1
|
Chen G, Wang R, Ying L, Eheneden I, Ren H, Sun M. Sulfamethoxazole removal in nitrifying membrane aerated biofilms: Physiological responses and antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2025; 264:120365. [PMID: 39547567 DOI: 10.1016/j.envres.2024.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Efficient removal of ammonia nitrogen and sulfamethoxazole (SMX) from wastewater has become increasingly critical due to their detrimental effects on aquatic ecosystems and public health. This study aimed to investigate the nitrogen transformation and SMX removal in a membrane aerated biofilm reactor (MABR) under different SMX concentrations (0-200 μg L-1) with a nitrifying membrane bioreactor (MBR) as a control. Results suggested that SMX removal in MABR was better than that of MBR with SMX addition (50-200 μg L-1). Membrane aerated biofilms tended to secrete more extracellular polymeric substances (EPS) and generate less antioxidant enzymes in response to SMX stress when compared with nitrifying sludge in MBR. Metagenomic analysis indicated that distinct succession of microbial community was observed in both systems after SMX addition, and the relative abundance of nitrifying bacteria (Nitrosomonas, Nitrospira, and Nitrobacter) evidently decreased under SMX concentration of 200 μg L-1. The proliferation of predominant antibiotic resistance gene (ARG) sul2 was suppressed more obviously in MABR than that in MBR. Thus, this study provided extensive insights into the advantages of nitrifying MABR in simultaneous removal of ammonium and antibiotics with less risk of associated ARGs spread.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Iyobosa Eheneden
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Maoxin Sun
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| |
Collapse
|
2
|
Lu Y, Liu L, Zhang X, Zhao T, Jin Y, Zhang Y, Huang S. Effects of chemical oxygen demand/nitrogen on electrochemical performances and denitrification efficiency in single-chamber microbial fuel cells: Insights from electron transfer and bacterial communities. BIORESOURCE TECHNOLOGY 2023; 387:129690. [PMID: 37597570 DOI: 10.1016/j.biortech.2023.129690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The electrochemical performances and denitrification efficiency of microbial fuel cells (MFCs) are often limited by chemical oxygen demand/nitrogen (COD/N) of wastewater. To overcome this limitation, single-chamber air cathode MFCs with varying COD/N (16/1, 8/1, and 4/1) were established to investigate their electrochemical performances, denitrification efficiency, and bacterial communities. The optimal COD/N for maximizing electricity generation and denitrification efficiency was 8/1, as supported by the greatest corrected coulomb efficiency (13.6%) and electron transfer rate (2.36 C/h for electricity generation, 39.77 C/h for denitrification). As COD/N decreased, the electrochemically active genus Geobacter was replaced by the denitrifying genera Un._f_Burkholderiaceae, Dechlorosoma, and Petrimonas. These results indicated that the efficiency of electricity generation and denitrification was not solely determined by the abundance of electrochemically active and denitrifying bacteria. The presence of a faster electron transfer pathway, possibly direct interspecies electron transfer, enhanced simultaneous electricity generation and denitrification in MFCs with COD/N of 8/1.
Collapse
Affiliation(s)
- Yao Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Lijie Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Yi Jin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
3
|
Song X, Zhang G, Luan J, Liu G, Wang J. Effect of magnetic fields on simultaneous nitrification and denitrification microbial systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:517-529. [PMID: 37578871 PMCID: wst_2023_250 DOI: 10.2166/wst.2023.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Magnetic fields positively influence the nitrogen removal efficiency in activated sludge systems. However, the structural succession pattern of microorganisms by magnetic fields still remains further explored. In this paper, a magnetic simultaneous nitrification and denitrification (MSND) reactor was constructed, and the influence of optimized magnetic field intensity (0, 10, 20 and 30 mT) on the nitrogen removal efficiency was investigated at HRT 6 h, 28.0-30.0 °C, and pH 7.0-8.0. Molecular biology was used to investigate the succession process of the dominant microbial flora and the functional gene structure of MSND systems. The results showed that the denitrification effects of the MSND system were significantly enhanced, which contributed to the lower concentration of total nitrogen in the effluent of the magnetic reactor than that of the nonmagnetic group reactor. The magnetic fields induced the succession of microbial community structure and improved the stability of microbial communities, thereby the relative abundances of nitrifying and denitrifying bacteria, and the functional genes were improved. In particular, the abundance of functional genes related to gene proliferation and transmembrane transport was increased. Therefore, the efficient nitrogen removal was achieved, which gives inspiration in the enhanced wastewater treatment by magnetic fields.
Collapse
Affiliation(s)
- Xintong Song
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China E-mail:
| | - Guanglu Zhang
- Jinan Urban Construction Group Co., Ltd, Jinan 250014, China
| | - Jiajia Luan
- Logistics Service Office of Weifang Vocational College, Weifang 262737, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Jiabin Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| |
Collapse
|
4
|
Jiang Z, Yang L, Hai Y, Hou L, Shen J. Synergistic denitrification and phosphorus removal performance of a biofilm-microflocculation system and its microbial community variations: A pilot-scale study for a wastewater treatment plant. J Appl Microbiol 2022; 132:4007-4017. [PMID: 35258152 DOI: 10.1111/jam.15513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
AIMS For upgrading and reconstructing a municipal wastewater treatment plant, a biofilm-microflocculation filter system was designed and established towards synergistic improvement of denitrification and phosphorus removal from the secondary effluent. METHODS AND RESULTS The establishment of the biofilm-microflocculation filter system underwent several processes, including sludge inoculation, biofilm formation and polyaluminum chloride (PAC) addition as flocculating agent. Microbial community analysis indicated that the dominant denitrification bacteria of the biofilm filter were in the phylum Proteobacteria and the genera Hydrogenophaga and Dechloromonas. On the basis of the initiation of filter system under optimal parameters such as C/N ratio of 5.3, HRT of 1.06 h and PAC of 5 mg·L-1 , approximately 75% COD, 80% TN and 75% TP could be effectively removed to satisfy discharge standards. Comparing the variations of microbial community structure at the genus level during the operating period of the filter system, it was found that the relative abundance of denitrification bacteria merely shifted from 53.14% to 48.76%, demonstrating that the effect of PAC addition on the main microorganisms is marginal. CONCLUSIONS From the above results, it can be verified that the established biofilm-microflocculation filter system has practical and reliable performance for simultaneous biological denitrification and phosphorus removal. SIGNIFICANCE AND IMPACT OF STUDY This study provides a reference method for improving the advanced treatment of wastewater plant secondary effluent.
Collapse
Affiliation(s)
- Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Longbin Yang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yu Hai
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Lian Hou
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.,Design and Research Institute of Secondary Artillery, Beijing 100011, China
| | - Jyunhong Shen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| |
Collapse
|
5
|
Li J, Zheng L, Ye C, Zhou Z, Ni B, Zhang X, Liu H. Unveiling organic loading shock-resistant mechanism in a pilot-scale moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system for effective municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 347:126339. [PMID: 34775052 DOI: 10.1016/j.biortech.2021.126339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Microbial biomass and activity are frequently subjected to organic loading shock (OLS) from decentralized municipal wastewater. A hybrid moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system (D-A2MBBR) was established by integrating dual-anaerobic-anoxic/oxic with moving bed biofilm reactor to resist OLS for stable nutrients removal. The D-A2MBBR achieved 91.57% of chemical oxygen demand, 93.33% of ammonia-nitrogen, 80.20% of total nitrogen and 92.68% of total phosphorus removal, respectively, under the fluctuation of organic loading rate from 417.9 to 812.0 g COD m-3 d-1. The 16S rRNA gene sequencing revealed that Gemmobacter (7.28%) was identified as dominating anoxic denitrifying genus in oxic chamber, confirming the coexistence of aerobic and anaerobic/anoxic micro-environments. This circumstance boosted simultaneous nitrification-denitrification and phosphorus removal and the microbial community evolution inside the multilayer biocarrier-attached biofilms. In general, the D-A2MBBR was able to provide unique, cooperative and robust bacterial consortia to form a buffer against OLS, and ensuring effluent stability.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Lei Zheng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Changbing Ye
- Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Zhiming Zhou
- Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Baosen Ni
- Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, PR China
| | - Hong Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
6
|
Zhang T, Xu W, Kang P, Guo X, Li H, Wang Y, Wan J. Performance of partial nitrification process in a zeolite biological aerated filter with addition of Sulfamethoxazole. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Roveto PM, Benavidez A, Schuler AJ. Effects of Methyl, Ester, and Amine Surface Groups on Microbial Activity and Communities in Nitrifying Biofilms. ACS APPLIED BIO MATERIALS 2022; 5:504-516. [PMID: 35090108 DOI: 10.1021/acsabm.1c00955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine how different attachment surface chemistries affected the initial and long-term performance and microbial populations of nitrifying biofilms under well-controlled hydrodynamic mixing conditions. While much previous research has focused on the effects of surface properties such as hydrophobicity on bacterial attachment in pure cultures, this study evaluated the effects of specific functional groups on mixed culture composition and functional behavior. Three surfaces with varying hydrophobicity and charge were evaluated for biofilm community development and performance: unmodified poly(dimethylsiloxane) (PDMS), which included terminal methyl groups and was relatively hydrophobic (P-Methyl), PDMS silanized with ester groups (P-Ester), which was uncharged and relatively hydrophilic, and PDMS modified with amine groups (P-Amine), which possessed a positive charge and was the most hydrophilic. The surface chemistries of the three attachment surfaces were characterized by contact angle goniometry, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). These surfaces were inoculated with dilute activated sludge, and biofilms were grown in rotating annular bioreactors for 80 days, with experimental triplicates. Nitrification rates increased most rapidly in P-Amine biofilm reactors, and their biofilm communities contained significantly more Nitrosomonas (p < 0.05) than those on the other surfaces in early growth stages (days 40-50). From days 50-60, the P-Amine surface biofilm had significantly higher nitrate production rates than the P-Methyl and P-Ester biofilms. The biofilms grown on the P-Amine and P-Methyl surfaces were significantly (p < 0.05) more diverse than the P-Ester biofilms, containing higher relative abundances of the order Rhizobiales, including a significantly higher abundance of the nitrifying genus Nitrobacter (p < 0.05), which coincided with higher rates of nitrate generation. Conversely, biofilms grown on the uncharged hydrophilic P-Ester surface were consistently less productive and had lower diversity than biofilms on the other surfaces. These results indicate that surface chemistry may be a useful design parameter to improve the performance of nitrifying biofilm systems for wastewater treatment and that surface chemistry affects mixed biofilm community composition.
Collapse
Affiliation(s)
- Philip M Roveto
- Garver, 2049 East Joyce Boulevard, Fayetteville, Arkansas 72703, United States
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, 1 University Boulevard, Albuquerque, New Mexico 87131, United States
| | - Andrew J Schuler
- Department of Civil, Construction, and Environmental Engineering, University of New Mexico, 1 University Boulevard, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
Tadda MA, Altaf R, Gouda M, Rout PR, Shitu A, Ye Z, Zhu S, Liu D. Impact of Saddle-Chips biocarrier on treating mariculture wastewater by moving bed biofilm reactor (MBBR): Mechanism and kinetic study. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106710. [DOI: 10.1016/j.jece.2021.106710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
9
|
Xia J, Chen D, Hou C, Li Y, Jiang X, Shen J. Reductive potential from cathode electrode as an option for the achievement of short-cut nitrification in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2021; 338:125553. [PMID: 34280852 DOI: 10.1016/j.biortech.2021.125553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal based on short-cut nitrification (SCN) have attract more attentions, in which stable nitrite accumulation is prerequisite. In this study, different reductive potential was applied to inhibit nitrite oxidizing bacteria for achievement of SCN in aerobic cathode chamber of bioelectrochemical systems with dissolved oxygen concentration of 3.5 mg/L. The results demonstrated that the applied potential facilitated nitrite accumulation with high ammonia oxidation rates. The maximum nitrate accumulation rate of 87.61% was obtained at -800 mV. The abundance of Nitrosomonas and Thauera increased while Nitrospira abundance declined with more negative reductive potentials. The activity of nitric oxide reductase was also evidently inhibited. The above-mentioned three genera were the keystone taxa in co-occurrence network with high degree and closeness centrality. Interestingly, total nitrogen (TN) removal was enhanced simultaneously in the absence of external organic carbon. Reductive potential would be a promising approach for achieving SCN and simultaneously TN removal.
Collapse
Affiliation(s)
- Jiaohui Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| |
Collapse
|
10
|
Gonzalez-Silva BM, Jonassen KR, Bakke I, Østgaard K, Vadstein O. Understanding structure/function relationships in nitrifying microbial communities after cross-transfer between freshwater and seawater. Sci Rep 2021; 11:2979. [PMID: 33536458 PMCID: PMC7859187 DOI: 10.1038/s41598-021-82272-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/17/2020] [Indexed: 12/05/2022] Open
Abstract
In this study, nitrification before and after abrupt cross-transfer in salinity was investigated in two moving bed biofilm reactors inoculated with nitrifying cultures that had adaptation to freshwater (FR) and seawater salinities (SR). FR and SR MBRRs were exposed to short and long term cross-transfer in salinity, and the functional capacity of nitrifying microbial communities was quantified by the estimation of ammonia and nitrite oxidation rates. Salinity induced successions were evaluated before and after salinity change by deep sequencing of 16S rRNA gene amplicons and statistical analysis. The bacterial community structure was characterized and Venn diagrams were included. The results indicated that after salinity cross-transfer, the FR was not significantly recovered at seawater salinity whereas SR showed high resistance to stress caused by low-salt. Succession and physiological plasticity were the main mechanisms of the long-term adaption of the nitrifying communities exposed to abrupt salinity changes. Independently of salinity, some nitrifiers presented high physiological plasticity towards salinity and were very successful at both zero and full seawater salinity. SR culture is robust and suitable inoculum for ammonium removal from recirculating aquaculture systems and industrial wastewaters with variable and fast salinity changes. Our findings contradict the current perspective of the significance of salinity on the structure of nitrifying communities.
Collapse
Affiliation(s)
- Blanca M Gonzalez-Silva
- Department of Biotechnology and Food Science, Faculty of Natural Sciences and Technology, NTNU-Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491, Trondheim, Norway. .,Department of Civil and Environmental Engineering, NTNU-Norwegian University of Science and Technology, S. P. Andersens veg 5, N-7031, Trondheim, Norway.
| | - Kjell Rune Jonassen
- Department of Biotechnology and Food Science, Faculty of Natural Sciences and Technology, NTNU-Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491, Trondheim, Norway.,VEAS, Bjerkåsholmen 125, 3470, Slemmestad, Oslo, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences and Technology, NTNU-Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491, Trondheim, Norway
| | - Kjetill Østgaard
- Department of Biotechnology and Food Science, Faculty of Natural Sciences and Technology, NTNU-Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491, Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Faculty of Natural Sciences and Technology, NTNU-Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491, Trondheim, Norway
| |
Collapse
|
11
|
Wang L, Li B, Li Y, Wang J. Enhanced biological nitrogen removal under low dissolved oxygen in an anaerobic-anoxic-oxic system: Kinetics, stoichiometry and microbial community. CHEMOSPHERE 2021; 263:128184. [PMID: 33297151 DOI: 10.1016/j.chemosphere.2020.128184] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 05/26/2023]
Abstract
A lab-scale anaerobic-anoxic-oxic system was used to investigate the nitrogen removal mechanism under low dissolved oxygen (DO) conditions. When DO was decreased from 2 to 0.5 mg L-1, chemical oxygen demand (COD) and NH4+ removals were not influenced, while total nitrogen removal increased from 69% to 79%. Further batch tests indicated that both the specific nitrification rate and denitrification rate greatly increased under low DO conditions. When DO was decreased from 2 to 0.5 mg L-1, the oxygen half saturation constant value for ammonia oxidizing bacteria (AOB) decreased from 0.39 to 0.29 mg-O2 L-1, and for nitrite oxidizing bacteria (NOB), it reduced from 0.29 to 0.09 mg-O2 L-1. Correspondingly, the observed yield coefficients increased from 0.05 to 0.10 mg-cell mg-1-N for AOB, and from 0.02 to 0.06 mg-cell mg-1-N for NOB. High-throughput sequencing revealed that the relative abundances of AOB increased from 6.13% to 6.54%, Nitrospira-like NOB increased from 3.67% to 6.50%, and denitrifiers increased from 2.84% to 7.04%. Improved simultaneous nitrification and denitrification under low DO conditions contributed to the enhanced nitrogen removal.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Bingrong Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
12
|
Li C, Gu Z, Zhu S, Liu D. 17β-Estradiol removal routes by moving bed biofilm reactors (MBBRs) under various C/N ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140381. [PMID: 32599404 DOI: 10.1016/j.scitotenv.2020.140381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the contribution of biotic and abiotic routes to the 17β-estradiol (E2) removal in moving bed biofilm reactors (MBBRs), and uncovered the interrelation between the E2 removal routes and biofilm characteristics, which was not researched in previous literature. Three MBBRs with different C/N ratios (0 for C/N0; 2 for C/N2; and 5 for C/N5) were operated in continuous mode. A 65-day degradation demonstrated that the MBBRs had high potential to remove E2 regardless of the C/N (E2 removal greater than 99% for all MBBRs; P > 0.05). Further batch tests showed that the E2 removal mainly resulted from heterotrophic activities for all MBBRs, accounting for approximately 85% for all MBBRs (P > 0.05), followed by nitrification (10-11%) and adsorption (4-5%). Importantly, lower adhesive force likely led to higher E2 adsorption onto biofilms. Besides, enhanced ammonia oxidizing rate (AOR) was consistent with the high contribution of nitrification to the E2 attenuation. Importantly, heterotrophic activity was positively correlated with its contribution to E2 removal (r = 0.99, P < 0.05). To sum, the results obtained in this study helped to understand the E2 removal routes in nitrifying biofilm systems.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhefeng Gu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Zhang D, Gao J, Zhang L, Zhang W, Jia J, Dai H, Wang Z. Responses of nitrification performance, triclosan resistome and diversity of microbes to continuous triclosan stress in activated sludge system. J Environ Sci (China) 2020; 92:211-223. [PMID: 32430124 DOI: 10.1016/j.jes.2020.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is commonly found in wastewater treatment plants, which often affects biological treatment processes. The responses of nitrification, antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study. The experiment was conducted in a sequencing batch reactor (SBR) for 240 days. Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered. And the abundances of nitrite oxidizing bacteria (NOB) under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge, which accounted for partial nitrification. When the addition of TCS was stopped, the abundance of NOB increased. The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system. Moreover, TCS increased the abundance of mexB, indicating the efflux pump might be the main TCS-resistance mechanism. As a response to TCS, bacteria could secrete more protein (PN) than polysaccharide. Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS. High-throughput sequencing found that the relative abundances of Paracoccus, Pseudoxanthomonas and Thauera increased, which could secrete extracellular polymeric substances (EPS). And Sphingopyxis might be the main TCS-degrading bacteria. Overall, TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.
Collapse
Affiliation(s)
- Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Lifang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wenzhi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingxin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Gao Y, Wang X, Li J, Lee CT, Ong PY, Zhang Z, Li C. Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. BIORESOURCE TECHNOLOGY 2020; 297:122427. [PMID: 31784249 DOI: 10.1016/j.biortech.2019.122427] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The novel immobilized microbial granules (IMG) shows a significant effect of nitrification for freshwater aquaculture. However, there is lack of evaluation study on the performance of nitrification at high salinity due to the concentration of recycled water or seawater utilization. A laboratory scale moving bed bioreactor (MBBR) with IMG was tested on recycled synthetic aquaculture wastewater for the nitrification at 2.5 mg/L NH3-N daily. The results indicated that IMG showed a high salinity tolerance and effectively converted ammonia to nitrate up to 92% at high salinity of 35.0 g/L NaCl. As salinity increased from near zero to 35.0 g/L, the microbial activity of nitrite oxidation bacteria (NOB) in the IMG decreased by 86.32%. The microbial community analysis indicated that salinity significantly influenced the community structure. It was found that Nitrosomonas sp. and Nitrospira sp. were the dominant genera for ammonia oxidation bacteria (AOB) and NOB respectively at different salinity levels.
Collapse
Affiliation(s)
- Yueshu Gao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xupeng Wang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jialun Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chew Tin Lee
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Pei Ying Ong
- Innovation Center in Agritechnology For Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, 84600 Pagoh, Johor, Malaysia
| | - Zhenjia Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjie Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Yu H, Tian Z, Zuo J, Song Y. Enhanced nitrite accumulation under mainstream conditions by a combination of free ammonia-based sludge treatment and low dissolved oxygen: reactor performance and microbiome analysis. RSC Adv 2020; 10:2049-2059. [PMID: 35494565 PMCID: PMC9048193 DOI: 10.1039/c9ra07628j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
Partial nitritation under mainstream conditions is one of the major bottlenecks for the application of deammonification processes to municipal wastewater treatment plants. This study aimed at evaluating the combination effect of a side-stream free ammonia (FA) treatment and low dissolved oxygen (0.2 ± 0.1 mg L−1) on inhibiting nitrite oxidizing bacteria (NOB) from enhancing nitrite accumulation in long-term lab-scale experiments. Two continuous floccular sludge reactors treating low-strength synthetic wastewater (60 mg N–NH4+ L−1 without COD) with a fixed nitrogen loading rate of 0.22 ± 0.03 g N per L per day were operated in a varied temperature range of 7–31 °C, with one acting as the experimental reactor and the other as the control. Side-stream sludge treatment with a stepwise elevation of FA concentration (65.2–261.1 mg NH3 L−1) was carried out every day in the experimental reactor; the nitrite accumulation ratio (NAR, (NO2–N/(NO2−–N + NO3−–N) × 100%)) in the experimental reactor was always about twice that in the control one. Quantitative PCR (q-PCR) and high-throughput sequencing analyses showed the dominant NOB was mostly Nitrobacter, while there was an alternating trend between Nitrobacter and Nitrospira. Even though the whole microbial communities of each experimental stage between the two reactors were relatively clustered due to an incomplete NOB washout, three abundant metabolisms (amino acid metabolism, pyruvate metabolism and nitrogen metabolism) and key functional genes of nitrification predicted by PICRUSt in the experimental reactor were enriched, providing a better understanding of nitrite accumulation. These results have demonstrated that the positive hybrid effects of FA side-stream sludge treatment and a low DO could enhance nitrite accumulation. It is expected that a complete washout of NOB would be achieved after further process optimization. An introduction of the combination of side-stream sludge treatment using FA and low DO could more effectively enhance nitrite accumulation than single low DO.![]()
Collapse
Affiliation(s)
- Heng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Zhiyong Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Department of Urban Water Environmental Research
- Beijing 100012
- China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Department of Urban Water Environmental Research
- Beijing 100012
- China
| |
Collapse
|
16
|
Zou S, Yan N, Zhang C, Zhou Y, Wu X, Wang J, Liu Y, Zhang Y, Rittmann BE. Acclimation of nitrifying biomass to phenol leads to persistent resistance to inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133622. [PMID: 31376758 DOI: 10.1016/j.scitotenv.2019.133622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 05/28/2023]
Abstract
It is common that biological wastewater-treatment processes are exposed to inputs of toxic compounds, such as phenolics. Due to their slow growth rate, nitrifying bacteria are most susceptible to inhibition that can lead to loss of nitrification capacity. Here, a microbial community containing nitrifying bacteria was acclimated to phenol, and it developed resistance to phenol inhibition and maintained nitrification activity. For the phenol-acclimated biomass, the NH4+-N removal rates were almost unaffected when it was suddenly exposed to phenol. Heterotrophic synthesis and nitrification rates contributed 76% and 24% of the total NH4+-N removal respectively during phenol removal, but the nitrification rate increased significantly once phenol was removed and mineralized. In contrast, the NH4+-N removal rates decreased sharply for normal (unacclimated) nitrifying biomass when it was exposed to phenol. The phenol-acclimated biomass retained its resistance to phenol inhibition for at least two months after acclimation, and addition of the phenol-acclimated biomass to the normal biomass conferred resistance to phenol inhibition. Community analysis of the phenol-acclimated biomass showed an increase in families known to contain strains able to biodegrade phenolics. Taken together, the results indicate that the main impact of phenol acclimation was enrichment of phenol-biodegrading bacteria, which allowed rapid removal and mineralization of phenol and, consequently, alleviation of phenol's inhibition of nitrification.
Collapse
Affiliation(s)
- Shasha Zou
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Chenyuan Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Yuwei Zhou
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Xueqi Wu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Jue Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Yang Liu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| |
Collapse
|
17
|
Antwi P, Zhang D, Xiao L, Kabutey FT, Quashie FK, Luo W, Meng J, Li J. Modeling the performance of Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process with backpropagation neural network and response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:108-120. [PMID: 31284185 DOI: 10.1016/j.scitotenv.2019.06.530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Two novel feedforward backpropagation Artificial Neural Networks (ANN)-based-models (8:NH:1 and 7:NH:1) combined with Box-Behnken design of experiments methodology was proposed and developed to model NH4+ and Total Nitrogen (TN) removal within an upflow-sludge-bed (USB) reactor treating nitrogen-rich wastewater via Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process. ANN were developed by optimizing network architecture parameters via response surface methodology. Based on the goodness-of-fit standards, the proposed three-layered NH4+ and TN removal ANN-based-models trained with Levenberg-Marquardt-algorithm demonstrated high-performance as computations exhibited smaller deviations-(±2.1%) as well as satisfactory coefficient of determination (R2), fractional variance-(FV), and index of agreement-(IA) ranging 0.989-0.997, 0.003-0.031 and 0.993-0.998, respectively. The computational results affirmed that the ANN architecture which was optimized with response surface methodology enhanced the efficiency of the ANN-based-models. Furthermore, the overall performance of the developed ANN-based models revealed that modeling intricate biological systems (such as SNAP) using ANN-based models with the view to improve removal efficiencies, establish process control strategies and optimize performance is highly feasible. Microbial community analysis conducted with 16S rRNA high-throughput approach revealed that Candidatus Kuenenia was the most pronounced genera which accounted for 13.11% followed by Nitrosomonas-(6.23%) and Proteocatella-(3.1%), an indication that nitrogen removal pathway within the USB was mainly via partial-nitritation/anammox process.
Collapse
Affiliation(s)
- Philip Antwi
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China.
| | - Dachao Zhang
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China.
| | - Longwen Xiao
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China.
| | - Felix Tetteh Kabutey
- Harbin Institute of Technology, School of Environmental, State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Road, Harbin 150090, China
| | - Frank Koblah Quashie
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China
| | - Wuhui Luo
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China
| | - Jia Meng
- Harbin Institute of Technology, School of Environmental, State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Road, Harbin 150090, China; University of Queensland, Advanced Water Management Centre, Gehrman Building, Research Road, The St Lucia, Brisbane, QLD 4072, Australia
| | - Jianzheng Li
- Harbin Institute of Technology, School of Environmental, State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
18
|
Li C, Liang J, Lin X, Xu H, Tadda MA, Lan L, Liu D. Fast start-up strategies of MBBR for mariculture wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109267. [PMID: 31325791 DOI: 10.1016/j.jenvman.2019.109267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Moving bed biofilm reactor (MBBR) is widely used for ammonia removal in saline recirculating aquaculture systems but often faces a slow start-up problem. The aim of this study was to develop a strategy for the rapid start-up of MBBR treating synthetic mariculture wastewater. Changes in nitrification performance, biofilm characteristics and bacterial community were assessed in response to various start-up strategies: R1 as the control; R2 with step-decrease of inlet NH4+-N; R3 with step-increase of inlet salinity; R4 added with particulate organic matter (POM) and R5 inoculated with nitrifying bacteria. Results show that nitrification was completed on day 63 for R3, 16-18 days faster than the other strategies. The highest protein (28.2 ± 5.1 mg/g·VS) and polysaccharide (59.4 ± 0.4 mg/g·VS) contents were observed in R3, likely linked to the faster biofilm formation. Fourier Transform infrared spectroscopy (FTIR) analysis confirmed the typical constituents of carbohydrates, proteins, lipids and DNA in biofilms. Moreover, along with the biofilm development in R3, the intensity of the peak at 1400 cm-1 (assigned to specific amides) decreased. Pyrosequencing of 16s rRNA revealed that Gammaproteobacteria was the predominating microbial community at class level (35.6%) in R3. qPCR analysis further verified the significantly higher gene copies of amoA (1.57 × 104 copies/μL) and nxrB (5.51 × 103 copies/μL) in R3. Results obtained make the elevated salinity strategy a promising alternative for the rapid nitrification start-up of saline wastewater.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Liang
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaochang Lin
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Musa Abubakar Tadda
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihua Lan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Tong N, Yuan J, Xu H, Huang S, Sun C, Wen X, Zhang Y. Effects of 2,4,6-trichlorophenol on simultaneous nitrification and denitrification: Performance, possible degradation pathway and bacterial community structure. BIORESOURCE TECHNOLOGY 2019; 290:121757. [PMID: 31299605 DOI: 10.1016/j.biortech.2019.121757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effect of different 2,4,6-trichlorophenol (TCP) concentrations on the performance of simultaneous nitrification and denitrification processes established in a sequential batch biofilm reactor. And the degradation and the possible degradation pathway of 2,4,6-TCP and microbial community structure were also explored. Results indicated that 2,4,6-TCP inhibited the nitrification with the decrease in ammonium nitrogen removal. However, 2,4,6-TCP had different effects on denitrification. Nitrate accumulation showed the tendency to decrease first and then increase, whilst nitrite accumulation showed the opposite with a small change. The adaptation and recovery time of 25 mg/l 2,4,6-TCP was longest. In addition, the process had a good degradation effect on 2,4,6-TCP. Comparing the degradation of 2,4,6-TCP under different concentrations, the result showed that 2,4,6-TCP was mainly reduced to 2,4-dichlorophenol. With the increase in 2,4,6-TCP concentration, the differences in the bacterial community in the reactor were significant.
Collapse
Affiliation(s)
- Na Tong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Jianqi Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Hao Xu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Congcong Sun
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Xiangyu Wen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
20
|
Liu D, Li C, Guo H, Kong X, Lan L, Xu H, Zhu S, Ye Z. Start-up evaluations and biocarriers transfer from a trickling filter to a moving bed bioreactor for synthetic mariculture wastewater treatment. CHEMOSPHERE 2019; 218:696-704. [PMID: 30504045 DOI: 10.1016/j.chemosphere.2018.11.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/03/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Mariculture wastewater treatment by nitrification requires a long start-up time due to high salinity stress. This study aimed to verify the faster start-up of a trickling filter (TF) compared to a moving bed bioreactor (MBBR) treating synthetic mariculture wastewater, and to investigate the feasibility of transferring mature biocarriers from the TF to a new MBBR (TF-MBBR). The nitrogen removal performance, biofilm physicochemical properties and microbial communities were investigated. The results obtained showed that, the TF started up 41 days faster than the MBBR, despite the richer microbial diversity in the latter. Lower biofilm roughness and protein content as well as higher adhesive force and polysaccharide content in the TF were obtained compared to the MBBR. Adhesive force was found to be negatively correlated with roughness (r = -0.630, p = 0.069). Transmittance assigned to amide II (1538 cm-1) and amid III (1243 cm-1) through Fourier transform infrared spectroscopy (FTIR) determination was only obtained in the TF, which was likely related to the faster start-up. Nitrosomonas and Nitrospira were detected as the predominant nitrifiers in both reactors. In addition, the new MBBR, incubated with the mature biocarriers transferred from the TF, had a satisfactory nitrification performance with no lag time. Interestingly, the transfer action increased the microbial diversity and made the biofilm physicochemical characteristics shift toward those of the MBBR. Taken together, the study confirmed that MBBR nitrification start-up can be accelerated via TF and biocarrier transfer.
Collapse
Affiliation(s)
- Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hengbo Guo
- School of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, WA 6009, Australia
| | - Xianwang Kong
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihua Lan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Chen J, Wang R, Wang X, Chen Z, Feng X, Qin M. Response of nitritation performance and microbial community structure in sequencing biofilm batch reactors filled with different zeolite and alkalinity ratio. BIORESOURCE TECHNOLOGY 2019; 273:487-495. [PMID: 30469139 DOI: 10.1016/j.biortech.2018.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Ammonium (NH4+-N) adsorption capacity of zeolite varies from place to place, a unique attempt to use different zeolite as adsorbent media in sequencing biofilm batch reactor (SBBR) for maintaining appropriate free ammonia (FA) range to achieve partial nitritation. SBR filled with synthetic zeolite (SSBBR) and natural zeolite (NSBBR) were applied to evaluate the NH4+-N adsorption capacity impacts on nitrogen transformation and microbial characteristics. Significant differences in nitrite production rate (NPR) were both observed in two reactors during 4 different alkalinity ratios. The highest NPR in SSBBR and NSBBR were both obtained when the alkalinity ratio was 5:1 with the values of 1.11 and 0.90 kg N/(m3·d), respectively. According to Haldane model with inhibition by FA, the kinetics of the reaction were analyzed. High-throughput sequencing analysis results further presented that SSBBR had higher relative abundance average of nitrosobacteria in genus level, which was in favor of better partial nitritation.
Collapse
Affiliation(s)
- Jing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Ruixin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China.
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xinghui Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Mengzhu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| |
Collapse
|
22
|
Gwin CA, Lefevre E, Alito CL, Gunsch CK. Microbial community response to silver nanoparticles and Ag + in nitrifying activated sludge revealed by ion semiconductor sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1014-1021. [PMID: 29122352 DOI: 10.1016/j.scitotenv.2017.10.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs), which are known to act as biocides, are incorporated into medical and consumer products including athletic clothing, stuffed animals, liquid dietary supplements, and more. The increasing use of AgNPs in these products is likely to lead to their entry into both natural and engineered systems, which has the potential to disrupt bacterial processes including those involved in nutrient cycling in wastewater treatment. In the present study, sequencing batch reactors (SBR) mimicking secondary wastewater treatment were operated to determine the effects of AgNPs on the microbial communities contained within activated sludge of wastewater treatment plants (WWTP). SBRs were treated with 0.2 and 2ppm of either gum Arabic (GA)-coated AgNPs, citrate (Ca)-coated AgNPs, or Ag+ as AgNO3. Cell samples were collected and DNA isolated periodically throughout SBR operation. DNA was used for Ion Torrent Next Gen Sequencing of the V3 region of the 16S rDNA gene. Subsequent analyses revealed that the microbial community both shifted and recovered quickly in response to Ag+. Both AgNP treatments resulted in slower initial community shifts than that observed with the Ag+ treatment. GA-AgNPs elicited the longest lasting effect. Additional examination of nitrogen removal bacteria suggested the possibility of an increase in sludge bulking species with increased concentrations of AgNPs in WWTPs. This study supports the hypothesis that Ag+ release from AgNPs is largely coating-dependent and thus a key driver in dictating AgNP toxicity.
Collapse
Affiliation(s)
- Carley A Gwin
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States; Center for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27708, United States; Department of Civil and Environmental Engineering, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, United States
| | - Emilie Lefevre
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States
| | - Christina L Alito
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States; Center for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27708, United States
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States; Center for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27708, United States.
| |
Collapse
|
23
|
Sun N, Ge C, Ahmad HA, Gao B, Ni SQ. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor. BIORESOURCE TECHNOLOGY 2017; 241:681-691. [PMID: 28609756 DOI: 10.1016/j.biortech.2017.05.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
A permanent microbial stratified nitrogen removal system coupling anammox with partial nitrification (SNAP) in a sequencing batch biofilter granular reactor (SBBGR) was successfully constructed for the treatment of ammonia-rich wastewater. With a nitrogen loading rate of 0.1kgNm-3·d-1, the maximal ammonia and total nitrogen removal efficiencies could reach up to 96.08% and 84.86% on day 108, respectively. The pH, DO profiles revealed a switch of functional species (AOB and anammox) at a typical intermittent aeration cycle. qPCR and high throughput analyses certified a stable spatial microbial stratified community structure. Although, anammox preferred strict anaerobic environment while AOB needed oxygen, a special stratified community structure contributed to conquer this obstacle. Moreover, Bacteroidet, Chlorobi, OD1, Planctomycetes, and Proteobacteria were the dominant species in the SBBGR. Although we have predicted the possible pathways of nitrogen transformation, further studies are needed to validate the pathways in enzymology.
Collapse
Affiliation(s)
- Na Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan, 250100 Shandong, PR China
| | - Chenghao Ge
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan, 250100 Shandong, PR China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan, 250100 Shandong, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan, 250100 Shandong, PR China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan, 250100 Shandong, PR China.
| |
Collapse
|
24
|
Yang Y, Chen Z, Wang X, Zheng L, Gu X. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. BIORESOURCE TECHNOLOGY 2017; 241:473-481. [PMID: 28599226 DOI: 10.1016/j.biortech.2017.05.151] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
A zeolite biological aerated filter (ZBAF) with continuous feeding was successfully applied for achieving stable partial nitrification. Excellent nitrite accumulation (higher than 98.0%) and high nitrite/nitrate production rate (NPR) (approximately 0.760kg/m3/d) were obtained with increase influent ammonium concentration from 250 to 550mg/L within a nitrogen loading rate (NLR) of 0.854-1.200kg/m3/d. Owning to the adsorption of zeolite to ammonium, free ammonia (FA) concentration could remain at an appropriate range for inhibition of nitrite oxidizing bacteria (NOB) and dominance of ammonia-oxidizing bacteria (AOB), which should be responsible for the excellent partial nitrification realized in ZBAF. Kinetic study showed that the production of nitrite in ZBAF followed the zero-order kinetics model and high-throughput sequencing analysis further presented the enrichment of AOB and inhibition of NOB in ZBAF. All the results demonstrated that ZBAF hold a great potential in the application of partial nitrification for ammonium wastewater treatment.
Collapse
Affiliation(s)
- Yongyuan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China.
| | - Lei Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Hualu Environmental Technology Co., Ltd., Guangzhou, China
| | - Xiaoyang Gu
- Hualu Environmental Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
25
|
Young B, Delatolla R, Kennedy K, Laflamme E, Stintzi A. Low temperature MBBR nitrification: Microbiome analysis. WATER RESEARCH 2017; 111:224-233. [PMID: 28088719 DOI: 10.1016/j.watres.2016.12.050] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
This study aims to investigate post carbon removal moving bed biofilm reactor (MBBR) nitrification through the transition from 20 °C to 1 °C and during through long term operation at 1 °C. Four pilot nitrifying MBBR reactors were operated at various ammonia loading rates to elucidate the temperature effects on ammonia removal rates, cell viability and bacterial communities. The transition from 20 °C to 1 °C and during long term operation at 1 °C were modeled using Arrhenius temperature correction coefficients. Specifically, the steady state removal rates at 1 °C on average were 22.8% of the maximum ammonia removal rate at 20 °C, which corresponds to an Arrhenius temperature correction of 1.086 during steady operation at 1 °C. The microbial communities of the nitrifying MBBR biofilm were shown to be significantly more diverse at 20 °C as compared to 1 °C operation. Although less diverse at 1 °C, 2000 species of bacteria were identified in the nitrifying biofilm during operation at this low temperature. Nitrosomonads were shown to be the dominant ammonia oxidizing bacteria (AOB) and Nitrospira was shown to be the dominant nitrite oxidizing bacteria (NOB) in all the pilot MBBR reactors at all temperatures. The performance of the post carbon removal nitrifying MBBR systems were shown to be enhanced at 1 °C by an increase in the viable embedded biomass as well as thicker biofilm. This effectively increases the number of viable cell present during low temperature operation, which partially compensates for the significant decrease in rate of ammonia removal per nitrifying cell. Operation at the highest loading conditions tested in this study at 1 °C were shown to reduce the ammonia removal rate compared to lower loading conditions at 1 °C. The lower performance at higher loading conditions at 1 °C demonstrated an enrichment in the stress response metagenomics pathways of the system.
Collapse
Affiliation(s)
- Bradley Young
- Department of Civil Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | - Robert Delatolla
- Department of Civil Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada.
| | - Kevin Kennedy
- Department of Civil Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | | | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
26
|
Saijai S, Ando A, Inukai R, Shinohara M, Ogawa J. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics. Biosci Biotechnol Biochem 2016; 80:2247-2254. [PMID: 27351990 DOI: 10.1080/09168451.2016.1200459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ( ) and nitrite ions ( ) into nitrate ions ( ). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during and oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.
Collapse
Affiliation(s)
- Sakuntala Saijai
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Akinori Ando
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan.,b Research Unit for the Physiological Chemistry , Kyoto University , Kyoto , Japan
| | - Ryuya Inukai
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Makoto Shinohara
- c National Institute of Vegetable and Tea Science, National Agriculture Research Organization , Tsu , Japan
| | - Jun Ogawa
- a Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan.,b Research Unit for the Physiological Chemistry , Kyoto University , Kyoto , Japan
| |
Collapse
|
27
|
Gonzalez-Silva BM, Jonassen KR, Bakke I, Østgaard K, Vadstein O. Nitrification at different salinities: Biofilm community composition and physiological plasticity. WATER RESEARCH 2016; 95:48-58. [PMID: 26986496 DOI: 10.1016/j.watres.2016.02.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities.
Collapse
Affiliation(s)
- Blanca M Gonzalez-Silva
- Department of Biotechnology, Faculty of Natural Sciences and Technology, NTNU Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491 Trondheim, Norway.
| | - Kjell Rune Jonassen
- Department of Biotechnology, Faculty of Natural Sciences and Technology, NTNU Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491 Trondheim, Norway.
| | - Ingrid Bakke
- Department of Biotechnology, Faculty of Natural Sciences and Technology, NTNU Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491 Trondheim, Norway.
| | - Kjetill Østgaard
- Department of Biotechnology, Faculty of Natural Sciences and Technology, NTNU Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491 Trondheim, Norway.
| | - Olav Vadstein
- Department of Biotechnology, Faculty of Natural Sciences and Technology, NTNU Norwegian University of Science and Technology, Sem Saelands v. 6/8, N-7491 Trondheim, Norway.
| |
Collapse
|