1
|
Peng Z, He M, Yang X, Zhang J. Discovery and Characterization of a Novel Bacteriocin HA2-5 that Strongly Inhibits Propionibacterium acnes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12741-12748. [PMID: 37587448 DOI: 10.1021/acs.jafc.3c04617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Increased drug resistance has significantly reduced the effectiveness of antibiotics used in the treatment of Propionibacterium acnes. Therefore, there has been a trend toward the development of new antimicrobial agents to circumvent drug resistance. In this study, we isolated and purified a novel bacteriocin, HA2-5, from Bacillus haynesii HA2, which effectively killed P. acnes through membrane disruption at a minimum inhibitory concentration (MIC) of 8 μg/mL. HA2-5 with 2× MIC was able to kill 99.9% of P. acnes within 24 h. HA2-5 shows excellent stability and tolerance to temperature, pH, proteases, chemical reagents, UV radiation, and metal ions, with almost no loss of inhibitory activity after treatment. In addition, the very low hemolytic activity and cytotoxicity suggest that HA2-5 is biosafe. Notably, HA2-5 exhibits preferred antibacterial activity against gram-positive pathogens with an MIC of 16-32 μg/mL. In conclusion, this study shows that bacteriocin HA2-5 has the potential to be used as an alternative to antibiotics for acne treatment.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengni He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
2
|
Current Advances in Lipid and Polymeric Antimicrobial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections. Pharmaceutics 2021; 13:pharmaceutics13111840. [PMID: 34834254 PMCID: PMC8618997 DOI: 10.3390/pharmaceutics13111840] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial infections constitute a threat to public health as antibiotics are becoming less effective due to the emergence of antimicrobial resistant strains and biofilm and persister formation. Antimicrobial peptides (AMPs) are considered excellent alternatives to antibiotics; however, they suffer from limitations related to their peptidic nature and possible toxicity. The present review critically evaluates the chemical characteristics and antibacterial effects of lipid and polymeric AMP delivery systems and coatings that offer the promise of enhancing the efficacy of AMPs, reducing their limitations and prolonging their half-life. Unfortunately, the antibacterial activities of these systems and coatings have mainly been evaluated in vitro against planktonic bacteria in less biologically relevant conditions, with only some studies focusing on the antibiofilm activities of the formulated AMPs and on the antibacterial effects in animal models. Further improvements of lipid and polymeric AMP delivery systems and coatings may involve the functionalization of these systems to better target the infections and an analysis of the antibacterial activities in biologically relevant environments. Based on the available data we proposed which polymeric AMP delivery system or coatings could be profitable for the treatment of the different hard-to-treat infections, such as bloodstream infections and catheter- or implant-related infections.
Collapse
|
3
|
Golda A, Kosikowska-Adamus P, Kret A, Babyak O, Wójcik K, Dobosz E, Potempa J, Lesner A, Koziel J. The Bactericidal Activity of Temporin Analogues Against Methicillin Resistant Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20194761. [PMID: 31557917 PMCID: PMC6801822 DOI: 10.3390/ijms20194761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a major infectious agent responsible for a plethora of superficial skin infections and systemic diseases, including endocarditis and septic arthritis. Recent epidemiological data revealed the emergence of resistance to commonly used antibiotics, including increased numbers of both hospital- and community-acquired methicillin-resistant S. aureus (MRSA). Due to their potent antimicrobial functions, low potential to develop resistance, and immunogenicity, antimicrobial peptides (AMPs) are a promising alternative treatment for multidrug-resistant strains. Here, we examined the activity of a lysine-rich derivative of amphibian temporin-1CEb (DK5) conjugated to peptides that exert pro-proliferative and/or cytoprotective activity. Analysis of a library of synthetic peptides to identify those with antibacterial potential revealed that the most potent agent against multidrug-resistant S. aureus was a conjugate of a temporin analogue with the synthetic Leu-enkephalin analogue dalargin (DAL). DAL-PEG-DK5 exerted direct bactericidal effects via bacterial membrane disruption, leading to eradication of both planktonic and biofilm-associated staphylococci. Finally, we showed that accumulation of the peptide in the cytoplasm of human keratinocytes led to a marked clearance of intracellular MRSA, resulting in cytoprotection against invading bacteria. Collectively, the data showed that DAL-PEG-DK5 might be a potent antimicrobial agent for treatment of staphylococcal skin infections.
Collapse
Affiliation(s)
- Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Aleksandra Kret
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Olena Babyak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY 40202, USA.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Eggimann GA, Sweeney K, Bolt HL, Rozatian N, Cobb SL, Denny PW. The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules 2015; 20:2775-85. [PMID: 25668079 PMCID: PMC6272152 DOI: 10.3390/molecules20022775] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 11/20/2022] Open
Abstract
Natural product antimicrobial peptides (AMPs) have been proposed as promising agents against the Leishmania species, insect vector borne protozoan parasites causing the neglected tropical disease leishmaniasis. However, recent studies have shown that the mammalian pathogenic amastigote form of L. mexicana, a causative agent of cutaneous leishmaniasis, is resistant to the amphibian-derived temporin family of AMPs when compared to the insect stage promastigote form. The mode of resistance is unknown, however the insect and mammalian stages of Leishmania possess radically different cell surface coats, with amastigotes displaying low (or zero) quantities of lipophosphoglycan (LPG) and proteophosphoglycan (PPG), macromolecules which form thick a glycocalyx in promastigotes. It has been predicted that negatively charged LPG and PPG influence the sensitivity/resistance of promastigote forms to cationic temporins. Using LPG and PPG mutant L. mexicana, and an extended range of temporins, in this study we demonstrated that whilst LPG has little role, PPG is a major factor in promastigote sensitivity to the temporin family of AMPs, possibly due to the conferred anionic charge. Therefore, the lack of PPG seen on the surface of pathogenic amastigote L. mexicana may be implicated in their resistance to these peptides.
Collapse
Affiliation(s)
- Gabriela A Eggimann
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Kathryn Sweeney
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Hannah L Bolt
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Neshat Rozatian
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Steven L Cobb
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Paul W Denny
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
5
|
Ramírez-Carreto S, Quintero-Hernández V, Jiménez-Vargas JM, Corzo G, Possani LD, Becerril B, Ortiz E. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides 2012; 34:290-5. [PMID: 22342498 DOI: 10.1016/j.peptides.2012.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 02/04/2023]
Abstract
From the cDNA libraries made from the venom glands of two scorpions belonging to the Vaejovidae family, four different putative non disulfide-bridged antimicrobial peptides were identified: VmCT1 and VmCT2 from Vaejovis mexicanus smithi plus VsCT1 and VsCT2 from Vaejovis subcristatus. These short peptides (with only 13 amino acid residues each) share important amino acid sequence similarities among themselves and with other reported antimicrobial peptides, but their biological activities vary dramatically. This communication reports the cloning, chemical synthesis and characterization of these peptides. Two peptides, VmCT1 and VmCT2 showed broad-spectrum antibacterial activity with minimum inhibitory concentrations MICs in the range of 5-25 μM and 10-20 μM respectively, whereas their hemolytic activity at these concentrations was low. Structure-function relationships that might determine the differences in activities are discussed.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | | | | | |
Collapse
|
6
|
Chadbourne FL, Raleigh C, Ali HZ, Denny PW, Cobb SL. Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa. J Pept Sci 2011; 17:751-5. [PMID: 21805542 DOI: 10.1002/psc.1398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 11/12/2022]
Abstract
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector-borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite.
Collapse
Affiliation(s)
- Frances L Chadbourne
- Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, UK
| | | | | | | | | |
Collapse
|
7
|
Lee SH, Kim SJ, Lee YS, Song MD, Kim IH, Won HS. De novo generation of short antimicrobial peptides with simple amino acid composition. ACTA ACUST UNITED AC 2011; 166:36-41. [DOI: 10.1016/j.regpep.2010.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/27/2010] [Accepted: 08/11/2010] [Indexed: 01/12/2023]
|
8
|
Won HS, Kang SJ, Choi WS, Lee BJ. Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide. Mol Cells 2011; 31:49-54. [PMID: 21110126 PMCID: PMC3906872 DOI: 10.1007/s10059-011-0005-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/26/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022] Open
Abstract
While natural antimicrobial peptides are potential therapeutic agents, their physicochemical properties and bioactivity generally need to be enhanced for clinical and commercial development. We have previously developed a cationic, amphipathic α-helical, 11-residue peptide (named herein GA-W2: FLGWLFKWASK-NH₂) with potent antimicrobial and hemolytic activity, which was derived from a 24-residue, natural antimicrobial peptide isolated from frog skin. Here, we attempted to optimize peptide bioactivity by a rational approach to sequence modification. Seven analogues were generated from GA-W2, and their activities were compared with that of a 12-residue peptide, omiganan, which is being developed for clinical and commercial applications. Most of the modifications reported here improved antimicrobial activity. Among them, the GA-K4AL (FAKWAFKWLKK-NH₂) peptide displayed the most potent antimicrobial activity with negligible hemolytic activity, superior to that of omiganan. The therapeutic index of GA-K4AL was improved more than 53- and more than 31-fold against Gram-negative and Gram-positive bacteria, respectively, compared to that of the starting peptide, GA-W2. Given its relatively shorter length and simpler amino acid composition, our sequence-optimized GA-K4AL peptide may thus be a potentially useful antimicrobial peptide agent.
Collapse
Affiliation(s)
- Hyung-Sik Won
- Structural Research Center for Innovative Drug Discovery, Seoul National University, Seoul 151-742, Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea
| | - Su-Jin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Wahn-Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Bong-Jin Lee
- Structural Research Center for Innovative Drug Discovery, Seoul National University, Seoul 151-742, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
- Promeditech Inc., Seoul 151-011, Korea
| |
Collapse
|
9
|
Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiol Infect 2010; 138:626-44. [DOI: 10.1017/s0950268810000014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYThe scope of this reflection paper was to review the latest research on the risk of MRSA infection and colonization in animals. Attention focused on occurrence, risk factors for colonization and infection, and human contact hazard for livestock, horses, and companion animals. Whereas the clonal relationship between MRSA strains of CC398 is straightforward in livestock this is less obvious in horses. Small companion animals typically share MRSA strains that seem to exchange with a human reservoir. Management and therapeutic options have been suggested for livestock, horses, companion animals, as well as instructions on safety measures for persons in contact with animals. Conclusions were drawn with emphasis on future research activities, especially to confirm the apparent evolution of the organism and to demonstrate efficiency of control strategies.
Collapse
|
10
|
Lipsky B, Holroyd K, Zasloff M. Topical versus Systemic Antimicrobial Therapy for Treating Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double‐Blinded, Multicenter Trial of Pexiganan Cream. Clin Infect Dis 2008; 47:1537-45. [DOI: 10.1086/593185] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
|
12
|
Jacobsen F, Mohammadi-Tabrisi A, Hirsch T, Mittler D, Mygind PH, Sonksen CP, Raventos D, Kristensen HH, Gatermann S, Lehnhardt M, Daigeler A, Steinau HU, Steinstraesser L. Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. J Antimicrob Chemother 2007; 59:493-8. [PMID: 17289767 DOI: 10.1093/jac/dkl513] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The growing number of patients with impaired wound healing and the development of multidrug-resistant bacteria demand the investigation of alternatives in wound care. The antimicrobial activity of naturally occurring host defence peptides and their derivatives could be one alternative to the existing therapy options for topical treatment of wound infection. Therefore, the aim of this study was to investigate the antimicrobial activity of proline-novispirin G10 (P-novispirin G10) in vitro and in the infected porcine titanium wound chamber model. METHODS The new derived designer host defence peptide P-novispirin G10 was tested in vitro against Gram-positive and Gram-negative bacterial strains. Additionally, cytotoxicity and haemolytic activities of P-novispirin G10 and protegrin-1 were measured. For in vivo studies, six wound chambers were implanted on each flank of Göttinger minipigs (n = 2, female, 6 months old, 15-20 kg). Eleven wound chambers were inoculated 8 days post-operatively with 5 x 10(8) of Staphylococcus aureus; one wound chamber remained uninfected as a system control. After wound infection had been established (4 days after inoculation), each wound chamber was topically treated with P-novispirin G10, protegrin-1 or carrier control. Wound fluid was harvested every hour for a total follow up of 3 h. RESULTS P-novispirin G10 demonstrated broad-spectrum antimicrobial activity with moderate haemolytic and cytotoxic activities compared with protegrin-1. In the infected wound chamber model P-novispirin G10 demonstrated a 4 log(10) reduction in bacterial counts. CONCLUSIONS This implicates the potential of P-novispirin G10 as an alternative in future antimicrobial wound care. However, more studies are necessary to further define clinical applications and potential side effects in greater detail.
Collapse
Affiliation(s)
- F Jacobsen
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la Camp Platz 1, 44789 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007; 24:145-61. [PMID: 17268611 DOI: 10.1039/b603083c] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advances in NMR and mass spectrometry as well as in peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous products from spider venoms, previously explored due to technical limitations. The chemical composition of spider venoms is diverse, ranging from low molecular weight organic compounds such as acylpolyamines to complex peptides. First, acylpolyamines (< 1000 Da) have an aromatic moiety linked to a hydrophilic lateral chain. They were characterized for the first time in spider venoms and are ligand-gated ion channel antagonists, which block mainly postsynaptic glutamate receptors in invertebrate and vertebrate nervous systems. Acylpolyamines represent the vast majority of organic components from the spider venom. Acylpolyamine analogues have proven to suppress hippocampal epileptic discharges. Moreover, acylpolyamines could suppress excitatory postsynaptic currents inducing Ca+ accumulation in neurons leading to protection against a brain ischemic insult. Second, short spider peptides (< 6000 Da) modulate ionic currents in Ca2+, Na+, or K+ voltage-gated ion channels. Such peptides may contain from three to four disulfide bridges. Some spider peptides act specifically to discriminate among Ca2+, Na+, or K+ ion channel subtypes. Their selective affinities for ion channel subfamilies are functional for mapping excitable cells. Furthermore, several of these peptides have proven to hyperpolarize peripheral neurons, which are associated with supplying sensation to the skin and skeletal muscles. Some spider N-type calcium ion channel blockers may be important for the treatment of chronic pain. A special group of spider peptides are the amphipathic and positively charged peptides. Their secondary structure is alpha-helical and they insert into the lipid cell membrane of eukaryotic or prokaryotic cells leading to the formation of pores and subsequently depolarizing the cell membrane. Acylpolyamines and peptides from spider venoms represent an interesting source of molecules for the design of novel pharmaceutical drugs.
Collapse
Affiliation(s)
- Georgina Estrada
- Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | | | | |
Collapse
|
14
|
Braff MH, Gallo RL. Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol 2006; 306:91-110. [PMID: 16909919 DOI: 10.1007/3-540-29916-5_4] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The skin is positioned at the interface between an organism's internal milieu and an external environment characterized by constant assault with potential microbial pathogens. While the skin was formerly considered an inactive physical protective barrier that participates in host immune defense merely by blocking entry of microbial pathogens, it is now apparent that a major role of the skin is to defend the body by rapidly mounting an innate immune response to injury and microbial insult. In the skin, both resident and infiltrating cells synthesize and secrete small peptides that demonstrate broad-spectrum antimicrobial activity against bacteria, fungi, and enveloped viruses. Antimicrobial peptides also act as multifunctional immune effectors by stimulating cytokine and chemokine production, angiogenesis, and wound healing. Cathelicidins and defensins comprise two major families of skin-derived antimicrobial peptides, although numerous others have been described. Many such immune defense molecules are currently being developed therapeutically in an attempt to combat growing bacterial resistance to conventional antibiotics.
Collapse
Affiliation(s)
- M H Braff
- University of California, San Diego 92161, USA
| | | |
Collapse
|
15
|
Niyonsaba F, Ogawa H. Protective roles of the skin against infection: Implication of naturally occurring human antimicrobial agents β-defensins, cathelicidin LL-37 and lysozyme. J Dermatol Sci 2005; 40:157-68. [PMID: 16150577 DOI: 10.1016/j.jdermsci.2005.07.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/08/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Beside its physical barrier against invading microorganisms, the skin has the ability to produce a number of antimicrobial peptides and proteins, including human beta-defensins, cathelicidin LL-37 and lysozyme that participate in the innate host defense. These antimicrobial agents are strongly active against a wide spectrum of various pathogens such as bacteria, viruses and fungi. Thus, antimicrobial agents are proposed to be promising candidates for innovative anti-infective drugs, and some antimicrobial peptides are currently used in clinical trials for treatment of various skin infections. In addition to their direct antimicrobial functions against invading pathogenic microorganisms, antimicrobial agents have also multiple roles as mediators of inflammation with the effects on epithelial and inflammatory cells, influencing cell proliferation, wound healing, cytokine/chemokine production and chemotaxis. This review describes the biology of these antimicrobial molecules and discusses their structure, expression and functions. Understanding the actions of antimicrobial agents in skin will provide further insight into the mechanism of innate cutaneous disease control, and yield novel therapeutic approaches to the treatment of skin disorders.
Collapse
Affiliation(s)
- François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | |
Collapse
|
16
|
Samuelsen O, Haukland HH, Jenssen H, Krämer M, Sandvik K, Ulvatne H, Vorland LH. Induced resistance to the antimicrobial peptide lactoferricin B inStaphylococcus aureus. FEBS Lett 2005; 579:3421-6. [PMID: 15946666 DOI: 10.1016/j.febslet.2005.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/21/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.
Collapse
Affiliation(s)
- Orjan Samuelsen
- Department of Medical Microbiology, University Hospital of North Norway, P.O. Box 56, N-9038 Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Several hundred disulfide-bridged neurotoxic peptides have been characterized from scorpion venom; however, only few scorpion venom peptides without disulfide bridges have been identified and characterized. These non-disulfide-bridged peptides (NDBPs) are a novel class of molecules because of their unique antimicrobial, immunological or cellular signaling activities. This review provides an overview of their structural simplicity, precursor processing, biological activities and evolution, and sheds insight into their potential clinical and agricultural applications. Based on their pharmacological activities and peptide size similarity, we have classified these peptides into six subfamilies.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- Department of Biotechnology, Key Laboratory of MOE for Virology, Institute of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | | | | |
Collapse
|