1
|
Escamilla-Lara KA, Lopez-Tellez J, Rodriguez JA. Adsorbents obtained from recycled polymeric materials for retention of different pollutants: A review. CHEMOSPHERE 2023:139159. [PMID: 37290512 DOI: 10.1016/j.chemosphere.2023.139159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Polymeric waste is an environmental problem, with an annual world production of approximately 368 million metric tons, and increasing every year. Therefore, different strategies for polymer waste treatment have been developed, and the most common are (1) redesign, (2) reusing and (3) recycling. The latter strategy represents a useful option to generate new materials. This work reviews the emerging trends in the development of adsorbent materials obtained from polymer wastes. Adsorbents are used in filtration systems or in extraction techniques for the removal of contaminants such as heavy metals, dyes, polycyclic aromatic hydrocarbons and other organic compounds from air, biological and water samples. The methods used to obtain different adsorbents are detailed, as well as the interaction mechanisms with the compounds of interest (contaminants). The adsorbents obtained are an alternative to recycle polymeric and they are competitive with other materials applied in the removal and extraction of contaminants.
Collapse
Affiliation(s)
- Karen A Escamilla-Lara
- Area Academica de Quimica, Universidad Autonoma Del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Jorge Lopez-Tellez
- Area Academica de Quimica, Universidad Autonoma Del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Jose A Rodriguez
- Area Academica de Quimica, Universidad Autonoma Del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de La Reforma, Hidalgo, Mexico.
| |
Collapse
|
2
|
de Vargas Brião G, Hashim MA, Chu KH. The Sips isotherm equation: Often used and sometimes misused. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2167662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Giani de Vargas Brião
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Khim Hoong Chu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Wei L, Li Z, Ye G, Rietveld LC, van Halem D. Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. ENVIRONMENTAL TECHNOLOGY 2022; 43:4306-4314. [PMID: 34157955 DOI: 10.1080/09593330.2021.1946600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Excessive F- in drinking water due to natural and anthropogenic activities is a serious health hazard affecting humans worldwide. In this study, a comparative assessment was made of eight mineral-based materials with advantageous structural properties for F- uptake: layered-double-hydroxides (LDHs), geopolymers, softening pellets and struvite. These materials are considered low-cost, for being either a waste or by-product, or can be locally-sourced. It can be concluded that Ca-based materials showed the strongest affinity for F- (Ca-Al-CO3 LDHs, slag-based geopolymer, softening pellets). The Langmuir adsorption capacity of Ca-Al-CO3 LDHs, slag-based geopolymer and softening pellets was observed to be 20.83, 5.23 and 1.20 mg/g, respectively. The main mechanism of F- uptake on Ca-Al-CO3 LDHs, Mg-Al-Cl LDHs, slag-based geopolymers and softening pellets was found to be sorption at low initial F- concentrations (<10 mg/L) whereas precipitation as CaF2 is proposed to play a major role at higher initial F- concentrations (>20 mg/L). Although the softening pellets had the highest Ca-content (96-97%; XRF), their dense structure and consequent low BET surface area (2-3 m2/g), resulted in poorer performance than the Ca-based LDHs and slag-based geopolymers. Nevertheless, geopolymers, as well as struvite, were not considered to be of interest for application in water treatment, as they would need modification due to their poor stability and/or F- leaching.
Collapse
Affiliation(s)
- Liangfu Wei
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology Delft, The Netherlands
| | - Zhenming Li
- Faculty of Civil Engineering and Geosciences, Department of Materials and Environment (Microlab), Delft University of Technology Delft, The Netherlands
| | - Guang Ye
- Faculty of Civil Engineering and Geosciences, Department of Materials and Environment (Microlab), Delft University of Technology Delft, The Netherlands
| | - Luuk C Rietveld
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology Delft, The Netherlands
| | - Doris van Halem
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology Delft, The Netherlands
| |
Collapse
|
4
|
Efficient removal of fluoride from neutral wastewater by green synthesized Zr/calcium sulfate whiskers: An experimental and theoretical study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Mullick A, Neogi S. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. ULTRASONICS SONOCHEMISTRY 2018; 45:65-77. [PMID: 29705326 DOI: 10.1016/j.ultsonch.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N2 adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pHpzc (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L-1 and the maximum adsorption capacity of 5 mg.g-1 was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L-1 within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO3-, NO3-, SO42-, Cl-) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L-1, the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method.
Collapse
Affiliation(s)
- Aditi Mullick
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Sudarsan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
6
|
Yadav KK, Gupta N, Kumar V, Khan SA, Kumar A. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. ENVIRONMENT INTERNATIONAL 2018; 111:80-108. [PMID: 29190529 DOI: 10.1016/j.envint.2017.11.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Fluoride contamination of groundwater is a serious problem in several countries of the world because of the intake of excessive fluoride caused by the drinking of the contaminated groundwater. Geological and anthropogenic factors are responsible for the contamination of groundwater with fluoride. Excess amounts of fluoride in potable water may cause irreversible demineralisation of bone and tooth tissues, a condition called fluorosis, and long-term damage to the brain, liver, thyroid, and kidney. There has long been a need for fluoride removal from potable water to make it safe for human use. From among several defluoridation technologies, adsorption is the technology most commonly used due to its cost-effectiveness, ease of operation, and simple physical process. In this paper, the adsorption capacities and fluoride removal efficiencies of different types of adsorbents are compiled from relevant published data available in the literature and represented graphically. The most promising adsorbents tested so far from each category of adsorbents are also highlighted. There is still a need to discover the actual feasibility of usage of adsorbents in the field on a commercial scale and to define the reusability of adsorbents to reduce cost and the waste produced from the adsorption process. The present paper reviews the currently available methods and emerging approaches for defluoridation of water.
Collapse
Affiliation(s)
- Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, India.
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, India.
| | - Vinit Kumar
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, India
| | - Shakeel Ahmad Khan
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
7
|
Synthesis of functionalized polyurethane foam using BES chain extender for lead ion removal from aqueous solutions. J CELL PLAST 2014. [DOI: 10.1177/0021955x14559255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Polyurethane foams functionalized with sulphonic acid groups have been found to be strong cation exchangers. This novel property of the foam was used to exchange lead (Pb2+) ions from aqueous solutions. Polyurethane foam synthesis is based on addition polymerization of an isocyanate (–NCO) with a polyol. The primary reaction is due to the reaction of the highly reactive –NCO groups of the isocyanate with the hydroxyl (–OH) groups of the polyol to form the urethane species. Toluene-2,4-diisocyanate,2,6-diisocyanate (CAS: 584-84-9) was reacted with polypropylene glycol 1200 (CAS 25322-69-4) in 2:1 molar ratio to form a linear pre polymer. The linear pre-polymer was further polymerized using N,N-bis(2-hydorxyethyl)-2-aminoethane-sulfonic acid (CAS 10191-18-1) chain extender. An organotin catalyst was used to accelerate the reaction and distilled water was used as a foaming agent to synthesize the functionalized polyurethane foam. The synthesized foam has an open cell content ranging from 70% to 91% and the density ranges from 160 to 432 kg/m3 depending on the foam formulation. The foam was exposed to Pb2+ solutions of known concentrations by batch process. The amount of remaining Pb2+ in the solution in parts per billion (ppb) was determined using an inductively coupled plasma mass spectrometer. The maximum Pb2+ ions exchanged per gram of the foam was measured to be 50–54 ppb from a 100 ppb Pb2+ solution over a period of 90 min. In this paper, we present the foam synthesis procedure with the design of experiments to study the effect of processing variables on the performance of this material.
Collapse
|
8
|
Velazquez-Jimenez LH, Hurt RH, Matos J, Rangel-Mendez JR. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1166-74. [PMID: 24359079 PMCID: PMC4009989 DOI: 10.1021/es403929b] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbents by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L(-1). The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS, and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve -OH(-) exchange from zirconyl oxalate complexes.
Collapse
Affiliation(s)
- Litza Halla Velazquez-Jimenez
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica y Tecnológica, A.C. , Camino a la Presa San José 2055, Col. Lomas 4a sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | | | | | | |
Collapse
|
9
|
Characterization of Functionalized Polyurethane Foam for Lead Ion Removal from Water. INT J POLYM SCI 2014. [DOI: 10.1155/2014/570309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyurethane foams functionalized with sulfonic acid groups are used in this study to exchange lead (Pb2+) ions from aqueous solutions. Toluene-2, 4-diisocyanate, 2,6-diisocyanate (TDI) was reacted with Polypropylene glycol 1200 (PPG) in 2 : 1 molar ratio to form a linear prepolymer. The linear prepolymer was further polymerized using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES), which acts both as a chain extender and an ion-exchanger for Pb2+ions. The functionalized polyurethane foam was characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The Pb2+ion exchange capacity was determined using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The maximum Pb2+ion exchange capacity of the foam was found to be 51 ppb/g from a 100 ppb Pb2+solution over a period of two hours. In addition, pH analysis was carried out on the foam composition with the best Pb2+ion removal capacity. The pH results based on two-hour exposures showed that the functionalized polyurethane foam performed better at lower pH levels.
Collapse
|