1
|
Liu Q, Flores-Alsina X, Ramin E, Gernaey KV. Making waves: Power-to-X for the Water Resource Recovery Facilities of the future. WATER RESEARCH 2024; 257:121691. [PMID: 38705069 DOI: 10.1016/j.watres.2024.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The wastewater industry and the energy system are undergoing significant transformations to address climate change and environmental pollution. Green hydrogen, which will be mainly obtained from renewable electricity water electrolysis (Power-to-Hydrogen, PtH), has been considered as an essential energy carrier to neutralize the fluctuations of renewable energy sources. PtH, or Power-to-X (PtX), has been allocated to multiple sectors, including industry, transport and power generation. However, considering its large potential for implementation in the wastewater sector, represented by Water Resource Recovery Facilities (WRRFs), the PtX concept has been largely overlooked in terms of planning and policymaking. This paper proposes a concept to implement PtX at WRRFs, where sourcing of water, utilization of the oxygen by-product, and PtX itself can be sustainable and diversified strategies. Potential value chains of PtX are presented and illustrated in the frame of a WWRF benchmark simulation model, highlighting the applications of oxygen from PtX through pure oxygen aeration and ozone disinfection. Opportunities and challenges are highlighted briefly, and so is the prospective outlook to the future. Ultimately, it is concluded that 'coupling PtX to WRRFs' is a promising solution, which will potentially bring sustainable opportunities for both WRRFs and the energy system. Apart from regulatory and economic challenges, the limitations in coupling PtX to WRRFs mainly come from energy efficiency concerns and the complexity of the integration of the water framework and the energy system.
Collapse
Affiliation(s)
- Qipeng Liu
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 227, Kgs. Lyngby 2800, Denmark.
| | - Xavier Flores-Alsina
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 227, Kgs. Lyngby 2800, Denmark
| | - Elham Ramin
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 227, Kgs. Lyngby 2800, Denmark
| | - Krist V Gernaey
- Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 227, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
2
|
Palmeros Parada M, Kehrein P, Xevgenos D, Asveld L, Osseweijer P. Societal values, tensions and uncertainties in resource recovery from wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115759. [PMID: 35982563 DOI: 10.1016/j.jenvman.2022.115759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The recovery of resources, including water reuse, has been presented as a solution to overcome scarcity, and improve the economic and environmental performance of water provision and treatment. However, its implementation faces non-technical challenges, including the need to collaborate with new stakeholders and face societal acceptance issues. Looking at the prominence of the circular economy in current policy developments and the challenges to resource recovery, exploring these issues is urgently needed. In this work, we reviewed a broad range of literature to identify societal values relevant to the recovery of water and other resources from wastewaters, particularly urban and industrial wastewater and desalination brines. We discuss tensions and uncertainties around these values, such as the tension between socio-economic expectations of resource recovery and potential long-term sustainability impacts, as well as uncertainties regarding safety and regulations. For addressing these tensions and uncertainties, we suggest aligning common methods in engineering and the natural sciences with Responsible Innovation approaches, such as Value Sensitive Design and Safe-by-Design. To complement Responsible Innovation, social learning with a Sustainability Transitions or Adaptive Governance perspective is suggested.
Collapse
Affiliation(s)
- Mar Palmeros Parada
- Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629HZ, Netherlands.
| | - Philipp Kehrein
- Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629HZ, Netherlands.
| | - Dimitrios Xevgenos
- Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629HZ, Netherlands.
| | - Lotte Asveld
- Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629HZ, Netherlands.
| | - Patricia Osseweijer
- Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629HZ, Netherlands.
| |
Collapse
|
3
|
Forouzanmehr F, Le QH, Solon K, Maisonnave V, Daniel O, Buffiere P, Gillot S, Volcke EIP. Plant-wide investigation of sulfur flows in a water resource recovery facility (WRRF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149530. [PMID: 34418627 DOI: 10.1016/j.scitotenv.2021.149530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Even though sulfur compounds and their transformations may strongly affect wastewater treatment processes, their importance in water resource recovery facilities (WRRF) operation remains quite unexplored, notably when it comes to full-scale and plant-wide characterization. This contribution presents a first-of-a-kind, plant-wide quantification of total sulfur mass flows for all water and sludge streams in a full-scale WRRF. Because of its important impact on (post-treatment) process operation, the gaseous emission of sulfur as hydrogen sulfide (H2S) was also included, thus enabling a comprehensive evaluation of sulfur flows. Data availability and quality were optimized by experimental design and data reconciliation, which were applied for the first time to total sulfur flows. Total sulfur flows were successfully balanced over individual process treatment units as well as the plant-wide system with only minor variation to their original values, confirming that total sulfur is a conservative quantity. The two-stage anaerobic digestion with intermediate thermal hydrolysis led to a decreased sulfur content of dewatered sludge (by 36%). Higher (gaseous) H2S emissions were observed in the second-stage digester (42% of total emission) than in the first one, suggesting an impact of thermal treatment on the production of H2S. While the majority of sulfur mass flow from the influent left the plant through the treated effluent (> 95%), the sulfur discharge through dewatered sludge and gaseous emissions are critical. The latter are indeed responsible for odour nuisance, lower biogas quality, SO2 emissions upon sludge combustion and corrosion effects.
Collapse
Affiliation(s)
- F Forouzanmehr
- Department of Green Chemistry and Technology, Ghent University, Belgium; Veolia Recherche & Innovation (VeRI), Maisons-Laffitte, France; Univ Lyon, INSA-Lyon, Laboratory of Waste Water Environment and Pollutions (DEEP) EA 7429, F-69621 Villeurbanne, France
| | - Q H Le
- Department of Green Chemistry and Technology, Ghent University, Belgium
| | - K Solon
- Department of Green Chemistry and Technology, Ghent University, Belgium
| | - V Maisonnave
- Veolia Recherche & Innovation (VeRI), Maisons-Laffitte, France
| | - O Daniel
- Veolia Recherche & Innovation (VeRI), Maisons-Laffitte, France
| | - P Buffiere
- Univ Lyon, INSA-Lyon, Laboratory of Waste Water Environment and Pollutions (DEEP) EA 7429, F-69621 Villeurbanne, France
| | - S Gillot
- INRAE, UR REVERSAAL, F-69625, Villeurbanne Cedex, France
| | - E I P Volcke
- Department of Green Chemistry and Technology, Ghent University, Belgium.
| |
Collapse
|
4
|
Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8080888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mathematical modelling of bioprocesses has a long and notable history, with eminent contributions from fields including microbiology, ecology, biophysics, chemistry, statistics, control theory and mathematical theory. This richness of ideas and breadth of concepts provide great motivation for inquisitive engineers and intrepid scientists to try their hand at modelling, and this collaboration of disciplines has also delivered significant milestones in the quality and application of models for both theoretical and practical interrogation of engineered biological systems. The focus of this review is the anaerobic digestion process, which, as a technology that has come in and out of fashion, remains a fundamental process for addressing the global climate emergency. Whether with conventional anaerobic digestion systems, biorefineries, or other anaerobic technologies, mathematical models are important tools that are used to design, monitor, control and optimise the process. Both highly structured, mechanistic models and data-driven approaches have been used extensively over half a decade, but recent advances in computational capacity, scientific understanding and diversity and quality of process data, presents an opportunity for the development of new modelling paradigms, augmentation of existing methods, or even incorporation of tools from other disciplines, to ensure that anaerobic digestion research can remain resilient and relevant in the face of emerging and future challenges.
Collapse
|
5
|
Seco A, Ruano MV, Ruiz-Martinez A, Robles A, Barat R, Serralta J, Ferrer J. Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1700-1714. [PMID: 32644962 DOI: 10.2166/wst.2020.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant-wide modelling can be considered an appropriate approach to represent the current complexity in water resource recovery facilities, reproducing all known phenomena in the different process units. Nonetheless, novel processes and new treatment schemes are still being developed and need to be fully incorporated in these models. This work presents a short chronological overview of some of the most relevant plant-wide models for wastewater treatment, as well as the authors' experience in plant-wide modelling using the general model BNRM (Biological Nutrient Removal Model), illustrating the key role of general models (also known as supermodels) in the field of wastewater treatment, both for engineering and research.
Collapse
Affiliation(s)
- A Seco
- CALAGUA Unidad Mixta UV-UPV, Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Spain E-mail:
| | - M V Ruano
- CALAGUA Unidad Mixta UV-UPV, Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Spain E-mail:
| | - A Ruiz-Martinez
- CALAGUA Unidad Mixta UV-UPV, Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Spain E-mail:
| | - A Robles
- CALAGUA Unidad Mixta UV-UPV, Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Spain E-mail:
| | - R Barat
- CALAGUA Unidad Mixta UV-UPV, Research Institute of Water and Environmental Engineering, IIAMA, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J Serralta
- CALAGUA Unidad Mixta UV-UPV, Research Institute of Water and Environmental Engineering, IIAMA, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J Ferrer
- CALAGUA Unidad Mixta UV-UPV, Research Institute of Water and Environmental Engineering, IIAMA, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Gu J, Zhang M, Liu Y. A review on mainstream deammonification of municipal wastewater: Novel dual step process. BIORESOURCE TECHNOLOGY 2020; 299:122674. [PMID: 31902640 DOI: 10.1016/j.biortech.2019.122674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/06/2023]
Abstract
The conventional biological nitrogen removal process is receiving increasing pressure partially due to its energy-negative operation. To address this challenge, various mainstream deammonification processes have been explored for energy-neutral municipal wastewater treatment, whereas these processes appear challenging to be sustainably and stably achieved in conventional process configurations. Therefore, this review aimed to provide a comprehensive analysis of the state-of-the-art of mainstream deammonification, while highlighting the major technical challenges. It appeared that recently developed novel dual step process, i.e. A-B processes, could provide a feasible engineering option for mainstream deammonification, where A-stage is designed for COD capture with the aim to enhance energy recovery, and B-stage is tailored for nutrient removal/recovery. This indeed may lead to a promising integrated mainstream deammonification process towards energy-efficient and environmentally sustainable nitrogen removal. Meanwhile, this review also offered an opinion on future municipal wastewater treatment, aiming for concurrent water reclamation and energy recovery.
Collapse
Affiliation(s)
- Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|