1
|
Prasher IB, Ahmad N, Ahmed M, Raghuwanshi S, Kumar V, Siddiqui SI, Oh S. Live Biomass of Rigidoporus vinctus: A Sustainable Method for Decoloration and Detoxification of Dyes in Water. Microorganisms 2023; 11:1435. [PMID: 37374937 DOI: 10.3390/microorganisms11061435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, white-rot fungus, Rigidoporus vinctus, collected from an unidentified fallen twig from Pathankot, Punjab, India, was used for biosorption of anionic Congo red and cationic Methylene blue dyes from an aqueous medium. The biosorption efficiency of the live biomass of Rigidoporus vinctus was investigated to optimize biosorbent dosage, process time, concentrations of dyes, and pH of solutions. The results indicated that Rigidoporus vinctus is more efficient than other reported bio-adsorbents for Congo red and Methylene blue dyes. The maximum biosorption activity of Rigidoporus vinctus for Congo red was found at pH 2, and that for Methylene blue was at pH 10, after 24 h of the reaction period. The process followed pseudo-second-order kinetics, which indicated that the interaction of both dyes to the adsorption sites on the surface of Rigidoporus vinctus was responsive to biosorption. The biosorption process could be well explained by the Langmuir isotherm for both dyes. The maximum monolayer biosorption capacity of Rigidoporus vinctus for Congo red and Methylene blue was observed to be 54.0 mg/g and 80.6 mg/g, respectively. The seed germination test was carried out, and it was assessed that the toxicity of dyes was reduced up to significant levels. Based on the present experimental findings, it can be concluded that biosorption using the live biomass of Rigidoporus vinctus can effectively decolorize dye-containing wastewater, thus reducing the hazardous effects of dyes on human beings.
Collapse
Affiliation(s)
- I B Prasher
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Vijay Kumar
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Blaga AC, Tanasă AM, Cimpoesu R, Tataru-Farmus RE, Suteu D. Biosorbents Based on Biopolymers from Natural Sources and Food Waste to Retain the Methylene Blue Dye from the Aqueous Medium. Polymers (Basel) 2022; 14:polym14132728. [PMID: 35808773 PMCID: PMC9269617 DOI: 10.3390/polym14132728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
The use of a biosorbent based on residual biomass from brewing industry (Saccharomyces pastorianus) immobilized in a natural biopolymer (sodium alginate) was investigated for Methylene Blue removal from aqueous medium. Saccharomyces pastorianus, immobilized by a simple entrapment technique and by microencapsulation in alginate was characterized using SEM, EDAX, pHPZC and the biosorption behavior toward organic pollutant, such as cationic dye. The biosorption experiments were studied by assessing, in a first stage, the influence of the most important operational physical parameters on the efficiency of the biosorbent: the initial concentration of the dye, the contact time between phases, the temperature, the dye solution pH, the biosorbent granule size, and the amount of biosorbent. The highest sorption capacity was obtained for the biosorbent obtained by microencapsulation, at pH 9, at biosorbent dose of 5.28 g/L and a contact time of about 100 min. The biosorption equilibrium was then studied by modeling the data on the Langmuir, Freundlich and Dubinin- Radushkevich isotherms. The Langmuir model is best suited for experimental data on both particle sizes leading to a maximum biosorption capacity of 188.679 mg/g at room temperature. The values of the adsorption energy, E, obtained with the help of the Dubinin-Radushkevich model-suggest that the type of mechanism (physical or chemical) involved in the biosorption process depends on the particle size of the biosorbent. The results confirm that the residual microbial biomass of Saccharomyces pastorianus immobilized in a polymeric matrix such as sodium alginate, can be considered an efficient biosorbent in retaining cationic organic dyes present in aqueous solutions in moderate concentrations.
Collapse
Affiliation(s)
- Alexandra Cristina Blaga
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. docent D. Mangeron Blvd., No. 73, 700050 Iasi, Romania; (A.C.B.); (A.M.T.)
| | - Alexandra Maria Tanasă
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. docent D. Mangeron Blvd., No. 73, 700050 Iasi, Romania; (A.C.B.); (A.M.T.)
| | - Ramona Cimpoesu
- Department of Materials Science, Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. docent D. Mangeron Blvd., No. 41, 700259 Iasi, Romania;
| | - Ramona-Elena Tataru-Farmus
- Department of Chemical Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. docent D. Mangeron Blvd., No. 73, 700050 Iasi, Romania;
| | - Daniela Suteu
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. docent D. Mangeron Blvd., No. 73, 700050 Iasi, Romania; (A.C.B.); (A.M.T.)
- Correspondence:
| |
Collapse
|
3
|
Seoane R, Santaeufemia S, Abalde J, Torres E. Efficient Removal of Methylene Blue Using Living Biomass of the Microalga Chlamydomonas moewusii: Kinetics and Equilibrium Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052653. [PMID: 35270343 PMCID: PMC8909845 DOI: 10.3390/ijerph19052653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
The efficiency of the living biomass of the microalga Chlamydomonas moewusii in removing methylene blue dye is determined. The kinetics, equilibrium isotherms, and the effects on this process of the pH, contact time, and initial concentration of the dye are studied. Fourier transform infrared spectrometry and point of zero charge are used to characterize the biomass and explore the process. The maximum removal capacity derived from the Langmuir isotherm is 212.41 ± 4.55 mg/g after 7 h of contact time at pH 7. The removal process is rapid because kinetic studies revealed that the best fit of the data is with pseudo-third-order kinetics. The removal efficiency is dependent on the pH; as the pH increased, the efficiency is higher. These results show that the living biomass of this microalga is a very efficient biosorbent and therefore very suitable for the removal of methylene blue from aqueous solutions.
Collapse
|
4
|
Bardhan M, Novera TM, Tabassum M, Islam MA, Jawad AH, Islam MA. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1932-1949. [PMID: 33201856 DOI: 10.2166/wst.2020.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, activated carbon (AC) was prepared from agro-waste betel nut husks (BNH) through the chemical activation method. Different characterization techniques described the physicochemical nature of betel nut husks activated carbon (BNH-AC) through Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and pH point of zero charge. Later, the produced AC was used for methylene blue (MB) adsorption via numerous batch experimental parameters: initial concentrations of MB dye (25-250 mg/L), contact time (0.5-24 hours) and initial pH (2-12). Dye adsorption isotherms were also assessed at three temperatures where the maximum adsorption capacity (381.6 mg/g) was found at 30 °C. The adsorption equilibrium data were best suited to the non-linear form of the Freundlich isotherm model. Additionally, non-linear pseudo-second-order kinetic model was better fitted with the experimental value as well. Steady motion of solute particles from the boundary layer to the BNH-AC's surface was the possible reaction dynamics concerning MB adsorption. Thermodynamic study revealed that the adsorption process was spontaneous and exothermic in nature. Saline water emerged as an efficient eluent for the desorption of adsorbed dye on AC. Therefore, the BNH-AC is a very promising and cost-effective adsorbent for MB dye treatment and has high adsorption capacity.
Collapse
Affiliation(s)
- Mondira Bardhan
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Tamanna Mamun Novera
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Mumtahina Tabassum
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Ali H Jawad
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Md Atikul Islam
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| |
Collapse
|
5
|
Evaluation of Methylene Blue Sorption onto Low-Cost Biosorbents: Equilibrium, Kinetics, and Thermodynamics. J CHEM-NY 2020. [DOI: 10.1155/2020/8318049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This paper presents a study on batch sorption of methylene blue dye from aqueous solution onto Ginkgo biloba sorbent, a waste material produced during the Fall season in many parts of the world. Batch kinetics, equilibrium, and thermodynamic studies were conducted to evaluate the effect of contact time (0–150 min), sorbent dose (0.5–3.0 g/L), pH (2–11), temperature (30–50°C), initial MB concentration (10–30 mg/L), and particle size (177 μm—590 μm) on the methylene blue dye sorption. More than 99% removal of methylene blue was observed within 120 minutes. A Lagergren pseudo-first-order model, a pseudo-second-order model, and intraparticle diffusion models fitted well to the kinetics experimental data. Langmuir and Freundlich isotherm models also fitted well with the observed equilibrium data. Additionally, removal of methylene blue increased with increase in solution pH. Higher sorption capacity (∼20 mg/g) was observed with smaller particle size (170 μm) as compared to larger particle sizes (590 μm). Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° indicated that the sorption process was feasible, spontaneous, and endothermic in nature. The study shows that Ginkgo biloba leaves have the potential to be an efficient sorbent for the removal of methylene blue from surface water samples.
Collapse
|
6
|
Liu X, Wang B, Jing G, Sun Y. Adsorption behaviors of methylene blue on sunflower stem pith. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1458-1466. [PMID: 31169503 DOI: 10.2166/wst.2019.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adsorption behaviors of methylene blue (MB) from aqueous solution using sunflower stem pith (SSP) as adsorbent were investigated. The effects of adsorption conditions such as adsorption time, initial concentration of MB and dosage of SSP on the detoxification of MB were examined. The equilibrium adsorption data were analyzed using three well-known isotherms: Langmuir, Freundlich and Temkin. The results indicated that the Langmuir isotherm fitted well to the data as compared with another isotherm model. The maximum adsorption capacity calculated by the Langmuir isotherm model was 277 mg/g at 338 K. Kinetic analyses were conducted using pseudo first order, pseudo second order and the Elovich model. The regression results showed that the MB adsorption was described by the pseudo second order model. Different thermodynamic parameters such as Gibb's free energy (ΔGo), standard enthalpy change (ΔHo) and standard entropy change (ΔSo) were also evaluated. The results showed that the detoxification of MB using SSP as adsorbent was feasible, non-spontaneous and exothermic under experimental conditions.
Collapse
Affiliation(s)
- Xiangyao Liu
- Chemistry and Chemical Engineering School/Heilongjiang Province, Northeast Petroleum University, Daqing 163318, China E-mail: ; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Baohui Wang
- Chemistry and Chemical Engineering School/Heilongjiang Province, Northeast Petroleum University, Daqing 163318, China E-mail:
| | - Guolin Jing
- Chemistry and Chemical Engineering School/Heilongjiang Province, Northeast Petroleum University, Daqing 163318, China E-mail:
| | - Ya'nan Sun
- Chemistry and Chemical Engineering School/Heilongjiang Province, Northeast Petroleum University, Daqing 163318, China E-mail:
| |
Collapse
|
7
|
Removal of Synthetic Dyes by Dried Biomass of Freshwater Moss Vesicularia Dubyana: A Batch Biosorption Study. ENVIRONMENTS 2018. [DOI: 10.3390/environments5010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
|