1
|
Lee SYH, Yates NJ, Tye SJ. Inflammatory Mechanisms in Parkinson's Disease: From Pathogenesis to Targeted Therapies. Neuroscientist 2021; 28:485-506. [PMID: 33586516 DOI: 10.1177/1073858421992265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammation is a critical factor contributing to the progressive neurodegenerative process observed in Parkinson's disease (PD). Microglia, the immune cells of the central nervous system, are activated early in PD pathogenesis and can both trigger and propagate early disease processes via innate and adaptive immune mechanisms such as upregulated immune cells and antibody-mediated inflammation. Downstream cytokines and gene regulators such as microRNA (miRNA) coordinate later disease course and mediate disease progression. Biomarkers signifying the inflammatory and neurodegenerative processes at play within the central nervous system are of increasing interest to clinical teams. To be effective, such biomarkers must achieve the highest sensitivity and specificity for predicting PD risk, confirming diagnosis, or monitoring disease severity. The aim of this review was to summarize the current preclinical and clinical evidence that suggests that inflammatory processes contribute to the initiation and progression of neurodegenerative processes in PD. In this article, we further summarize the data about main inflammatory biomarkers described in PD to date and their potential for regulation as a novel target for disease-modifying pharmacological strategies.
Collapse
Affiliation(s)
- Stellina Y H Lee
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Nathanael J Yates
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland, Australia.,School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland, Australia.,Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Fiametti LO, Correa CN, Castro LMD. Peptide Profile of Zebrafish Brain in a 6-OHDA-Induced Parkinson Model. Zebrafish 2021; 18:55-65. [PMID: 33570475 DOI: 10.1089/zeb.2020.1945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder mainly attributed to the progressive loss of dopaminergic neurons in the substantia nigra, which leads to uncontrolled voluntary movements causing tremors, postural instability, joint stiffness, and speech and locomotion difficulties, among other symptoms. Previous studies have shown the participation of specific peptides in neurodegenerative diseases. In this context, the present work analyzed changes in the peptide profile in zebrafish brain induced to parkinsonian conditions with 6-hydroxydopamine, using isotopic labeling techniques plus mass spectrometry. These analyses allowed the relative quantitation and identification of 118 peptides. Of these, nine peptides showed significant changes, one peptide was increased and eight decreased. The most altered sequences were fragment of cytosolic and extracellular proteins related to lipid metabolism and dynamic cytoskeleton. These results open new perspectives of study about the function of peptides in PD.
Collapse
Affiliation(s)
| | - Claudia Neves Correa
- Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil.,Biodiversity of Coastal Environments Postgraduate Program, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil
| | - Leandro Mantovani de Castro
- Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil.,Biodiversity of Coastal Environments Postgraduate Program, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil
| |
Collapse
|
3
|
Butterfield DA, Palmieri EM, Castegna A. Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 2016; 13:259-74. [PMID: 26837425 DOI: 10.1586/14789450.2016.1149470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- D Allan Butterfield
- a Department of Chemistry, and Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY , USA
| | - Erika M Palmieri
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| | - Alessandra Castegna
- b Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
4
|
Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014; 3:23. [PMID: 25671099 PMCID: PMC4323146 DOI: 10.1186/2047-9158-3-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following: oxidative damage to proteins (redox proteomics), phosphorylation (phosphoproteomics), ubiquitination (diglycine remnant proteomics), protein fragmentation (degradomics), and other posttranslational modifications (PTMs). Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration. To date, identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases. This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic, recent, and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Ru-Jing Ren
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Eric B Dammer
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gang Wang
- />Department of Pharmacology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T Seyfried
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Emory Proteomics Service Center, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I Levey
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
5
|
Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP. Cypermethrin-Induced Nigrostriatal Dopaminergic Neurodegeneration Alters the Mitochondrial Function:A Proteomics Study. Mol Neurobiol 2014; 51:448-65. [DOI: 10.1007/s12035-014-8696-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/24/2014] [Indexed: 12/29/2022]
|
6
|
Pienaar IS, Dexter DT, Burkhard PR. Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis. Expert Rev Proteomics 2014; 7:205-26. [DOI: 10.1586/epr.10.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Redox proteomics and drug development. J Proteomics 2011; 74:2575-95. [DOI: 10.1016/j.jprot.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/22/2010] [Accepted: 01/09/2011] [Indexed: 01/06/2023]
|
8
|
Juhász G, Földi I, Penke B. Systems biology of Alzheimer's disease: How diverse molecular changes result in memory impairment in AD. Neurochem Int 2011; 58:739-50. [DOI: 10.1016/j.neuint.2011.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/19/2011] [Accepted: 02/10/2011] [Indexed: 01/13/2023]
|
9
|
Colucci-D'Amato L, Farina A, Vissers JPC, Chambery A. Quantitative neuroproteomics: classical and novel tools for studying neural differentiation and function. Stem Cell Rev Rep 2011; 7:77-93. [PMID: 20352529 DOI: 10.1007/s12015-010-9136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanisms underlying neural stem cell proliferation, differentiation and maturation play a critical role in the formation and wiring of neuronal connections. This process involves the activation of multiple serial events, which guide the undifferentiated cells to different lineages via distinctive developmental programs, forming neuronal circuits and thus shaping the adult nervous system. Furthermore, alterations within these strictly regulated pathways can lead to severe neurological and psychiatric diseases. In this framework, the investigation of the high dynamic protein expression changes and other factors affecting protein functions, for example post-translational modifications, the alterations of protein interaction networks, is of pivotal importance for the understanding of the molecular mechanisms responsible for cell differentiation. More recently, proteomic studies in neuroscience ("neuroproteomics") are receiving increased interest for the primary understanding of the regulatory networks underlying neuronal differentiation processes. Besides the classical two-dimensional-based proteomic strategies, the emerging platforms for LC-MS shotgun proteomic analysis hold great promise in unraveling the molecular basis of neural stem cell differentiation. In this review, recent advancements in label-free LC-MS quantitative neuroproteomics are highlighted as a new tool for the study of neural differentiation and functions, in comparison to mass spectrometry-based labeling approaches. The more commonly used protein profiling strategies and model systems for the analysis of neural differentiation are also discussed, along with the challenging proteomic approaches aimed to analyze the nervous system-specific organelles, the neural cells secretome and the specific protein interaction networks.
Collapse
Affiliation(s)
- Luca Colucci-D'Amato
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|
10
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
11
|
Characterization of the human ventricular cerebrospinal fluid proteome obtained from hydrocephalic patients. J Proteomics 2010; 73:1156-62. [DOI: 10.1016/j.jprot.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 01/28/2023]
|
12
|
Proteomic Profiling of Cerebrospinal Fluid by 8-Plex iTRAQ Reveals Potential Biomarker Candidates of Alzheimer’s Disease. Clin Proteomics 2009. [DOI: 10.1007/s12014-009-9030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Abstract
Introduction
Alzheimer’s disease (AD) poses specific challenges for drug development. It has a slow and variable clinical course, an insidious onset, and symptom expression is only observed when a significant proportion of neurons are already lost.
Discussion
Determinants of clinical course, such as molecular biomarkers, are urgently needed for early detection and diagnosis, or for prognosis and monitoring disease-modifying therapies in stratified patient populations. Due to its proximity to the brain and clinical availability, cerebrospinal fluid (CSF) is likely to have the highest yield of biomarker potential for neurodegenerative diseases. In this study, we examined the feasibility of using of an 8-plex isobaric tagging approach, coupled to two-dimensional liquid chromatography and tandem mass spectrometry using the matrix-assisted laser desorption/ionization time-of-flight/time-of-flight platform, for the discovery of potential biomarker candidates in CSF. Comparative analysis identified a number of statistically significant differences in the level of proteins when comparing AD to nondemented controls. Although the study is statistically underpowered to represent the disease population, the regulation of proteins with involvement in processes such as neuronal loss, synaptic dysfunction, neuroinflammation, and tissue degeneration and remodeling reflects the ability of our method in providing biologically meaningful CSF biomarkers as candidates for larger scale biomarker verification and validation studies.
Collapse
|
13
|
Murray J, Capaldi RA. Screening for the metabolic basis of neurodegeneration: developing a focused proteomic approach. Ann N Y Acad Sci 2009; 1147:348-57. [PMID: 19076456 DOI: 10.1196/annals.1427.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolism is controlled by a complex system of transcriptional events and posttranslational modifications stimulated by substrate and metabolite availability. It is becoming clear that neurodegenerative diseases are a symptom of a deficiency in the regulation or execution of metabolic reactions. Mitochondria, as the central organelles in metabolic regulation as well as the chief generators of reactive species, clearly have a role to play in the etiology of neurodegenerative conditions. We are developing antibody-based capture arrays to determine multiple parameters of key mitochondrial proteins. Parameters include enzyme activity, quantity, oxidative modification (including nitrative and oxidative stress), and regulation (phosphorylation and acetylation). At this time the core of this array focuses on the enzymes of oxidative phosphorylation. We continue to expand this array as antibodies for enzyme isolation and modification detection become available. Here we demonstrate the use of this array by analyzing the proteomic differences in oxidative phosphorylation enzymes between human heart and liver tissues, cells grown in media promoting aerobic versus anaerobic metabolism, and the catalytic/proteomic effects of mitochondria exposed to oxidative stress.
Collapse
|
14
|
Pienaar IS, Daniels WMU, Götz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm (Vienna) 2008; 115:1413-30. [PMID: 18523721 PMCID: PMC2862282 DOI: 10.1007/s00702-008-0070-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
Despite the vast number of studies on Parkinson's disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Department of Medical Physiology, University of Stellenbosch, Matieland, South Africa.
| | | | | |
Collapse
|
15
|
Mueller M, Vizcaíno JA, Jones P, Côté R, Thorneycroft D, Apweiler R, Hermjakob H, Martens L. Analysis of the experimental detection of central nervous system-related genes in human brain and cerebrospinal fluid datasets. Proteomics 2008; 8:1138-48. [PMID: 18283668 DOI: 10.1002/pmic.200700761] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Large-scale and high-throughput proteomics experiments of specific samples provide substantial amounts of identified proteins and peptides, which increasingly find their way into centralized, public data repositories. These data typically have potential beyond the analyses performed by the original authors, and can therefore provide considerable added value by being reused for specific, unexplored enquiries. We here reanalyze two CNS-related proteomics datasets, one from the HUPO's Brain Proteome Project, and one from a comprehensive analysis of cerebrospinal fluid in light of the expression of specific splice isoforms from CNS-related genes. We also evaluate the empirically observed peptides of interest against predictions of their proteotypic character.
Collapse
Affiliation(s)
- Michael Mueller
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pan S, Shi M, Jin J, Albin RL, Lieberman A, Gearing M, Lin B, Pan C, Yan X, Kashima DT, Zhang J. Proteomics Identification of Proteins in Human Cortex Using Multidimensional Separations and MALDI Tandem Mass Spectrometer. Mol Cell Proteomics 2007; 6:1818-23. [PMID: 17644759 DOI: 10.1074/mcp.m700158-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is essential to characterize the proteome of various regions of human brain because most, if not all, neurodegenerative diseases are region-specific. Here we report an in-depth proteomics identification of proteins extracted from the frontal cortex, a region playing a critical role in cognitive function. The integrated proteomics analytical flow consisted of biochemical fractionation, strong cation exchange chromatography, reverse phase liquid chromatography, and MALDI-TOF/TOF mass spectrometric analysis. In total, 812 proteins were confidently identified with two or more peptides. These proteins demonstrated diverse isoelectric points and molecular weights and are involved in several molecular functions, including protein binding, catalytic activity, transport, structure, and signal transduction. A number of proteins known to be associated with neurodegenerative diseases were also identified. Detailed characterization of these proteins will supply the necessary information to appropriately interpret proteins associated with aging and/or age-related neurodegenerative diseases. Finally 140 proteins found in the cortical proteome were present in the proteome of cerebrospinal fluid, providing tissue-specific candidates for biomarker discovery in body fluid.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bermúdez-Crespo J, López JL. A better understanding of molecular mechanisms underlying human disease. Proteomics Clin Appl 2007; 1:983-1003. [PMID: 21136752 DOI: 10.1002/prca.200700086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Indexed: 01/06/2023]
Abstract
This review summarises and discusses the degree to which proteomics is contributing to medical care, providing examples and signspots for future directions. Why do genomic approaches provide a limited view of gene expression? Because of the multifactorial nature of many diseases, proteomics enables us to understand the molecular basis of disease, not only at the organism, whole-cell or tissue levels, but also in subcellular structures, protein complexes and biological fluids. The application of proteomics in medicine is expected to have a major impact by providing an integrated view of individual disease processes. This review describes several proteomic platforms and examines the role of proteomics as a tool for clinical biomarker discovery, the identification of prognostic and earlier diagnostic markers, their use in monitoring the effects of drug treatments and eventually find more efficient and safer therapeutics for a wide range of pathologies.
Collapse
Affiliation(s)
- José Bermúdez-Crespo
- Department of Genetics, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
18
|
Kisby GE, Standley M, Park T, Olivas A, Fei S, Jacob T, Reddy A, Lu X, Pattee P, Nagalla SR. Proteomic Analysis of the Genotoxicant Methylazoxymethanol (MAM)-Induced Changes in the Developing Cerebellum. J Proteome Res 2006; 5:2656-65. [PMID: 17022636 DOI: 10.1021/pr060126g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genotoxicant methylazoxymethanol (MAM) is a widely used developmental neurotoxin, and its glucoside is an etiological factor for western Pacific amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS/PDC). Identification of global protein expression changes that occur in response to MAM in the developing cerebellum could provide valuable insight into the potential mechanisms involved in the neurodegeneration process. We have utilized fluorescence 2-dimensional differential gel electrophoresis (2D-DIGE), to determine the protein expression changes that occur during normal cerebellar development and in response to MAM. Three day-old postnatal C57BL/6 mice (PND3) received a single injection of MAM, and the cerebella of postnatal day 4 (PND4) and day 22 (PND22) were analyzed. Approximately, 1400 unique spots were matched and quantified in all samples. Comparison of PND4 and PND22 developing cerebellum showed that a significant fraction of the proteome (approximately 68%) changes at this stage. The immediate response of the developing cerebellum to MAM was minimal (approximately 10%). However, significant differences (27%) were noted 14 days after MAM exposure. In contrast, the transcriptome changes were more pronounced at 24 h compared to 14 days. MAM targeted several proteins networks including transport (e.g., alpha-synuclein), cytoskeletal (e.g., beta-tubulin, vimentin), and mitochondrial (e.g., Atp5b) proteins. Immunochemistry confirmed several of the changes in protein expression (alpha-synuclein). Comparison with gene expression changes revealed that the temporal changes observed in the transcriptome and proteome are not correlative. These studies demonstrate for the first time the potential networks involved during neuronal development and neurodegenerative processes that are perturbed by MAM.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET) and Center for Biomarker Discovery, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Suk K. Proteomics-based discovery of biomarkers and therapeutic targets in neurodegenerative diseases: perspective of microglia and neuroinflammation. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.3.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Abstract
PURPOSE OF REVIEW A major goal of current clinical research in neurodegenerative diseases is to improve early detection of disease and presymptomatic detection of neuronal dysfunction. We also need better tools to assess disease progression in this group of disorders. Currently, many potential disease-modifying therapies are being developed and evaluated at the preclinical stage, and will lead to clinical trials in the near future for which biomarkers are urgently needed. This review summarizes the field of biomarker research in the major neurodegenerative diseases. RECENT FINDINGS Many different approaches are being undertaken to identify biomarkers and include imaging, neurophysiological and cognitive testing in addition to newer technologies such as biochemical, proteomic, metabanomic and gene array profiling of tissue and biofluids from patients. Key recent findings in each of these areas are discussed. SUMMARY The ideal biomarker needs to be easy to quantify and measure, reproducible, not subject to wide variation in the general population and unaffected by co-morbid factors. For evaluation of therapies the biomarker needs to change linearly with disease progression and closely correlate with established clinico-pathological parameters of the disease. It is unlikely that any one biomarker will fulfil all these characteristics, and it is likely that more than one biomarker will be needed for early diagnosis and similarly for evaluation of disease progression for therapeutic trials. For example, the combination of more detailed clinical assessments encompassing specific cognitive and neurophysiological testing, in addition to imaging, biochemical and genomic profiling, is likely to be needed.
Collapse
Affiliation(s)
- Susie M D Henley
- Dementia Research Centre, Institute of Neurology, University College London, London, UK.
| | | | | |
Collapse
|