1
|
Zhang H, Duan L, Li S, Gao Q, Li M, Xing F, Zhao Y. Simultaneous Wastewater Treatment and Resources Recovery by Forward Osmosis Coupled with Microbial Fuel Cell: A Review. MEMBRANES 2024; 14:29. [PMID: 38392656 PMCID: PMC10890705 DOI: 10.3390/membranes14020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Osmotic microbial fuel cells (OsMFCs) with the abilities to simultaneously treat wastewater, produce clean water, and electricity provided a novel approach for the application of microbial fuel cell (MFC) and forward osmosis (FO). This synergistic merging of functions significantly improved the performances of OsMFCs. Nonetheless, despite their promising potential, OsMFCs currently receive inadequate attention in wastewater treatment, water reclamation, and energy recovery. In this review, we delved into the cooperation mechanisms between the MFC and the FO. MFC facilitates the FO process by promoting water flux, reducing reverse solute flux (RSF), and degrading contaminants in the feed solution (FS). Moreover, the water flux based on the FO principle contributed to MFC's electricity generation capability. Furthermore, we summarized the potential roles of OsMFCs in resource recovery, including nutrient, energy, and water recovery, and identified the key factors, such as configurations, FO membranes, and draw solutions (DS). We prospected the practical applications of OsMFCs in the future, including their capabilities to remove emerging pollutants. Finally, we also highlighted the existing challenges in membrane fouling, system expansion, and RSF. We hope this review serves as a useful guide for the practical implementation of OsMFCs.
Collapse
Affiliation(s)
- Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Deng S, Wang C, Ngo HH, Guo W, You N, Tang H, Yu H, Tang L, Han J. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality. BIORESOURCE TECHNOLOGY 2023; 376:128906. [PMID: 36933575 DOI: 10.1016/j.biortech.2023.128906] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Newly arising concepts such as the circular economy and carbon neutrality motivate resource recovery from wastewater. This paper reviews and discusses state-of-the-art microbial electrochemical technologies (METs), specifically microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial recycling cells (MRCs), which enable energy generation and nutrient recovery from wastewater. Mechanisms, key factors, applications, and limitations are compared and discussed. METs are effective in energy conversion, demonstrating advantages, drawbacks and future potential as specific scenarios. MECs and MRCs exhibited greater potential for simultaneous nutrient recovery, and MRCs offer the best scaling-up potential and efficient mineral recovery. Research on METs should be more concerned with lifespan of materials, secondary pollutants reduction and scaled-up benchmark systems. More up-scaled application cases are expected for cost structures comparison and life cycle assessment of METs. This review could direct the follow-up research, development and successful implementation of METs for resource recovery from wastewater.
Collapse
Affiliation(s)
- Shihai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Na You
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hao Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongbin Yu
- Southern Branch of China National Gold Engineering Corporation, Guangzhou 440112, PR China
| | - Long Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
3
|
Zhang W, Chu H, Yang L, You X, Yu Z, Zhang Y, Zhou X. Technologies for pollutant removal and resource recovery from blackwater: a review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:83. [PMID: 36776490 PMCID: PMC9898867 DOI: 10.1007/s11783-023-1683-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 06/18/2023]
Abstract
Blackwater (BW), consisting of feces, urine, flushing water and toilet paper, makes up an important portion of domestic wastewater. The improper disposal of BW may lead to environmental pollution and disease transmission, threatening the sustainable development of the world. Rich in nutrients and organic matter, BW could be treated for resource recovery and reuse through various approaches. Aimed at providing guidance for the future development of BW treatment and resource recovery, this paper presented a literature review of BWs produced in different countries and types of toilets, including their physiochemical characteristics, and current treatment and resource recovery strategies. The degradation and utilization of carbon (C), nitrogen (N) and phosphorus (P) within BW are underlined. The performance of different systems was classified and summarized. Among all the treating systems, biological and ecological systems have been long and widely applied for BW treatment, showing their universality and operability in nutrients and energy recovery, but they are either slow or ineffective in removal of some refractory pollutants. Novel processes, especially advanced oxidation processes (AOPs), are becoming increasingly extensively studied in BW treatment because of their high efficiency, especially for the removal of micropollutants and pathogens. This review could serve as an instructive guidance for the design and optimization of BW treatment technologies, aiming to help in the fulfilment of sustainable human excreta management.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Zhenjiang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
4
|
Martínez-Castrejón M, López-Díaz JA, Solorza-Feria O, Talavera-Mendoza O, Rodríguez-Herrera AL, Alcaraz-Morales O, Hernández-Flores G. Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective. MICROMACHINES 2022; 13:2239. [PMID: 36557539 PMCID: PMC9785870 DOI: 10.3390/mi13122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Population growth increases the challenge of meeting basic human needs, such as water, a limited resource. Consumption habits and water pollution have compromised natural resources to unsustainable levels. Sustainable effluent treatment practices, such as decentralized systems focused on energy, nutrients, and water recovery, have attracted the attention of the scientific community. Human urine (HU) is a physiological liquid waste whose main component is water (~95%). HU has a significant amount of nutrients, such as N, P, K, and organic matter, which are usually lacking in fecal coliforms. Therefore, the possibility exists of recovering nutrients and energy from HU using sustainable and non-sustainable technologies. Treating HU in bioelectrochemical systems (BES) is a novel alternative to obtaining byproducts from this effluent more sustainably than in electrochemical systems. Microbial fuel cells (MFCs) are an interesting example, contributing to HU revalorization from unwanted waste into a valuable resource of nutrients, energy, and water. Even when urine-operated MFCs have not generated attractive potential outputs or produced considerable amounts of bioelectricity, this review emphasizes HU advantages as nutrients or water sources. The aim of this review was to analyze the current development of BES for HU treatment based on the water circular economy, discussing challenges and perspectives researchers might encounter.
Collapse
Affiliation(s)
- Mariana Martínez-Castrejón
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Privada de Laurel No. 13, Col. El Roble, Acapulco C.P. 39640, Guerrero, Mexico
| | - Jazmin A. López-Díaz
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex hacienda San Juan Bautista s/n, Taxco el Viejo C.P. 40323, Guerrero, Mexico
| | - Omar Solorza-Feria
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Chemistry, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación C.P. 07360, Gustavo A. Madero, Mexico
| | - Oscar Talavera-Mendoza
- Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex hacienda San Juan Bautista s/n, Taxco el Viejo C.P. 40323, Guerrero, Mexico
| | - América L. Rodríguez-Herrera
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Privada de Laurel No. 13, Col. El Roble, Acapulco C.P. 39640, Guerrero, Mexico
| | - Osbelia Alcaraz-Morales
- Facultad de Arquitectura y Urbanismo, Universidad Autónoma de Guerrero, Av. Juárez No. 38 Interior. C.U. Zona Norte, Chilpancingo C.P. 39000, Guerrero, Mexico
| | - Giovanni Hernández-Flores
- CONACYT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco el Viejo C.P. 40323, Guerrero, Mexico
| |
Collapse
|
5
|
Kundu D, Dutta D, Samanta P, Dey S, Sherpa KC, Kumar S, Dubey BK. Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157709. [PMID: 35908693 DOI: 10.1016/j.scitotenv.2022.157709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Limitation in the availability of natural resources like water is the main drive for focussing on resource recovery from wastewater. Rapid urbanization with increased consumption of natural resources has severely affected its management and security. The application of biotechnological processes offers a feasible approach to concentrating and transforming wastewater for resource recovery and a step towards a circular economy. Wastewater generally contains high organic materials, nutrients, metals and chemicals, which have economic value. Hence, its management can be a valuable resource through the implementation of a paradigm transformation for value-added product recovery. This review focuses on the circular economy of "close loop" process by wastewater reuse and energy recovery identifying the emerging technologies for recovering resources across the wastewater treatment phase. Conventional wastewater treatment technologies have been discussed along with the advanced treatment technologies such as algal treatment, anammox technology, microbial fuel cells (MFC). Apart from recovering energy in the form of biogas and biohydrogen, second and third-generation biofuels as well as biohythane and electricity generation have been deliberated. Other options for resource recovery are single-cell protein (SCP), biopolymers as well as recovery of metals and nutrients. The paper also highlights the applications of treated wastewater in agriculture, aquaponics, fisheries and algal cultivation. The concept of Partitions-release-recover (PRR) has been discussed for a better understanding of the filtration treatment coupled with anaerobic digestion. The review provides a critical evaluation on the importance of adopting a circular economy and their role in achieving sustainable development goals (SDGs). Thus, it is imperative that such initiatives towards resource recovery from wastewater through integration of concepts can aid in providing wastewater treatment system with resource efficiency.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal 735210, India
| | - Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Knawang Chhunji Sherpa
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
6
|
Baby MG, Ahammed MM. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems - A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:29-55. [PMID: 35838281 DOI: 10.2166/wst.2022.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial fuel cell (MFC) is a green innovative technology that can be employed for nutrient removal/recovery as well as for energy production from wastewater. This paper summarizes the recent advances in the use of MFCs for nutrient removal/recovery. Different configurations of MFCs used for nutrient removal are first described. Different types of nutrient removal/recovery mechanisms such as precipitation, biological uptake by microalgae, nitrification, denitrification and ammonia stripping occurring in MFCs are discussed. Recovery of nutrients as struvite or cattiite by precipitation, as microalgal biomass and as ammonium salts are common. This review shows that while higher nutrient removal/recovery is possible with MFCs and their modifications compared to other techniques as indicated by many laboratory studies, field-scale studies and optimization of operational parameters are needed to develop efficient MFCs for nutrient removal and recovery and electricity generation from different types of wastewaters.
Collapse
Affiliation(s)
- Merin Grace Baby
- Civil Engineering Department, S V National Institute of Technology, Surat 395007, India E-mail:
| | - M Mansoor Ahammed
- Civil Engineering Department, S V National Institute of Technology, Surat 395007, India E-mail:
| |
Collapse
|
7
|
Abstract
The environmental problems caused by the excessive use of fossil fuels for electricity generation have led to the development of new technologies. Microbial fuel cells constitute a technology that uses organic sources for electricity generation. This research gives a novel means of using Golden Berry waste as fuel for electricity generation through microbial fuel cells made at low cost, achieving current and voltage peaks of 4.945 ± 0.150 mA and 1.03 ± 0.02 V, respectively. Conductivity values increased up to 148 ± 1 mS/cm and pH increased up to 8.04 ± 0.12 on the last day. The internal resistance of cells was 194.04 ± 0.0471 Ω, while power density was 62.5 ± 2 mW/cm2 at a current density of 0.049 A/cm2. Transmittance peaks of the Fourier-transform infrared (FTIR) spectrum showed a decrease when comparing the initial and final spectra, while the bacterium Stenotrophomonas maltophilia was molecularly identified with an identity percentage of 99.93%. The three cells connected in series managed to generate 2.90 V, enough to turn on a TV remote control. This research has great potential to be scalable if it is possible to increase the electrical parameters, generating great benefits for companies, farmers, and the population involved in the production and marketing of this fruit.
Collapse
|
8
|
Sharma R, Kumari R, Pant D, Malaviya P. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells. CHEMOSPHERE 2022; 292:133437. [PMID: 34973250 DOI: 10.1016/j.chemosphere.2021.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Urine is a 'valuable waste' that can be exploited to generate bioelectricity and recover key nutrients for producing NPK-rich biofertilizers. In recent times, improved and innovative waste management technologies have emerged to manage the rapidly increasing environmental pollution and to accomplish the goal of sustainable development. Microbial fuel cells (MFCs) have attracted the attention of environmentalists worldwide to treat human urine and produce power through bioelectrochemical reactions in presence of electroactive bacteria growing on the anode. The bacteria break down the complex organic matter present in urine into simpler compounds and release the electrons which flow through an external circuit generating current at the cathode. Many other useful products are harvested at the end of the process. So, in this review, an attempt has been made to synthesize the information on MFCs fuelled with urine to generate bioelectricity and recover value-added resources (nutrients), and their modifications to enhance productivity. Moreover, configuration and mode of system operation, and factors enhancing the performance of MFCs have been also presented.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Rekha Kumari
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Carucci A, Erby G, Puggioni G, Spiga D, Frugoni F, Milia S. Ammonium recovery from agro-industrial digestate using bioelectrochemical systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2432-2441. [PMID: 35486466 DOI: 10.2166/wst.2022.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Growing food and biomass production at the global scale has determined a corresponding increase in the demand for and use of nutrients. In this study, the possibility of recovering nitrogen from agro-industrial digestate using bioelectrochemical systems was investigated: two microbial electrolysis cells (MECs) were fed with synthetic and real digestate (2.5 gNH4+-N L-1). Carbon felt and granular graphite were used as anodes in MEC-1 and MEC-2, respectively. As to synthetic wastewater, the optimal nitrogen load (NL) for MEC-1 and -2 was 1.25 and 0.75 gNH4+-N d-1, respectively. MEC-1 showed better performance in terms of NH4+-N removal efficiency (39 ± 2.5%) and recovery rate (up to 70 gNH4+-N m-2d-1), compared to MEC-2 (33 ± 4.7% and up to 30 gN m-2d-1, respectively). At the optimal hydraulic retention time, lower NH4+-N removal efficiencies and recovery rates were observed when real digestate was fed to MEC-1 (29 ± 6.6% and 60 ± 13 gNH4+-N m-2d-1, respectively) and MEC-2 (21 ± 7.9% and 10 ± 3.6 gNH4+-N m-2d-1, respectively), likely due to the higher complexity of the influent. The average energy requirements were 3.6-3.7 kWh kgNremoved-1, comparable with values previously reported in the literature and lower than conventional ammonia recovery processes. Results are promising and may reduce the need for costly and polluting processes for nitrogen synthesis.
Collapse
Affiliation(s)
- A Carucci
- Department of Civil-Environmental Engineering and Architecture (DICAAR), University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy E-mail: ; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Via Marengo 2, 09123, Cagliari, Italy
| | - G Erby
- National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Via Marengo 2, 09123, Cagliari, Italy
| | - G Puggioni
- Department of Civil-Environmental Engineering and Architecture (DICAAR), University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy E-mail:
| | - D Spiga
- Department of Civil-Environmental Engineering and Architecture (DICAAR), University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy E-mail:
| | - F Frugoni
- Agrofortis srl, via Monte Suello 18, 25128, Brescia, Italy
| | - S Milia
- National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
10
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
11
|
Sharma P, Talekar GV, Mutnuri S. Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Nazari S, Zinatizadeh AA, Mirghorayshi M, van Loosdrecht MC. Waste or Gold? Bioelectrochemical Resource Recovery in Source-Separated Urine. Trends Biotechnol 2020; 38:990-1006. [DOI: 10.1016/j.tibtech.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
|
13
|
Sharma P, Kumar D, Mutnuri S. Probing the degradation of pharmaceuticals in urine using MFC and studying their removal efficiency by UPLC-MS/MS. J Pharm Anal 2020; 11:320-329. [PMID: 34277120 PMCID: PMC8264381 DOI: 10.1016/j.jpha.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
Nutrient recovery from source-separated human urine has attracted interest as it is rich in nitrogen and phosphorus that can be utilized as fertilizer. However, urine also contains pharmaceuticals, steroid hormones, etc. and their removal is crucial as they have detrimental effects on the environment and human health. The current study focuses on investigating the degradation of pharmaceuticals using a double-chamber microbial fuel cell (MFC). Urine was spiked with four pharmaceuticals (trimethoprim, lamivudine, levofloxacin, and estrone) at a concentration of 2 μg/mL. The MFC was operated for 7 months in batch mode with this spiked urine as feed. The degradation efficiency of the MFC was studied, for which a selective liquid chromatography-tandem mass-spectrometric method was developed for the quantitation of compounds used in the spiking experiments and was validated with a lower limit of quantification of 0.39 ng/mL. The maximum removal rate achieved was 96% ± 2%. The degradation mechanism involved processes like sorption and anoxic biodegradation. The voltage curve obtained showed that the presence of pharmaceuticals had an initial negative impact on power generation along with increased organic content; however, after the reactor acclimatization, increased power output was achieved with maximum organics removal at 30 h of retention time. This work opens a new perspective for the anoxic biodegradation of pharmaceuticals and can be useful in future bioremediation studies. Biodegradation of the pharmaceuticals was shown in urine using MFC system. MFC experiment conducted with urine spiked with four pharmaceuticals belonging to different class. The developed LCMS method was used to quantify the rate of degradation. Maximum degradation rate of 96 ± 2% was achieved. The microbial oxidation of organics in MFC suggest that it can be a promising technology for pharmaceuticals degradation from urine.
Collapse
Affiliation(s)
- Priya Sharma
- Applied Environmental Biotechnology Laboratory, Birla Institute of Technology & Science (BITS), Pilani, 403726, Zuarinagar, India
| | - Devendra Kumar
- Central Sophisticated Instrumentation Facility, Birla Institute of Technology & Science (BITS), Pilani, 403726, Zuarinagar, India.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-602, USA
| | - Srikanth Mutnuri
- Applied Environmental Biotechnology Laboratory, Birla Institute of Technology & Science (BITS), Pilani, 403726, Zuarinagar, India
| |
Collapse
|