution. Therefore, these HA nanoparticles could be a promising candidate for oral insulin delivery.
Collapse
Affiliation(s)
- Lina Han
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| | - Yuefang Zhao
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| | - Lifang Yin
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| | - Ruiming Li
- />The First Affiliated Hospital, Sun Yat-sen University, 80 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Yang Liang
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| | - Huan Huang
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| | - Shirong Pan
- />The First Affiliated Hospital, Sun Yat-sen University, 80 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Chuanbin Wu
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| | - Min Feng
- />Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006 People’s Republic of China
- />Research and Development Center of Pharmaceutics of Guangdong Province, University Town, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
37
|
Wu ZM, Ling L, Zhou LY, Guo XD, Jiang W, Qian Y, Luo KQ, Zhang LJ. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. NANOSCALE RESEARCH LETTERS 2012; 7:299. [PMID: 22682064 PMCID: PMC3436866 DOI: 10.1186/1556-276x-7-299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 06/08/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to develop the PLGA/HP55 nanoparticles with improved hypoglycemic effect for oral insulin delivery. The insulin-loaded PLGA/HP55 nanoparticles were produced by a modified multiple emulsion solvent evaporation method. The physicochemical characteristics, in vitro release of insulin, and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. The insulin encapsulation efficiency was up to 94%, and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. When administered orally (50 IU/kg) to diabetic rats, the nanoparticles can decrease rapidly the blood glucose level with a maximal effect between 1 and 8 h. The relative bioavailability compared with subcutaneous injection (5 IU/kg) in diabetic rats was 11.3% ± 1.05%. This effect may be explained by the fast release of insulin in the upper intestine, where it is better absorbed by the high gradient concentration of insulin than other regions. These results show that the PLGA/HP55 nanoparticles developed in the study might be employed as a potential method for oral insulin delivery.
Collapse
Affiliation(s)
- Zhi Min Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Li Ling
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Li Ying Zhou
- Department of Chemical and Bio-molecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xin Dong Guo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Yu Qian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Kathy Qian Luo
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Li Juan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| |
Collapse
|
38
|
Abstract
Macromolecular therapeutics, in particular, many biologics, is the most advancing category of drugs over conventional chemical drugs. The potency and specificity of the biologics for curing certain disease made them to be a leading compound in the pharmaceutical industry. However, due to their intrinsic nature, including high molecular weight, hydrophilicity and instability, they are difficult to be administered via non-invasive route. This is a major quest especially in biologics, as they are frequently used clinically for chronic disorders, which requires long-term administration. Therefore, many efforts have been made to develop formulation for non-invasive administration, in attempt to improve patient compliance and convenience. In this review, strategies for non-invasive delivery, in particular, oral, pulmonary and nasal delivery, that are recently adopted for delivery of biologics are discussed. Insulin, calcitonin and heparin were mainly focused for the discussion as they could represent protein, polypeptide and polysaccharide drugs, respectively. Many recent attempts for non-invasive delivery of biologics are compared to provide an insight of developing successful delivery system.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
39
|
Abstract
Oral peptide delivery has been one of the major challenges of pharmaceutical sciences as it could lead to a great improvement of classical therapies, such as insulin, alongside making an important number of new therapies feasible. Successful oral delivery needs to fulfill two key tasks: to protect the macromolecules from degradation in the GI tract and to shuttle them across the intestinal epithelium in a safe and efficient fashion. Over the last decade, there have been numerous approaches based on the chemical modification of peptides and on the use of permeation enhancers, enzyme inhibitors and drug-delivery systems. Among the approaches developed to overcome these restrictions, the design of nanocarriers seems to be a particularly promising approach. This article is an overview on the state of the art of oral-peptide formulation strategies, with special attention to insulin delivery and the use of polymeric nanocarriers as delivery systems.
Collapse
|
40
|
Loo Y, Grigsby CL, Yamanaka YJ, Chellappan MK, Jiang X, Mao HQ, Leong KW. Comparative study of nanoparticle-mediated transfection in different GI epithelium co-culture models. J Control Release 2012; 160:48-56. [PMID: 22326811 DOI: 10.1016/j.jconrel.2012.01.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 01/30/2023]
Abstract
Oral nonviral gene delivery is the most attractive and arguably the most challenging route of administration. To identify a suitable carrier, we studied the transport of different classes (natural polymer, synthetic polymer and synthetic lipid-polymer) of DNA nanoparticles through three well-characterized cellular models of intestinal epithelium (Caco2, Caco2-HT29MTX and Caco2-Raji). Poly(phosphoramidate-dipropylamine) (PPA) and Lipid-Protamine-DNA (LPD) nanoparticles consistently showed the highest level of human insulin mRNA expression and luciferase protein expression in these models, typically at least three orders of magnitude above background. All of the nanoparticles increased tight junction permeability, with PPA and PEI having the most dramatic transepithelial electrical resistance (TEER) decreases of (35.3±8.5%) and (37.5±1.5%) respectively in the first hour. The magnitude of TEER decrease correlated with nanoparticle surface charge, implicating electrostatic interactions with the tight junction proteins. However, confocal microscopy revealed that the nanoparticles were mostly uptaken by the enterocytes. Quantitative uptake and transport experiments showed that the endocytosed, quantum dot (QD)-labeled PPA-DNA nanoparticles remained in the intestinal cells even after 24h. Negligible amount of quantum dot labeled DNA was detected in the basolateral chamber, with the exception of the Caco2-Raji co-cultures, which internalized nanoparticles 2 to 3 times more readily compared to Caco2 and Caco2-HT29MTX cultures. PEGylation decreased the transfection efficacy by at least an order of magnitude, lowered the magnitude of TEER decrease and halved the uptake of PPA-DNA nanoparticles. A key finding was insulin mRNA being detected in the underlying HepG2 cells, signifying that some of the plasmid was transported across the intestinal epithelial layer while retaining at least partial bioactivity. However, the inefficient transport suggests that transcytosis alone would not engender a significant therapeutic effect, and this transport modality must be augmented by other means in vivo to render nonviral oral gene delivery practical.
Collapse
Affiliation(s)
- Yihua Loo
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Wu ZM, Zhou L, Guo XD, Jiang W, Ling L, Qian Y, Luo KQ, Zhang LJ. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int J Pharm 2012; 425:1-8. [PMID: 22248666 DOI: 10.1016/j.ijpharm.2011.12.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
In this work, we designed and developed a two-stage delivery system composed of enteric capsule and cationic nanoparticles for oral delivery of insulin. The enteric capsule was coated with pH-sensitive hydroxypropyl methylcellulose phthalate (HP55), which could selectively release insulin from nanoparticles in the intestinal tract, instead of stomach. The biodegradable poly(lactic-co-glycolic acid) (PLGA) was selected as the matrix for loading insulin. Eurdragit(®) RS (RS) was also introduced to the nanoparticles for enhancing the penetration of insulin across the mucosal surface in the intestine. The nanoparticles were prepared with the multiple emulsions solvent evaporation method via ultrasonic emulsification. The optimized nanoparticles have a mean size of 285nm, a positive zeta potential of 42mV. The encapsulation efficiency was up to 73.9%. In vitro results revealed that the initial burst release of insulin from nanoparticles was markedly reduced at pH 1.2, which mimics the stomach environment. In vivo effects of the capsule containing insulin PLGA/RS nanoparticles were also investigated in diabetic rat models. The oral delivered capsules induced a prolonged reduction in blood glucose levels. The pharmacological availability was found to be approximately 9.2%. All the results indicated that the integration of HP55-coated capsule with cationic nanoparticles may be a promising platform for oral delivery of insulin with high bioavailability.
Collapse
Affiliation(s)
- Zhi Min Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Card JW, Magnuson BA. A review of the efficacy and safety of nanoparticle-based oral insulin delivery systems. Am J Physiol Gastrointest Liver Physiol 2011; 301:G956-67. [PMID: 21921287 DOI: 10.1152/ajpgi.00107.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanotechnology is providing new and innovative means to detect, diagnose, and treat disease. In this regard, numerous nanoparticle-based approaches have been taken in an effort to develop an effective oral insulin therapy for the treatment of diabetes. This review summarizes efficacy data from studies that have evaluated oral insulin therapies in experimental models. Also provided here is an overview of the limited safety data that have been reported in these studies. To date, the most promising approaches for nanoparticle-based oral insulin therapy appear to involve the incorporation of insulin into complex multilayered nanoparticles that are mucoadhesive, biodegradable, biocompatible, and acid protected and into nanoparticles that are designed to take advantage of the vitamin B(12) uptake pathway. It is anticipated that the continued investigation and optimization of nanoparticle-based formulations for oral delivery of insulin will lead to a much sought-after noninvasive treatment for diabetes. Such investigations also may provide insight into the use of nanoparticle-based formulations for peptide- and protein-based oral treatment of other diseases and for various food-related purposes.
Collapse
Affiliation(s)
- Jeffrey W Card
- Cantox Health Sciences International, Intertek Company, Mississauga, Ontario, Canada
| | | |
Collapse
|
43
|
Abstract
In spite of the numerous barriers inherent in the oral delivery of therapeutically active proteins, research into the development of functional protein-delivery systems is still intense. The effectiveness of such oral protein-delivery systems depend on their ability to protect the incorporated protein from proteolytic degradation in the GI tract and enhance its intestinal absorption without significantly compromising the bioactivity of the protein. Among these delivery systems are polyelectrolyte complexes (PECs) which are composed of polyelectrolyte polymers complexed with a protein via coulombic and other interactions. This review will focus on the current status of PECs with a particular emphasis on the potential and limitations of multi- or inter-polymer PECs used to facilitate oral protein delivery.
Collapse
|
44
|
Colloidal carrier integrating biomaterials for oral insulin delivery: Influence of component formulation on physicochemical and biological parameters. Acta Biomater 2009; 5:2475-84. [PMID: 19362890 DOI: 10.1016/j.actbio.2009.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/21/2009] [Accepted: 03/09/2009] [Indexed: 11/22/2022]
Abstract
Strategies to design effective and safe colloidal carriers for biopharmaceuticals have evolved through applying the knowledge gained in nanotechnology to medicine. Designing a colloidal carrier to serve as a protein delivery device requires an understanding of the effect of different materials on the physicochemical, physiological and toxicological parameters for clinical application. The purpose of this study was to evaluate the influence of formulation components on the physicochemical factors and biological function involved in the development and optimization of newly designed nanoparticles for orally dosed insulin. Biodegradable, biocompatible, mucoadhesive and protease-protective biomaterials were combined through ionotropic pre-gelation and polyelectrolyte complexation forming an alginate, dextran sulfate and poloxamer hydrogel containing insulin, stabilized in nanoparticles with chitosan and poly(ethyleneglycol) and coated with albumin. Nanoparticles ranged in size from 200 to 500nm with 70-90% insulin entrapment efficiency, and electrostatic stabilization was suggested by zeta potential values lower than -30mV. This combination of formulation components was selected for insulin protection against harsh gastric pH and proteolytic conditions, and to improve insulin absorption through intestinal mucosa by combining nanoparticle uptake and insulin release at the site of absorption. Insulin was shown to be bioactive after nanoparticle formulation and release in neutral pH conditions. Fourier transform infrared spectroscopy was used to confirm the presence of formulations components in the nanoparticle structure and to identify potential interactions between biomaterials.
Collapse
|
45
|
Woitiski CB, Veiga F, Ribeiro A, Neufeld R. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur J Pharm Biopharm 2009; 73:25-33. [DOI: 10.1016/j.ejpb.2009.06.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/26/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
|