1
|
Pournemati B, Tabesh H, Jenabi A, Mehdinavaz Aghdam R, Hossein Rezayan A, Poorkhalil A, Ahmadi Tafti SH, Mottaghy K. Injectable conductive nanocomposite hydrogels for cardiac tissue engineering: Focusing on carbon and metal-based nanostructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges. Cardiovasc Toxicol 2021; 22:207-224. [PMID: 34542796 DOI: 10.1007/s12012-021-09696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.
Collapse
|
3
|
Borovjagin AV, Ogle BM, Berry JL, Zhang J. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues. Circ Res 2017; 120:150-165. [PMID: 28057791 PMCID: PMC5224928 DOI: 10.1161/circresaha.116.308538] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/14/2023]
Abstract
Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents.
Collapse
Affiliation(s)
- Anton V Borovjagin
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Brenda M Ogle
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Joel L Berry
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.).
| |
Collapse
|
4
|
Li Z, Fan Z, Xu Y, Niu H, Xie X, Liu Z, Guan J. Thermosensitive and Highly Flexible Hydrogels Capable of Stimulating Cardiac Differentiation of Cardiosphere-Derived Cells under Static and Dynamic Mechanical Training Conditions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15948-57. [PMID: 27281488 PMCID: PMC5386508 DOI: 10.1021/acsami.6b04932] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cardiac stem cell therapy has been considered as a promising strategy for heart tissue regeneration. Yet achieving cardiac differentiation after stem cell transplantation remains challenging. This compromises the efficacy of current stem cell therapy. Delivery of cells using matrices that stimulate the cardiac differentiation may improve the degree of cardiac differentiation in the heart tissue. In this report, we investigated whether elastic modulus of highly flexible poly(N-isopropylamide) (PNIPAAm)-based hydrogels can be modulated to stimulate the encapsulated cardiosphere derived cells (CDCs) to differentiate into cardiac lineage under static condition and dynamic stretching that mimics the heart beating condition. We have developed hydrogels whose moduli do not change under both dynamic stretching and static conditions for 14 days. The hydrogels had the same chemical structure but different elastic moduli (11, 21, and 40 kPa). CDCs were encapsulated into these hydrogels and cultured under either native heart-mimicking dynamic stretching environment (12% strain and 1 Hz frequency) or static culture condition. CDCs were able to grow in all three hydrogels. The greatest growth was found in the hydrogel with elastic modulus of 40 kPa. The dynamic stretching condition stimulated CDC growth. The CDCs demonstrated elastic modulus-dependent cardiac differentiation under both static and dynamic stretching conditions as evidenced by gene and protein expressions of cardiac markers such as MYH6, CACNA1c, cTnI, and Connexin 43. The highest differentiation was found in the 40 kPa hydrogel. These results suggest that delivery of CDCs with the 40 kPa hydrogel may enhance cardiac differentiation in the infarct hearts.
Collapse
Affiliation(s)
- Zhenqing Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Improving Cell Engraftment in Cardiac Stem Cell Therapy. Stem Cells Int 2015; 2016:7168797. [PMID: 26783405 PMCID: PMC4691492 DOI: 10.1155/2016/7168797] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Myocardial infarction (MI) affects millions of people worldwide. MI causes massive cardiac cell death and heart function decrease. However, heart tissue cannot effectively regenerate by itself. While stem cell therapy has been considered an effective approach for regeneration, the efficacy of cardiac stem cell therapy remains low due to inferior cell engraftment in the infarcted region. This is mainly a result of low cell retention in the tissue and poor cell survival under ischemic, immune rejection and inflammatory conditions. Various approaches have been explored to improve cell engraftment: increase of cell retention using biomaterials as cell carriers; augmentation of cell survival under ischemic conditions by preconditioning cells, genetic modification of cells, and controlled release of growth factors and oxygen; and enhancement of cell survival by protecting cells from excessive inflammation and immune surveillance. In this paper, we review current progress, advantages, disadvantages, and potential solutions of these approaches.
Collapse
|
6
|
Engineering Angiogenesis for Myocardial Infarction Repair: Recent Developments, Challenges, and Future Directions. Cardiovasc Eng Technol 2014. [DOI: 10.1007/s13239-014-0193-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Tissue engineering aims to create, repair and/or replace tissues and organs by using cells, scaffolds, biologically active molecules and physiologic signals. It is an interdisciplinary field that integrates aspects of engineering, chemistry, biology and medicine. One of the most challenging goals in the field of cardiovascular tissue engineering is the creation of a heart muscle patch. This review describes the principles, achievements and challenges of achieving this ambitious goal of creating contractile heart muscle. In addition, the new strategy of in situ and injectable tissue engineering for myocardial repair and regeneration is presented.
Collapse
Affiliation(s)
- Jonathan Leor
- Sheba-Medical Center, Neufeld Cardiac Research Institute, Tel-Aviv University, Tel-Hashomer 52621, Israel.
| | | | | |
Collapse
|
8
|
Pal SN, Kofidis T. Therapeutic potential of genes in cardiac repair. Expert Rev Cardiovasc Ther 2013; 11:1015-28. [PMID: 23945013 DOI: 10.1586/14779072.2013.814867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases remain the primary reason of premature death and contribute to a major percentage of global patient morbidity. Recent knowledge in the molecular mechanisms of myocardial complications have identified novel therapeutic targets along with the availability of vectors that offer the chance for designing gene therapy technique for protection and revival of the diseased heart functions. Gene transfer procedure into the myocardium is demonstrated through direct injection of plasmid DNA or through the coronary vasculature using the direct or indirect delivery of viral vectors. Direct DNA injection to the myocardium is reported to be of immense value in research studies that aims at understanding the activities of various elements in myocardium. It is also deemed vital for investigating the effect of the myocardial pathophysiology on expression of the foreign genes that are transferred. Gene therapies have been reported to heal cardiac pathologies such as myocardial ischemia, heart failure and inherited myopathies in several animal models. The results obtained from these animal studies have also encouraged a flurry of early clinical trials. This translational research has been triggered by an enhanced understanding of the biological mechanisms involved in tissue repair after ischemic injury. While safety concerns take utmost priority in these trials, several combinational therapies, various routes and dose of delivery are being tested before concrete optimization and complete potential of gene therapy is convincingly understood.
Collapse
Affiliation(s)
- Shripad N Pal
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
9
|
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng Part A 2011; 17:1363-73. [PMID: 21247338 DOI: 10.1089/ten.tea.2010.0441] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Heart failure remains the leading cause of death in many industrialized nations owing to the inability of the myocardial tissue to regenerate. The main objective of this work was to develop a cardiac patch that is biocompatible and matches the mechanical properties of the heart muscle for myocardial infarction. The present study was to fabricate poly (glycerol sebacate)/gelatin (PGS/gelatin) core/shell fibers and gelatin fibers alone by electrospinning for cardiac tissue engineering. PGS/gelatin core/shell fibers, PGS used as a core polymer to impart the mechanical properties and gelatin as a shell material to achieve favorable cell adhesion and proliferation. These core/shell fibers were characterized by scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and tensile testing. The cell-scaffold interactions were analyzed by cell proliferation, confocal analysis for the expression of marker proteins like actinin, troponin-T, and platelet endothelial cell adhesion molecule, and scanning electron microscopy to analyze cell morphology. Dual immunofluorescent staining was performed to further confirm the cardiogenic differentiation of mesenchymal stem cells by employing mesenchymal stem cell-specific marker protein CD 105 and cardiac-specific marker protein actinin. The results observed that PGS/gelatin core/shell fibers have good potential biocompatibility and mechanical properties for fabricating nanofibrous cardiac patch and would be a prognosticating device for the restoration of myocardium.
Collapse
Affiliation(s)
- Rajeswari Ravichandran
- Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
10
|
Schabort EJ, Myburgh KH, Wiehe JM, Torzewski J, Niesler CU. Potential Myogenic Stem Cell Populations: Sources, Plasticity, and Application for Cardiac Repair. Stem Cells Dev 2009; 18:813-30. [DOI: 10.1089/scd.2008.0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Elske J. Schabort
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Juliane M. Wiehe
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Jan Torzewski
- Cardiovascular Unit, Oberallgäu Kliniken GmbH, Immenstadt, Germany
| | - Carola U. Niesler
- Department of Biochemistry, School of Biochemistry, Genetics, Microbiology, and Plant Pathology, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
11
|
Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J. Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A 2009; 14:1025-36. [PMID: 18476809 DOI: 10.1089/ten.tea.2007.0289] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived mononuclear cell (BMNC) transplantation provides the possibility of rescue or regeneration of myocardium lost during acute myocardial infarction (AMI). The extensive death of transplanted cells and the lack of sustained engraftment may limit its application. We investigated whether delivery of BMNCs by an injectable PEGylated fibrin biomatrix that covalently binds hepatocyte growth factor (HGF) would enhance the rate of cell engraftment and improve cardiac function. Balb/C female mice with AMI secondary to left anterior descending coronary ligation were randomly assigned to one of six groups: the Saline control group (n = 8) received a myocardial injection of saline (50 microL); the Cell group (n = 10) received a myocardial injection in the peri-infarct and infarct zones consisting of 500,000 murine BMNCs suspended in 50 microL saline; and the Biomatrix + HGF (n = 9) and Biomatrix + HGF + Cell (n = 9) group hearts received the HGF-loaded injectable biomatrix (identical volume) with or without entrapped BMNCs. Control groups consisting of the biomatrix alone (n = 9) and Biomatrix + Cells (n = 9) without HGF were also included for comparison. The left ventricular (LV) function was measured by echocardiography at days 14 and 28 post-MI. All animals were euthanized 4 weeks after AMI and transplantation for evaluation of angiogenesis, apoptosis, and fibrosis by immunohistochemistry. Cell prevalence rate at 4 weeks increased 15-fold in hearts receiving the Biomatrix + HGF + Cell delivery (p < 0.01), which was accompanied by the lowest levels of apoptosis and the highest LV function recovery among the treated groups.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712-0238, USA
| | | | | | | | | |
Collapse
|
12
|
Jawad H, Ali NN, Lyon AR, Chen QZ, Harding SE, Boccaccini AR. Myocardial tissue engineering: a review. J Tissue Eng Regen Med 2008; 1:327-42. [PMID: 18038427 DOI: 10.1002/term.46] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial tissue engineering, a concept that intends to overcome the obstacles to prolonging patients' life after myocardial infarction, is continuously improving. It comprises a biomaterial based 'vehicle', either a porous scaffold or dense patch, made of either natural or synthetic polymeric materials, to aid transportation of cells into the diseased region in the heart. Many different cell types have been suggested for cell therapy and myocardial tissue engineering. These include both autologous and embryonic stem cells, both having their advantages and disadvantages. Biomaterials suggested for this specific tissue-engineering application need to be biocompatible with the cardiac cells and have particular mechanical properties matching those of native myocardium, so that the delivered donor cells integrate and remain intact in vivo. Although much research is being carried out, many questions still remain unanswered requiring further research efforts. In this review, we discuss the various approaches reported in the field of myocardial tissue engineering, focusing on the achievements of combining biomaterials and cells by various techniques to repair the infarcted region, also providing an insight on clinical trials and possible cell sources in cell therapy. Alternative suggestions to myocardial tissue engineering, in situ engineering and left ventricular devices are also discussed.
Collapse
Affiliation(s)
- H Jawad
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | | | | | | | | | | |
Collapse
|
13
|
Chen QZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008; 29:47-57. [PMID: 17915309 DOI: 10.1016/j.biomaterials.2007.09.010] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 09/06/2007] [Indexed: 11/17/2022]
Abstract
The myocardial tissue lacks significant intrinsic regenerative capability to replace the lost cells. Therefore, the heart is a major target of research within the field of tissue engineering, which aims to replace infarcted myocardium and enhance cardiac function. The primary objective of this work was to develop a biocompatible, degradable and superelastic heart patch from poly(glycerol sebacate) (PGS). PGS was synthesised at 110, 120 and 130 degrees C by polycondensation of glycerol and sebacic acid with a mole ratio of 1:1. The investigation was focused on the mechanical and biodegrading behaviours of the developed PGS. PGS materials synthesised at 110, 120 and 130 degrees C have Young's moduli of 0.056, 0.22 and 1.2 MPa, respectively, which satisfy the mechanical requirements on the materials applied for the heart patch and 3D myocardial tissue engineering construction. Degradation assessment in phosphate buffered saline and Knockout DMEM culture medium has demonstrated that the PGS has a wide range of degradability, from being degradable in a couple of weeks to being nearly inert. The matching of physical characteristics to those of the heart, the ability to fine tune degradation rates in biologically relevant media and initial data showing biocompatibility indicate that this material has promise for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qi-Zhi Chen
- Department of Materials, Imperial College London, Prince Consort Road, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Goldberg JL, Laughlin MJ, Pompili VJ. Umbilical cord blood stem cells: Implications for cardiovascular regenerative medicine. J Mol Cell Cardiol 2007; 42:912-20. [PMID: 17368666 DOI: 10.1016/j.yjmcc.2007.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/09/2007] [Accepted: 02/07/2007] [Indexed: 11/16/2022]
Abstract
The treatment of cardiovascular disease has benefited from advances in pharmacologic and intravascular intervention reducing the morbidity and mortality associated with this disease. To address the need in managing clinically complex vascular disease with limited therapeutic options studies have focused on cellular therapy as a means to augment compensatory mechanisms and to potentially prevent escalation and advancement of disease. Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells (HSC) and thus may be a potential source of cells for this type of therapy. UCB can be collected at no risk to the donor, is immediately available, has a wider availability of HLA phenotypes with a possible lower immune reactivity and does not provoke ethically charged debates. Moreover, stem cells isolated from patients with chronic disease have impairment of their reparative abilities thus limiting their therapeutic impact. The potential of UCB HSC in augmenting this process has been studied extensively both in vitro and in vivo and has shown a benefit in acute and chronic vascular ischemia. Although studies suggest efficacy with no obvious safety concerns the mechanism for this therapeutic effect is unknown.
Collapse
Affiliation(s)
- Jonathan L Goldberg
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-7284, USA
| | | | | |
Collapse
|
15
|
Guo XM, Zhao YS, Chang HX, Wang CY, E LL, Zhang XA, Duan CM, Dong LZ, Jiang H, Li J, Song Y, Yang XJ. Creation of Engineered Cardiac Tissue In Vitro From Mouse Embryonic Stem Cells. Circulation 2006; 113:2229-37. [PMID: 16651472 DOI: 10.1161/circulationaha.105.583039] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Embryonic stem (ES) cells can terminally differentiate into all types of somatic cells and are considered a promising source of seed cells for tissue engineering. However, despite recent progress in in vitro differentiation and in vivo transplantation methodologies of ES cells, to date, no one has succeeded in using ES cells in tissue engineering for generation of somatic tissues in vitro for potential transplantation therapy.
Methods and Results—
ES-D3 cells were cultured in a slow-turning lateral vessel for mass production of embryoid bodies. The embryoid bodies were then induced to differentiate into cardiomyocytes in a medium supplemented with 1% ascorbic acid. The ES cell–derived cardiomyocytes were then enriched by Percoll gradient centrifugation. The enriched cardiomyocytes were mixed with liquid type I collagen supplemented with Matrigel to construct engineered cardiac tissue (ECT). After in vitro stretching for 7 days, the ECT can beat synchronously and respond to physical and pharmaceutical stimulation. Histological, immunohistochemical, and transmission electron microscopic studies further indicate that the ECTs both structurally and functionally resemble neonatal native cardiac muscle. Markers related to undifferentiated ES cell contamination were not found in reverse transcriptase–polymerase chain reaction analysis of the Percoll-enriched cardiomyocytes. No teratoma formation was observed in the ECTs implanted subcutaneously in nude mice for 4 weeks.
Conclusions—
ES cells can be used as a source of seed cells for cardiac tissue engineering. Additional work remains to demonstrate engraftment of the engineered heart tissue in the case of cardiac defects and its functional integrity within the host’s remaining healthy cardiac tissue.
Collapse
MESH Headings
- Animals
- Ascorbic Acid/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/transplantation
- Collagen
- Collagen Type I
- Drug Combinations
- Embryo, Mammalian/cytology
- Glutamine/pharmacology
- Implants, Experimental
- Laminin
- Mercaptoethanol/pharmacology
- Mice
- Mice, Nude
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Myocytes, Cardiac/transplantation
- Organoids/physiology
- Proteoglycans
- Stem Cells/cytology
- Stem Cells/drug effects
- Stress, Mechanical
- Tissue Engineering/instrumentation
- Tissue Engineering/methods
Collapse
Affiliation(s)
- Xi-Min Guo
- Department of Tissue Engineering, Beijing Institute of Basic Medical Sciences, Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Leor J, Guetta E, Chouraqui P, Guetta V, Nagler A. Human umbilical cord blood cells: a new alternative for myocardial repair? Cytotherapy 2006; 7:251-7. [PMID: 16081351 DOI: 10.1080/14653240510027163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cell therapy for myocardial disease is a rapidly progressive field. However, present strategies of cell transplantation into the infarcted myocardium have limitations from practical points of view. One of the biggest challenges is to achieve a sufficient number of suitable cells. Umbilical cord blood (UCB), an unlimited source of stem/progenitor cells that could be used for transplantation into the injured heart, is readily available. The aim of our review is to describe the potential and prospect of UCB as a new supplier of cells for myocardial repair. The use of UCB stem cells might be of importance to elderly and sick people in whom the availability of autologous stem cells is limited.
Collapse
Affiliation(s)
- J Leor
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Israel
| | | | | | | | | |
Collapse
|
17
|
Zhang G, Wang X, Wang Z, Zhang J, Suggs L. A PEGylated Fibrin Patch for Mesenchymal Stem Cell Delivery. ACTA ACUST UNITED AC 2006; 12:9-19. [PMID: 16499438 DOI: 10.1089/ten.2006.12.9] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A potential therapy for myocardial infarction is to deliver isolated mesenchymal stem cells (MSCs) to the infarcted site. A key issue with this technology is the development of a suitable system for MSC delivery. Our delivery system of interest is a fibrin-based patch used to entrap cells during polymerization. This delivery vehicle has many advantages; however the mechanical properties and the limited capacity for tailoring cell response may restrict its application. We have developed a PEGylated fibrin patch for MSC transplantation by modifying fibrinogen (Fgn) with the benzotriazole carbonate derivative of PEG to create secondary crosslinking. In this study, the chemical PEGylation of fibrinogen was verified by both amine group quantification and SDS-PAGE. The clotting characteristics and physical properties were compared between the fibrin patch and PEGylated fibrin patch. After seeding with porcine MSCs, the cell viability, morphology, and motility in the novel patch were observed. Phenotypic changes in the embedded MSCs were examined using immunohistochemistry and RT-PCR. The optimal molar ratio (PEG:Fgn = 10:1) was determined for loading MSCs in vitro into the PEGylated fibrin patch. The results suggest that our PEGylated fibrin patch increases MSC viability. Furthermore, the PEGylated fibrin causes phenotypic changes in MSCs consistent with endothelial cells.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
18
|
Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther 2004; 105:151-63. [PMID: 15670624 DOI: 10.1016/j.pharmthera.2004.10.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2004] [Indexed: 02/02/2023]
Abstract
Unlike heart valves or blood vessels, heart muscle has no replacement alternatives. The most challenging goal in the field of cardiovascular tissue engineering is the creation/ regeneration of an engineered heart muscle. Recent advances in methods of stem cell isolation, culture in bioreactors, and the synthesis of bioactive materials promise to create engineered cardiac tissue ex vivo. At the same time, new approaches are conceived that explore ways to induce tissue regeneration after injury. The purpose of our review is to describe the principles, status, and challenges of myocardial tissue engineering with emphasize on the concept of in situ cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jonathan Leor
- Neufeld Cardiac Research Institute, Tel Aviv University, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | | | | |
Collapse
|