1
|
Knežević N, Vuksanović MM, Banjanac K, Pantić K, Veličković Z, Cvijetić I, Marinković A, Milošević M. Cationic waste hemp fibers-based membrane: Case study of anionic pollutants removal through environmentally friendly processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123174. [PMID: 39504666 DOI: 10.1016/j.jenvman.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In this study, waste hemp fibers were transformed into cationically modified lignocellulosic adsorbent through a three-step process. First, a delignification/defibrillation pretreatment was performed, followed by quaternization of fibers using the synthesized ionic liquid chlorocholine chloride-urea (CCC-U). Pressure-assisted cross-linking of modified fibres, using a citric acid, produced new membrane (CCC-UHM). The removal of anionic dyes (Acid Yellow 36 (AY36), Congo Red (CR), Acid Green 25 (AG25), and Acid Blue 92 (AB92)), and oxyanions (As(V) and Cr(VI)) was tested in batch and column system. The structural characteristics and chemical properties of the syntesised materials were investigated by SEM, FTIR, Raman, XPS, XRD, specific density, porosity and point of zero charges analysis. The endothermic and spontaneous equilibration of the system resulted in high capacity (qm), i.e., 302.9 mg g-1 (AY36), 456.8 mg g-1 (CR), 812.8 mg g-1 (AG25), 587.6 mg g-1 (AB92), 107.9 mg g-1 (As(V)), and 67.84 mg g-1 (Cr(VI)) at 25 °C, using the Langmuir model. The optimum pH for the adsorption process was 7. The multi-cycle adsorption/desorption process was followed by either decolorization, using laccase from M. thermophile expressed in Aspergillus oryzae (Novozym 51,003® laccase) immobilized on amino-modified fibers as biocatalyst, or photocatalytic degradation, in the presence of zinc oxide. The high decolorization efficiency (96%) observed for AG25 and AB92 underscores the considerable potential of laccase immobilized preparations as sustainable and eco-friendly approach for treating dye-contaminated wastewater. Photodegradation process provided low environmental threat of processed water, and biodegradabilty of exhausted membrane confirmed the circularity of the developed technology with implemented principles of sustainability.
Collapse
Affiliation(s)
- Nataša Knežević
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia.
| | - Marija M Vuksanović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia.
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Ltd, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Krstimir Pantić
- University of Priština, Faculty of Technical Sciences, Knjaza Miloša 7, 38220, Kosovska Mitrovica, Serbia.
| | - Zlate Veličković
- University of Defence, Military Academy, Veljka Lukica Kurjaka 33, 11042, Belgrade, Serbia.
| | - Ilija Cvijetić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Marinković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Milena Milošević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia.
| |
Collapse
|
2
|
Chen C, He E, Jia W, Xia S, Yu L. Preparation of magnetic sodium alginate/sodium carboxymethylcellulose interpenetrating network gel spheres and use in superefficient adsorption of direct dyes in water. Int J Biol Macromol 2023; 253:126985. [PMID: 37730008 DOI: 10.1016/j.ijbiomac.2023.126985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The rapid development of the printing and dyeing industry has led to the production of a large amount of high-density printing and dyeing wastewater, and technology for its effective treatment has become a focus of research. To construct a polymeric adsorbent material with abundant functional groups for the efficient adsorption of dye wastewater, a novel magnetic sodium alginate/carboxymethylcellulose interpenetrating network gel sphere (Fe3O4@SA/CMC-Fe) was prepared by co-blending sodium alginate (SA) and sodium carboxymethylcellulose (CMC) with Fe3O4; Fe3O4@SA/CMC-Fe was characterized by SEM-EDS, XRD, TGA, FT-IR, UV-Vis, VSM, BET-BJH and XPS. Static adsorption experiments showed that the optimal rates for adsorption of DV 51 and DR 23 from solutions with neutral pH values by Fe3O4@SA/CMC-Fe were up to 96 %, the adsorption process exhibited a Langmuir adsorption isotherm, and the dynamic adsorption process was accurately described by the pseudo-second-order kinetic model. A thermodynamic study showed that the adsorption reactions were all spontaneous exothermic reactions with increasing entropy. The mechanism for adsorption of the dyes by Fe3O4@SA/CMC-Fe involved hydrogen bonding, complexation and electrostatic adsorption. In summary, Fe3O4@SA/CMC-Fe is a green, simple, recyclable and highly efficient magnetic adsorbent that is expected to be widely used in treating dye wastewaters over a wide pH range.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Enhui He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Weina Jia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuwei Xia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
3
|
Dissanayake NSL, Pathirana MA, Wanasekara ND, Mahltig B, Nandasiri GK. Removal of Methylene Blue and Congo Red Using a Chitosan-Graphene Oxide-Electrosprayed Functionalized Polymeric Nanofiber Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1350. [PMID: 37110933 PMCID: PMC10144769 DOI: 10.3390/nano13081350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Untreated textile effluent may contain toxic organic pollutants that can have negative impacts on the ecosystem. Among the harmful chemicals present in dyeing wastewater, there are two frequently used organic dyes: methylene blue (cationic) and congo red (anionic). The current study presents investigations on a novel two-tier nanocomposite membrane, i.e., a top layer formed of electrosprayed chitosan-graphene oxide and a bottom layer consisting of an ethylene diamine functionalized polyacrylonitrile electrospun nanofiber for the simultaneous removal of the congo red and methylene blue dyes. The fabricated nanocomposite was characterized using FT-IR spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and Drop Shape Analyzer. Isotherm modeling was used to determine the efficiency of dye adsorption for the electrosprayed nanocomposite membrane and the confirmed maximum adsorptive capacities of 182.5 mg/g for congo red and 219.3 mg/g for methylene blue, which fits with the Langmuir isotherm model, suggesting uniform single-layer adsorption. It was also discovered that the adsorbent preferred an acidic pH level for the removal of congo red and a basic pH level for the removal of methylene blue. The gained results can be a first step for the development of new wastewater cleaning techniques.
Collapse
Affiliation(s)
- Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Maadri A. Pathirana
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein-University of Applied Sciences, 41065 Mönchengladbach, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| |
Collapse
|
4
|
Pathirana MA, Dissanayake NSL, Wanasekara ND, Mahltig B, Nandasiri GK. Chitosan-Graphene Oxide Dip-Coated Polyacrylonitrile-Ethylenediamine Electrospun Nanofiber Membrane for Removal of the Dye Stuffs Methylene Blue and Congo Red. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:498. [PMID: 36770459 PMCID: PMC9920196 DOI: 10.3390/nano13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 05/14/2023]
Abstract
Textile wastewater accommodates many toxic organic contaminants that could potentially threaten the ecosystem if left untreated. Methylene blue is a toxic, non-biodegradable, cationic dye that is reportedly observed in significant amounts in the textile effluent stream as it is widely used to dye silk and cotton fabrics. Congo red is a carcinogenic anionic dye commonly used in the textile industry. This study reports an investigation of methylene blue and Congo red removal using a chitosan-graphene oxide dip-coated electrospun nanofiber membrane. The fabricated nanocomposite was characterized using Scanning Electron Microscopy (SEM), FT-IR Spectroscopy, Raman Spectroscopy, UV-vis Spectroscopy, Drop Shape Analyzer, and X-ray Diffraction. The isotherm modeling confirmed a maximum adsorptive capacity of 201 mg/g for methylene blue and 152 mg/g for Congo red, which were well fitted with a Langmuir isotherm model indicating homogenous monolayer adsorption.
Collapse
Affiliation(s)
- Maadri A. Pathirana
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein—University of Applied Sciences, 47707 Krefeld, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| |
Collapse
|
5
|
Hosseini S, Daneshvar e Asl S, Vossoughi M, Simchi A, Sadrzadeh M. Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies. ACS OMEGA 2021; 6:10816-10827. [PMID: 34056236 PMCID: PMC8153774 DOI: 10.1021/acsomega.1c00480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 05/13/2023]
Abstract
Chitosan/poly(vinyl alcohol)/amino-functionalized montmorillonite nanocomposite electrospun membranes with enhanced adsorption capacity and thermomechanical properties were fabricated and utilized for the removal of a model cationic dye (Basic Blue 41). Effects of nanofiller concentrations (up to 3.0 wt %) on the morphology and size of the nanofibers as well as the porosity and thermomechanical properties of the nanocomposite membranes are studied. It is shown that the incorporation of the nanoclay particles with ∼10 nm lateral sizes into the polymer increases the size of the pores by about 80%. To demonstrate the efficiency of the adsorbents, the dye removal rate is investigated as a function of pH, adsorbent dosage, dye concentration, and nanofiller loading. The highest and fastest dye removal occurs for the nanofibrous membranes containing 2 wt % nanofiller, where about 80% of the cationic dye is removed after 15 min. This performance is at least 20% better than the pristine chitosan/poly(vinyl alcohol) membrane. The thermal stability and compression resistance of the nanocomposite membranes are found to be higher than those of the pristine membrane. In addition, reusability studies show that the dye removal performance of this nanocomposite membrane reduces by only about 5% over four cycles. The adsorption kinetics is explained by the Langmuir isotherm model and is expressed by a pseudo-second-order kinetic mechanism that determines a spontaneous chemisorption process. The results of this study provide a valuable perspective on the fabrication of high-performance, reusable, and efficient electrospun fibrous nanocomposite adsorbents.
Collapse
Affiliation(s)
- Seyed
Abolhassan Hosseini
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, AB, Canada T6G 1H9
- Department
of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Shervin Daneshvar e Asl
- Department
of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Manouchehr Vossoughi
- Department
of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Abdolreza Simchi
- Department
of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Mohtada Sadrzadeh
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, AB, Canada T6G 1H9
- . Tel: +1 780 492
8745
| |
Collapse
|
6
|
Mahmoodi NM, Mokhtari-Shourijeh Z, Langari S, Naeimi A, Hayati B, Jalili M, Seifpanahi-Shabani K. Silica aerogel/polyacrylonitrile/polyvinylidene fluoride nanofiber and its ability for treatment of colored wastewater. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|