1
|
Zhu Q, Liu X, Xu X, Dong X, Xiang J, Fu B, Huang Y, Wang Y, Fan G, Zhang L. Mn-Co-Ce/biochar based particles electrodes for removal of COD from coking wastewater by 3D/HEFL system: Characteristics, optimization, and mechanism. ENVIRONMENTAL RESEARCH 2024; 247:118359. [PMID: 38320717 DOI: 10.1016/j.envres.2024.118359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 02/10/2024]
Abstract
In this work, the Mn, Co, Ce co-doped corn cob biochar (MCCBC) as catalytic particle electrodes in a three-dimensional heterogeneous electro-Fenton-like (3D-HEFL) system for the efficient degradation of coking wastewater was investigated. Various characterization methods such as SEM, EDS, XRD, XPS and electrochemical analysis were employed for the prepared materials. The results showed that the MCCBC particle electrodes had excellent electrochemical degradation performances of COD in coking wastewater, and the COD removal and degradation rates of the 3D/HEFL system were 85.35% and 0.0563 min-1 respectively. RSM optimized conditions revealed higher COD removal rate at 89.23% after 31.6 min of electrolysis. The efficient degradability and wide adaptability of the 3D/HEFL system were due to its beneficial coupling mechanism, including the synergistic effect between the system factors (3D and HEFL) as well as the synergistic interactions between the ROS (dominated by •OH and supplemented by O2•-) in the system. Moreover, the COD removal rate of MCCBC could still remain at 81.41% after 5 cycles with a lower ion leaching and a specific energy consumption of 11.28 kWh kg-1 COD. The superior performance of MCCBC, as catalytic particle electrodes showed a great potential for engineering applications for the advanced treatment of coking wastewater.
Collapse
Affiliation(s)
- Qiaoyun Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xueling Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaorong Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaoyu Dong
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jingjing Xiang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Benquan Fu
- R&D Center of Wuhan Iron and Steel Company, Wuhan, 430080, China
| | - Yanjun Huang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yi Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Guozhi Fan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
2
|
Chi C, Zhou X, Wang Y, Gao X, Bai J, Guo Y, Ni J. Treatment of coking wastewater using a needle coke electro-Fenton cathode: optimizing of COD, NH 4+-N, and TOC removal and characterization of pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:106-122. [PMID: 37452537 PMCID: wst_2023_172 DOI: 10.2166/wst.2023.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Coking wastewater is a typical organic refractory wastewater characterized by high chemical oxygen demand (COD), NH4+-N, and total organic carbon (TOC). Herein, coking wastewater was treated using a heterogeneous electro-Fenton (EF) system comprising a novel iron-loaded needle coke composite cathode (Fe-NCCC) and a dimensionally stable anode. The response surface methodology was used to optimize the reaction conditions. The predicted and actual COD removal rates were 92.13 and 89.96% under optimum conditions of an applied voltage of 4.92 V, an electrode spacing of 2.29 cm, and an initial pH of 3.01. The optimized removal rate of NH4+-N and TOC was 84.12 and 73.44%, respectively. The color of coking wastewater decreased from 250-fold to colorless, and the BOD5/COD increased from 0.126 to 0.34. Gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy show that macromolecular heterocyclic organic compounds decomposed into straight-chain small molecules and even completely mineralized. The energy consumption of the EF process was 23.5 RMB Yuan per cubic meter of coking wastewater. The EF system comprising the Fe-NCCC can effectively remove pollutants from coking wastewater, has low electricity consumption, and can simultaneously reduce various pollution indicators with potential applications in the treatment of high-concentration and difficult-to-degrade organic wastewater.
Collapse
Affiliation(s)
- Chen Chi
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China E-mail:
| | - Xinyu Zhou
- Ansteel Mining Engineering Corporation, Anshan 114004, China
| | - Yanqiu Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; Engineering Research Center of Advanced Coal & Coking Technology and Efficient Utilization of Coal Resources, The Education Department of Liaoning Province, Anshan 114051, China
| | - Xinyu Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Jinfeng Bai
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; Engineering Research Center of Advanced Coal & Coking Technology and Efficient Utilization of Coal Resources, The Education Department of Liaoning Province, Anshan 114051, China
| | - Yuting Guo
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Jianwen Ni
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
3
|
Hu Y, Yu F, Bai Z, Wang Y, Zhang H, Gao X, Wang Y, Li X. Preparation of Fe-loaded needle coke particle electrodes and utilisation in three-dimensional electro-Fenton oxidation of coking wastewater. CHEMOSPHERE 2022; 308:136544. [PMID: 36152828 DOI: 10.1016/j.chemosphere.2022.136544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Novel iron-loaded needle coke spherical electrodes were fabricated for the first time using the sintering method. With DSA as the anode, nickel foam as the cathode and the spherical electrodes as the particle electrodes, a three-dimensional (3D) electro-Fenton system was constructed to treat coking wastewater. Using the chemical oxygen demand (COD) removal efficiency of coking wastewater as an indicator of electrode performance, the optimal conditions for particle electrode preparation were determined by single-factor experiments as consisting of a 4:1 catalyst-to-binder ratio, Fe2+ loading for the preparation of the particle electrodes of 2.5%, a particle size of 5.5 ± 0.5 mm, and a sintering temperature of 400 °C. Response surface methodology was applied to model and optimise the 3D electro-Fenton process for treating coking wastewater. Under the optimal conditions of an electrode spacing of 5 cm, applied voltage of 11.15 V, initial pH of 2.62, and particle electrode dosing of 12.23 g L-1, the removal rates of COD, NH3-N, NO3--N, total nitrogen, colour, and UV254 were 87.5%, 100%, 72.2%, 84.8%, 95%, and 72.4%, respectively. Spectral analysis revealed that the 3D electro-Fenton system strongly degraded coking wastewater, causing decomposition of large molecules of organic compounds and residuals primarily consisting of olefins and alkanes. Because the prepared particle electrodes exhibited stable physical and chemical structure, they have great potential for engineering applications due to their resistance to water flow erosion, stable catalytic reaction activity, and reusability.
Collapse
Affiliation(s)
- Yang Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Fuzhi Yu
- Ansteel Beijing Research Institute Co., Ltd., Beijing, 102211, PR China
| | - Zhongteng Bai
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China; Shandong Province Metallurgical Engineering Co., Ltd., Jinan, 250101, PR China
| | - Yanqiu Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China.
| | - Huan Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Xinyu Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Yixian Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Xiao Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, PR China
| |
Collapse
|
4
|
Comparison of Paraquat Herbicide Removal from Aqueous Solutions using Nanoscale Zero-Valent Iron-Pumice/Diatomite Composites. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/4319660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Paraquat is the most important herbicide of the bipyridyl group. The aim of the present study was to compare the removal of paraquat herbicide from aqueous solutions using nanoscale zero-valent iron-pumice/diatomite composites. In this study, nZVI was supported with diatomite and pumice. Scanning electron microscopy (SEM) analysis, X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectrometry (FTIR), and specific surface area tests (BET) were used to evaluate the properties of nanoadsorbents. The residual concentration of paraquat in aqueous solution was detected by high-performance liquid chromatography (HPLC). Then, the effects of different variables including the pollutant concentration, contact time, temperature, adsorbents (D-nZVI and P-nZVI) dose, and pH, were investigated in a lab scale batch system. The results showed that the optimal pH for both processes was 3.74. In optimal conditions, the efficiencies of D-nZVI and P-nZVI were 92.76% and 85.28%, respectively. In addition, isotherm and adsorption kinetics studies indicated that P-nZVI follows the Langmuir and Freundlich isotherm models, and D-nZVI follows the Langmuir isotherm model, and both processes follow pseudo-second-order kinetics. The results indicated that the synthesized nanoparticles were suitable for removing paraquat from aqueous solutions. Both adsorbents were found to be very effective in removing similar compounds at ambient temperature in a short time.
Collapse
|
5
|
Jing Q, You W, Tong L, Xiao W, Kang S, Ren Z. Response surface design for removal of Cr(VI) by hydrogel-supported sulfidated nano zero-valent iron (S-nZVI@H). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1190-1205. [PMID: 34534116 DOI: 10.2166/wst.2021.312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a new sulfidated nanoscale zero-valent iron (S-nZVI) supported on hydrogel (S-nZVI@H) was successfully synthesized for the removal of chromium (Cr) (VI) from groundwater. The surface morphology, dispersion phenomenon and functional groups of novel S-nZVI@H were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Box-Behnken design (BBD) optimization technology based on response surface methodology (RSM) is applied to demonstrate the influence of the interaction of S-nZVI@H dose, initial Cr(VI) concentration, contact time, and initial pH with the Cr(VI) removal efficiency. The analysis of variance results (F = 118.73, P < 0.0001, R2 = 0.9916) show that the quadratic polynomial model is significant enough to reflect the close relationship between the experimental and predicted values. The predicted optimum removal conditions are: S-nZVI@H dose 9.46 g/L, initial Cr(VI) concentration 30 mg/L, contact time 40.7 min, and initial pH 5.27, and the S-nZVI@H dose is the key factor affecting the removal of Cr(VI). The predicted value (99.76%) of Cr (VI) removal efficiency is in good agreement with the experimental value (97.75%), which verifies the validity of the quadratic polynomial model. This demonstrates that RSM with appropriate BBD can be utilized to optimize the design of experiments for removal of Cr(VI).
Collapse
Affiliation(s)
- Qi Jing
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Wenhui You
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Le Tong
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Wenyu Xiao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Siyan Kang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Zhongyu Ren
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| |
Collapse
|
6
|
Azeez NA, Dash SS, Gummadi SN, Deepa VS. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. CHEMOSPHERE 2021; 266:129204. [PMID: 33310359 DOI: 10.1016/j.chemosphere.2020.129204] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 05/04/2023]
Abstract
The inexorable industrialization and modern agricultural practices to meet the needs of the increasing population have polluted the environment with toxic heavy metals such as Cr(VI), Cu2+, Cd2+, Pb2+, and Zn2+. Among the hazardous heavy metal(loid)s contamination in agricultural soil, water, and air, hexavalent chromium [Cr(VI)] is the most virulent carcinogen. The metallurgic industries, tanneries, paint manufacturing, petroleum refineries are among various such human activities that discharge Cr(VI) into the environment. Various methods have been employed to reduce the concentration of Cr(VI) contamination with nano and bioremediation being the recent advancement to achieve recovery at low cost and higher efficiency. Bioremediation is the process of using biological sources such as plant extracts, microorganisms, and algae to reduce the heavy metals while the nano-remediation uses nanoparticles to adsorb heavy metals. In this review, we discuss the various activities that liberate Cr(VI). We then discuss the various conventional, nano-remediation, and bioremediation methods to keep Cr(VI) concentration in check and further discuss their efficiencies. We also discuss the mechanism of nano-remediation techniques for better insight into the process.
Collapse
Affiliation(s)
- Nazeer Abdul Azeez
- Department of Biotechnology, Bannari Amman Institute of Technology, Erode, Tamil Nadu, 638401, India.
| | - Swati Sucharita Dash
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Applied and Industrial Microbiology Laboratory, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Sathyanarayana Naidu Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Applied and Industrial Microbiology Laboratory, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Vijaykumar Sudarshana Deepa
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh, 534 101, India.
| |
Collapse
|
7
|
Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv Colloid Interface Sci 2020; 282:102198. [PMID: 32579950 DOI: 10.1016/j.cis.2020.102198] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
The presence of toxic pollutants such as dyes and metal ions at higher concentrations in water is very harmful to the environment. Removal of these pollutants using diatomaceous earth or diatomite (DE) and surface-modified DE has been extensively explored due to their excellent physio-chemical properties and low cost. Therefore, naturally available DE being inexpensive, their surface modified adsorbents could be one of the potential candidates for the wastewater treatment in the future. In this context, the current review has been summarized for the removal of both pollutants i.e., dyes and metal ions by surface-modified DE using the facile adsorption process. In addition, this review is prominently focused on the various modification process of DE, their cost-effectiveness; the physio-chemical characteristics and their maximum adsorption capacity. Further, real-time scenarios of reported adsorbents were tabulated based on the cost of the process along with the adsorption capacity of these adsorbents.
Collapse
|