1
|
Goffin A, Varrault G, Musabimana N, Raoult A, Yilmaz M, Guérin-Rechdaoui S, Rocher V. Improving monitoring of dissolved organic matter from the wastewater treatment plant to the receiving environment: A new high-frequency in situ fluorescence sensor capable of analyzing 29 pairs of Ex/Em wavelengths. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125153. [PMID: 39305797 DOI: 10.1016/j.saa.2024.125153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/10/2024]
Abstract
A high-frequency, in situ fluorescence probe, called Fluocopée®, has been developed in order to better monitor variations in both the quality and quantity of dissolved organic matter within various aquatic environments (e.g. wastewater, receiving environments) thanks to a wide choice of 29 measured Excitation/Emission wavelength pairs. This advance pave the way to new measurement possibilities in comparison with existing probes, which are usually only able to measure 1-4 fluorophores. The qualification tests of the Fluocopée® probe indicate a high level of accuracy for the measurements of tyrosine, tryptophan and humic acids solutions. Good repeatability and reproducibility are also observed. For the first time, this tool has been deployed in an urban watershed (Bougival, Seine River, downstream of Paris) and in the settled effluent from a wastewater treatment plant (Seine aval, Achères, France). This new high-frequency in situ probe offers great application potential, including organic matter quality and quantity monitoring at drinking and wastewater treatment plants (treatment optimization) and in continental and marine waters (the fate of organic matter in biogeochemical cycles).
Collapse
Affiliation(s)
- Angélique Goffin
- LEESU, Univ Paris-Est Creteil, Ecole des Ponts, Creteil, France.
| | - Gilles Varrault
- LEESU, Univ Paris-Est Creteil, Ecole des Ponts, Creteil, France.
| | | | - Antoine Raoult
- LEESU, Univ Paris-Est Creteil, Ecole des Ponts, Creteil, France
| | - Metehan Yilmaz
- Greater Paris Sanitation Authority (SIAAP), Innovation Department, 82 Avenue Kléber, 92700 Colombes, France
| | - Sabrina Guérin-Rechdaoui
- Greater Paris Sanitation Authority (SIAAP), Innovation Department, 82 Avenue Kléber, 92700 Colombes, France
| | - Vincent Rocher
- Greater Paris Sanitation Authority (SIAAP), Innovation Department, 82 Avenue Kléber, 92700 Colombes, France
| |
Collapse
|
2
|
Marino L, Gagliano E, Santoro D, Roccaro P. Online control of UV and UV/H 2O 2 processes targeted for the removal of contaminants of emerging concern (CEC) by a fluorescence sensor. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136075. [PMID: 39413515 DOI: 10.1016/j.jhazmat.2024.136075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
This study assessed the online and real-time monitoring of contaminants of emerging concern (CEC) using a microbial/tryptophan-like fluorescence sensor in a quaternary AOP (advanced oxidation process) pilot plant installed downstream of a tertiary municipal wastewater treatment plant (WWTP). Real-time fluorescence measurements were validated with lab-scale tryptophan-like fluorescence. Changes in water quality induced by different UV or UV/H2O2 doses were detected by the fluorescence sensor allowing real-time control of processes. The removal of CEC was discussed considering their photo-susceptibility and reactivity with •OH and then classified into three groups based on their reactivity and removal efficiency (RE). Linear models of CEC removal developed using real-time fluorescence removal as a surrogate parameter resulted very accurate (overall R2≥0.90) for most of CEC. Furthermore, real-time fluorescence data were successfully used to predict i) pseudo-observed first-order degradation rate constants of CEC (R2=0.99), and ii) UV doses during both UV and UV/H2O2 processes (R2>0.90). The findings of this study demonstrated that fluorescence sensors can be employed in operational relevant environment to monitor a broad range of CEC and control UV doses during UV-AOPs. Therefore, the implementation of fluorescence sensors is expected for optimizing costs, energy consumption and efficiency of quaternary wastewater treatments.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy
| | - Erica Gagliano
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy; Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Domenico Santoro
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| |
Collapse
|
3
|
Yang X, Zhou Y, Yang X, Zhang Y, Spencer RG, Brookes JD, Jeppesen E, Zhang H, Zhou Q. Optical measurements of dissolved organic matter as proxies for COD Mn and BOD 5 in plateau lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100326. [PMID: 38089436 PMCID: PMC10711167 DOI: 10.1016/j.ese.2023.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 05/21/2024]
Abstract
The presence of organic matter in lakes profoundly impacts drinking water supplies, yet treatment processes involving coagulants and disinfectants can yield carcinogenic disinfection by-products. Traditional assessments of organic matter, such as chemical oxygen demand (CODMn) and biochemical oxygen demand (BOD5), are often time-consuming. Alternatively, optical measurements of dissolved organic matter (DOM) offer a rapid and reliable means of obtaining organic matter composition data. Here we employed DOM optical measurements in conjunction with parallel factor analysis to scrutinize CODMn and BOD5 variability. Validation was performed using an independent dataset encompassing six lakes on the Yungui Plateau from 2014 to 2016 (n = 256). Leveraging multiple linear regressions (MLRs) applied to DOM absorbance at 254 nm (a254) and fluorescence components C1-C5, we successfully traced CODMn and BOD5 variations across the entire plateau (68 lakes, n = 271, R2 > 0.8, P < 0.0001). Notably, DOM optical indices yielded superior estimates (higher R2) of CODMn and BOD5 during the rainy season compared to the dry season and demonstrated increased accuracy (R2 > 0.9) in mesotrophic lakes compared to oligotrophic and eutrophic lakes. This study underscores the utility of MLR-based DOM indices for inferring CODMn and BOD5 variability in plateau lakes and highlights the potential of integrating in situ and remote sensing platforms for water pollution early warning.
Collapse
Affiliation(s)
- Xuan Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Institute of International River and Eco-security, Yunnan University, Kunming, 650500, China
- Zhejiang College of Security Technology, Wenzhou, 325016, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoying Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Institute of International River and Eco-security, Yunnan University, Kunming, 650500, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Robert G.M. Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, 32306, United States
| | - Justin D. Brookes
- Water Research Centre, School of Biological Science, The University of Adelaide, Adelaide, 5005, Australia
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark
- Sino-Danish Centre for Education and Research, Chinese Academy of Sciences, Beijing, 100101, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, 33731, Turkey
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming, 650034, China
| |
Collapse
|
4
|
Huang X, Fu X, Zhao Z, Yin H. The telltale fluorescence fingerprints of sewer flows for interpreting the low influent concentration in wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119517. [PMID: 37952380 DOI: 10.1016/j.jenvman.2023.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Low degradability of wastewater treatment plant (WWTP) influents negatively affects its ability to effectively remove pollutants through wastewater treatment processes. Proactive assessment of urban sewer system performance is highly valued in the selection of targeted countermeasures for this occurrence. In this study, a fluorescence spectrum interpretation approach was developed to identify the causes of low biodegradability of WWTP influent by using parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI) of excitation-emission matrix spectroscopy. Statistical analysis was also used to further interpret the PARAFAC- and FRI-derived data. The urban sewer catchment served by a WWTP in Wuhan City, China, was used as the test site to demonstrate the effectiveness of this approach. The results showed that electronics manufacturing industrial wastewater and groundwater input into the urban sewer would significantly decrease the biodegradability of the WWTP influents, and these sources were characterized by much lower fluorescence peak intensities, especially for protein-like substances, including tryptophan-like T and tyrosine-like B1 and B2. The potential conversion of high freshness T into low freshness B2 within the sewer may also contribute to this undesirable scenario. The ratio of peak T to peak B2 and the ratio of the FRI fraction of region I to that of region II can be used together to determine the predominance of industrial wastewater and groundwater. T/B2 < 1.3 indicates the entry of industrial wastewater or groundwater into urban sewers, and I/II > 0.5 further confirms the input of industrial wastewater. Accordingly, the low biodegradability of the WWTP influents in our study site is mostly due to the inflow of industrial wastewater rather than groundwater infiltration into the urban sewers. Therefore, actions should be focused on the surveillance of industrial wastewater rather than widespread sewer inspection and repairs. In this way, this methodology is cost-effective in aiding targeted countermeasures to improve the urban sewer system performance.
Collapse
Affiliation(s)
- Xiaomin Huang
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China; Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan, China
| | - Xiaowei Fu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhichao Zhao
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, China; Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan, China
| | - Hailong Yin
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Nurhayati M, You Y, Park J, Lee BJ, Kang HG, Lee S. Artificial neural network implementation for dissolved organic carbon quantification using fluorescence intensity as a predictor in wastewater treatment plants. CHEMOSPHERE 2023:139032. [PMID: 37236275 DOI: 10.1016/j.chemosphere.2023.139032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Although spectroscopic methods provide a fast and cost-effective means of monitoring dissolved organic carbon (DOC) in natural and engineered water systems, the prediction accuracy of these methods is limited by the complex relationship between optical properties and DOC concentration. In this study, we developed DOC prediction models using multiple linear/log-linear regression and feedforward artificial neural network (ANN) and investigated the effectiveness of spectroscopic properties, such as fluorescence intensity and UV absorption at 254 nm (UV254), as predictors. Optimum predictors were identified based on correlation analysis to construct models using single and multiple predictors. We compared the peak-picking and parallel factor analysis (PARAFAC) methods for selecting appropriate fluorescence wavelengths. Both methods had similar prediction capability (p-values >0.05), suggesting PARAFAC was not necessary for choosing fluorescence predictors. Fluorescence peak T was identified as a more accurate predictor than UV254. Combining UV254 and multiple fluorescence peak intensities as predictors further improved the prediction capability of the models. The ANN models outperformed the linear/log-linear regression models with multiple predictors, achieving higher prediction accuracy (peak-picking: R2 = 0.8978, RMSE = 0.3105 mg/L; PARAFAC: R2 = 0.9079, RMSE = 0.2989 mg/L). These findings suggest the potential to develop a real-time DOC concentration sensor based on optical properties using an ANN for signal processing.
Collapse
Affiliation(s)
- Mita Nurhayati
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea; Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia
| | - Youngmin You
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Byung Joon Lee
- Department of Environmental and Safety Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea
| | - Ho Geun Kang
- BIN-TECH KOREA Co., Ltd., A 3S52, 158-10, Sajik-daero 361beon-gil, Sangdang-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sungyun Lee
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea; Department of Environmental and Safety Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea.
| |
Collapse
|
6
|
de Camargo ET, Spanhol FA, Slongo JS, da Silva MVR, Pazinato J, de Lima Lobo AV, Coutinho FR, Pfrimer FWD, Lindino CA, Oyamada MS, Martins LD. Low-Cost Water Quality Sensors for IoT: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094424. [PMID: 37177633 PMCID: PMC10181703 DOI: 10.3390/s23094424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In many countries, water quality monitoring is limited due to the high cost of logistics and professional equipment such as multiparametric probes. However, low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks, providing valuable water quality information to the public. To facilitate the widespread adoption of these sensors, it is crucial to identify which sensors can accurately measure key water quality parameters, their manufacturers, and their reliability in different environments. Although there is an increasing body of work utilizing low-cost water quality sensors, many questions remain unanswered. To address this issue, a systematic literature review was conducted to determine which low-cost sensors are being used for remote water quality monitoring. The results show that there are three primary vendors for the sensors used in the selected papers. Most sensors range in price from US$6.9 to US$169.00 but can cost up to US$500.00. While many papers suggest that low-cost sensors are suitable for water quality monitoring, few compare low-cost sensors to reference devices. Therefore, further research is necessary to determine the reliability and accuracy of low-cost sensors compared to professional devices.
Collapse
Affiliation(s)
- Edson Tavares de Camargo
- Federal University of Technology-Parana (UTFPR), Toledo 85902-490, Brazil
- Graduate Program in Computer Science, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil
| | - Fabio Alexandre Spanhol
- Federal University of Technology-Parana (UTFPR), Toledo 85902-490, Brazil
- Graduate Program in Computer Science, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil
| | | | | | - Jaqueline Pazinato
- Federal University of Technology-Parana (UTFPR), Toledo 85902-490, Brazil
| | - Adriana Vechai de Lima Lobo
- Sanitation Company of Paraná (SANEPAR), Curitiba 80215-900, Brazil
- Federal University of Parana (UFPR), Curitiba 80210-170, Brazil
| | | | | | | | - Marcio Seiji Oyamada
- Graduate Program in Computer Science, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil
| | | |
Collapse
|
7
|
Fox BG, Thorn RMS, Dutta TK, Bowes MJ, Read DS, Reynolds DM. A case study: The deployment of a novel in situ fluorimeter for monitoring biological contamination within the urban surface waters of Kolkata, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156848. [PMID: 35750190 DOI: 10.1016/j.scitotenv.2022.156848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The quality and health of many of our vital freshwater systems are poor. To tackle this with ever increasing pressures from anthropogenic and climatic changes, we must improve water quality monitoring and devise and implement more appropriate water quality parameters. Recent research has highlighted the potential for Peak T fluorescence (tryptophan-like fluorescence, TLF) to monitor microbial activity in aquatic systems. The VLux TPro (Chelsea Technologies Ltd., UK), an in situ real-time fluorimeter, was deployed in different urban freshwater bodies within Kolkata (West Bengal, India) during March 2019. This study is the first to apply this technology in surface waters within a densely populated urban area. Spot-sampling was also undertaken at 13 sampling locations enabling physicochemical analysis, bacterial enumeration and determination of nutrient (nitrate and phosphate) concentrations. This case study has demonstrated the ability of an in situ fluorimeter, VLux TPro, to successfully identify both biological contamination events and potential elevated microbial activity, related to nutrient loading, in complex surface freshwaters, without the need for expensive and time-consuming laboratory analysis.
Collapse
Affiliation(s)
- B G Fox
- Centre for Research in Biosciences, University of the West of England (UWE), Bristol, Frenchay Campus, Bristol BS16 1QY, UK
| | - R M S Thorn
- Centre for Research in Biosciences, University of the West of England (UWE), Bristol, Frenchay Campus, Bristol BS16 1QY, UK
| | - T K Dutta
- Department of Microbiology, Bose Institute P-1/12 C.I.T. Scheme VII-M, Centenary Campus, Kolkata 700054, India
| | - M J Bowes
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - D S Read
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - D M Reynolds
- Centre for Research in Biosciences, University of the West of England (UWE), Bristol, Frenchay Campus, Bristol BS16 1QY, UK.
| |
Collapse
|