1
|
Li H, Di J, Dong Y, Bao S, Fu S. Enhanced reduction of sulfate by iron-carbon microelectrolysis: interaction mechanism between microelectrolysis and microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31577-31589. [PMID: 38635092 DOI: 10.1007/s11356-024-32993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO42-) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device. The performance and mechanism of removing high-concentration sulfate wastewater under different sulfate concentrations, hydraulic retention times (HRT), and chemical oxygen demand (COD)/SO42- were discussed. The results show that the iron-carbon microelectrolysis-enhanced SRB technology can remove high-concentration sulfate wastewater, and the system can still operate normally at low pH. In the high hydraulic loading stage (HRT = 12 h, COD/SO42- = 1.4), the SO42- removal rate of the R1 reactor reached 98.08%, and the ORP value was stable between - 350 and - 450 mV, providing a good ORP environment for SRB. When HRT = 12 h and influent COD/SO42- = 1.4, the R1 reactor sulfate removal rate reached 96.7%. When the influent COD/SO42- = 0.7, the sulfate removal rate was 52.9%, higher than the control group. Biological community analysis showed that the abundance of SRB in the R1 reactor was higher than that in the other three groups, indicating that the IC-ME bioreactor could promote the enrichment of SRB and improve its population competitive advantage. It can be seen that the synergistic effect between IC-ME and biology plays a vital role in the treatment of high-concentration sulfate wastewater and improves the biodegradability of sulfate. It is a promising process for treating high-concentration sulfate wastewater.
Collapse
Affiliation(s)
- Hanzhe Li
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Sihang Bao
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Saiou Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
2
|
Wang X, Zheng Y, Zong L, Zhang C, Ren X, Ding Y, Zhang C, Zhou Y. Porous biochar composite hydrogel for effective removal of low-concentration methylene blue from wastewater. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Liu H, Liu F, Zhang J, Zhou J, Bi W, Qin J, Hou Q, Ni Y, Xu S, Yang C. Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2912-2927. [PMID: 35638796 DOI: 10.2166/wst.2022.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Degradation mechanism of methyl orange (MO), a typical azo dye, with pyrite (FeS2) activated persulfate (PS) was explored. The results showed that when the initial concentration of MO was 0.1 mM, FeS2 was 1.6 g/L and PS was 1.0 mM, the removal rate of MO could reach 92.9% in 150 min, and the removal rate of total organic carbon could reach 14.1%. In addition, both pH ≤ 2 and pH ≥ 10 could have an inhibitory effect in the FeS2/PS system. Furthermore, Cl- and low concentrations of HCO-3 had little effect on the degradation of MO with FeS2/PS. However, H2PO-4 and high concentrations of HCO-3 could inhibit the degradation of MO in the system. Besides, MO in river water and tap water were not degraded in FeS2/PS system, but acidification (pH = 4) would greatly promote the degradation. In addition, the removal rate of MO with FeS2/PS could still reach about 90% after five cycles of FeS2. Furthermore, the intermediates and possible degradation pathways were speculated by LC-MS, and the degradation mechanism of MO by FeS2/PS was that the cycle of Fe(III)/Fe(II) could continuously activate persulfate to produce SO4•-. The results could provide technical support for azo dye degradation in the FeS2/PS system.
Collapse
Affiliation(s)
- Hui Liu
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Jian Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Jiaxing Zhou
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Junmei Qin
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Qingjie Hou
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Yue Ni
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| | - Chen Yang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China E-mail:
| |
Collapse
|
4
|
Chen GQ, Wu YH, Tan YJ, Chen Z, Tong X, Bai Y, Luo LW, Wang HB, Xu YQ, Zhang ZW, Ikuno N, Hu HY. Pretreatment for alleviation of RO membrane fouling in dyeing wastewater reclamation. CHEMOSPHERE 2022; 292:133471. [PMID: 34974050 DOI: 10.1016/j.chemosphere.2021.133471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Adsorption and coagulation were commonly used to alleviate reverse osmosis (RO) membrane fouling caused by dissolved organic matters (DOM), but the effects of changed composition and structure of DOM in dyeing wastewater after adsorption and coagulation on RO membrane fouling have seldom been studied. This study aimed at resolving the mechanism how the RO membrane fouling during dyeing wastewater treatment was alleviated by using adsorption and coagulation. The dyeing wastewater caused serious RO membrane fouling. Pretreatment with granular activated carbon (GAC), polyferric sulfate (PFS) and polyaluminum chloride (PACl) were conducted. It was shown that GAC could remove most of the DOM (95%) and preferred to adsorb protein, hydrophobic neutrals and fluorescent compounds. Both coagulants of PFS and PACl preferred to remove polysaccharides (the removal rate was 9-19% higher than that of DOM), high-MW compounds and these compounds with high fouling potential. Afterwards, the RO membrane fouling potential of the dyeing wastewater was tested. The GAC and PFS performed well to alleviate fouling. After GAC treatment, the decline rate of RO flux was similar to that of raw wastewater after 6-fold dilution. With pretreatment by PFS or PACl, the fouling potential of dyeing wastewater was much lower than that of raw wastewater after diluted to the same DOM content. Changes in polysaccharides content in the DOM had more effects on RO membrane fouling than that of proteins after these pretreatment. Although the DOM changed significantly after pretreatment, the fouling type was still intermediate blocking.
Collapse
Affiliation(s)
- Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China.
| | - Yu-Jun Tan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Xing Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Zi-Wei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo, 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
5
|
Research and Application of Supersaturated Dissolved Oxygen Technology Combined with Magnetization Technology in the Improvement of Water Quality: Taking the South-to-North Water Diversion Project of China as a Pilot Project. SUSTAINABILITY 2022. [DOI: 10.3390/su14052684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supersaturated dissolved oxygen and magnetization (SDOXM) technology is a composite technology that combines supersaturated dissolved oxygen with water magnetization technologies. Compared with conventional water purification technology, the advantages introduced by such technology include obvious and efficient improvement in purified water quality without adding any chemicals, removing sludge and changing the original function of the river. In this study, taking the Middle-Route (MR) of the South-to-North Water Diversion Project of China (SNWDPC) as a pilot project, the effects of the SDOXM composite process on microbial activity, phytoplankton community structure, and removal efficiency of the main nutritional indexes in the canal of the MR were evaluated. Aiming at static and flowing water bodies, this study was divided into two parts: static and dynamic experiments (two groups: a group with artificial aquatic plants and another group without artificial aquatic plants). The performance of the SDOXM system was assessed by monitoring the organic matter removal as well as the relative light unit (RLU) of ATP, changes in the community structure of phytoplankton, and the effects of artificial aquatic plants as a biofilm carrier on organic matter removal and microbial activity. During the study period, SDOXM technology was able to increase the concentration of dissolved oxygen (DO) in water and maintained the state of supersaturation for more than three days. The removal effect of organic matter from water was obvious. The community structure of phytoplankton changed from the Bacillariophyta-Cyanophyta type to the Bacillariophyta-Cyanobacteria type. Finally, the introduction of artificial aquatic plants has contributed to the improvement in water quality. Therefore, SDOXM technology can be used as a new water quality improvement technology to enhance the self-restoration ability of a river natural ecology.
Collapse
|
6
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
7
|
Wang C, Ma R, Huang Z, Liu X, Wang T, Chen K. Preparation and characterization of carboxymethylcellulose based citric acid cross-linked magnetic aerogel as an efficient dye adsorbent. Int J Biol Macromol 2021; 181:1030-1038. [PMID: 33887293 DOI: 10.1016/j.ijbiomac.2021.04.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
A low-cost, collectable, and efficient material is essential for adsorbing water pollution, such as dyes and heavy metal ions pollution. In this work, we proposed a novel strategy for the preparation of an efficient and collectable magnetic aerogel as adsorbent for dye. The magnetic aerogels were prepared from sodium carboxymethylcellulose (CMC) hydrogel using citric acid (CA) as the crosslinker, followed by vacuum freeze-drying technique to obtain aerogels. The effects of magnetic Fe3O4 nanoparticle contents on the adsorption properties of the aerogels were investigated. The results show that the as-prepared magnetic composite aerogels exhibit porous structure and display good adsorption and collectable performance for methylene blue (MB) in water with the removal rate of 97.5% in 6 h. The maximum compress strength and absorption capacity of the magnetic aerogel with 1 wt% Fe3O4 nanoparticle loading for MB is 0.13 MPa and 83.6 mg/g, respectively. Aerogels with Fe3O4 nanoparticles exhibited magnetism which enables the aerogels to easily collect. This excellent structure stability and collectability guarantees long-term integrity and floatability of the magnetic aerogels in water.
Collapse
Affiliation(s)
- Chaoming Wang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Ruiting Ma
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zheng Huang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xing Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Tingjun Wang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Ke Chen
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|