1
|
Sarti C, Cincinelli A, Bresciani R, Rizzo A, Chelazzi D, Masi F. Microplastic removal and risk assessment framework in a constructed wetland for the treatment of combined sewer overflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175864. [PMID: 39216754 DOI: 10.1016/j.scitotenv.2024.175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Combined sewer overflows (CSOs) release a significant amount of pollutants, including microplastics (MPs), due to the discharge of untreated water into receiving water bodies. Constructed Wetlands (CWs) offer a promising strategy for CSO treatment and have recently attracted attention as a potential solution for MP mitigation. Nevertheless, limited research on MP dynamics within CSO events and MP removal performance in full-scale CW systems poses a barrier to this frontier of application. This research aims to address both these knowledge gaps, representing the first investigation of a multi-stage CSO-CW for MP removal. The study presents one year of seasonal data from the CSO-CW upstream of the WWTP in Carimate (Italy), evaluating the correlation of MP abundance with different water quality/quantity parameters and associated ecological risks. The results show a clear trend in MP abundance, which increases with rainfall intensity. The strong correlation between MP concentration, flow rate, and total suspended solids (TSS) validates the first flush phenomenon hypothesis and its impact on MP release during CSOs. Chemical characterization identifies acrylonitrile-butadiene-styrene (ABS), polyethylene (PE), and polypropylene (PP) as predominant polymers. The first vertical subsurface flow (VF) stage showed removal rates ranging from 40 % to 77 %. However, the unexpected increase in MP concentrations after the second free water surface (FWS) stage suggests the stochasticity of CSO events and the different hydraulic characteristics of the CW units have diverse effects on MP retention. These data confirm filtration as the main retention mechanism for MP within CW systems. The MP ecological risk assessment indicates a high-risk category for most of the water samples, mainly related to the frequent presence of ABS fragments. The results contribute to the current understanding of MPs released by CSOs and provide insights into the performance of different treatment units within a large-scale CSO-CW system, suggesting the requirement for further attention.
Collapse
Affiliation(s)
- Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Iridra Srl, Via La Marmora 51, 50121 Florence, Italy.
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Fabio Masi
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| |
Collapse
|
2
|
Hu Z, Sun Y, Zhou J, Sun W, Shah KJ. Microplastics in wastewater plants: A review of sources, characteristics, distribution and removal technologies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104448. [PMID: 39454549 DOI: 10.1016/j.jconhyd.2024.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Microplastics (MPs) are widespread in everyday life, and since wastewater treatment plants (WWTPs) serve as an important route for MPs to enter natural water bodies, a thorough understanding of the distribution and removal of MPs in wastewater treatment plants is of great importance. This article provides a comprehensive overview of the measured distribution of MPs and the current status of their removal in wastewater treatment plants. The main sources of MPs in wastewater treatment plants are personal care products in domestic wastewater, textile clothing and industrial wastewater made from plastics, textile factories and the friction of road tires. The MPs that entered the sewage treatment plant were predominantly in the form of fibers, fragments, granular MPs and other types of MPs. The size of MPs is divided into three categories: <0.5 mm, 0.5-1 mm and 1-5 mm. At all treatment stages in wastewater plants, 56.8-88.4 % of MPs are removed in primary treatment, but the primary sedimentation and degreasing stages remove most MPs. The efficiency of the activated sludge process for secondary treatment is inconsistent and is generally between 42.1 and 99.2 %. The coagulation, filtration and disinfection stages of tertiary treatment all have some MPs removal capacity. In addition, novel removal technologies are also described, such as modified filtration technology, membrane separation technology, electroflocculation, sol-gel and photocatalysis. These novel removal technologies can further limit the entry of microplastics into natural water bodies through sewage treatment plants and improved sewage treatment processes help reduce the risk of MPs entering the natural environment through sewage treatment plants. This article will provide reference for the distribution and removal of microplastics in various levels of WWTPs.
Collapse
Affiliation(s)
- Zhihao Hu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Wenquan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Kinjal J Shah
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Kim M, Ahn YR, Yoon S, Choi J, Kim H, Lim KS, Ha SJ, Park JA, Kim HO. Application of metal-organic frameworks for photocatalytic degradation of microplastics: Design, challenges, and scope. CHEMOSPHERE 2024; 366:143518. [PMID: 39419337 DOI: 10.1016/j.chemosphere.2024.143518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm, are pervasive pollutants challenging wastewater treatment due to their size and hydrophobicity. They infiltrate freshwater, marine, and soil environments, posing ecological threats. In marine settings, MPs ingested by organisms cause cytokine release, cellular and DNA damage, and inflammation. As MPs enter the food chain and disrupt biological processes, their degradation is crucial. While biodegradation, pyrolysis, and chemical methods have been extensively studied, the use of metal-organic frameworks (MOFs) for MP pollution mitigation is underexplored. In this study, we explored the photocatalytic degradation mechanisms of MPs by MOFs in aquatic environments. We analyzed the hydrolysis, oxidation, and adsorption processes, while focusing on the environmentally friendly and cost-effective photocatalytic approach. Additionally, we analyzed the literature on MP decomposition for various types of MOFs, providing a detailed understanding of the degradation mechanisms specific to each MOF. Furthermore, we evaluated the degradation efficiencies of different MOFs and discussed the challenges and limitations in their application. Our study highlights the need for an integrated approach that involves the application of MOFs while considering environmental factors and safety concerns to develop effective MP degradation models. This review provides a framework for developing reliable photocatalytic materials with high MP removal and degradation efficiencies, thereby promoting the use of MOFs for marine plastic pollution mitigation.
Collapse
Affiliation(s)
- Minse Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yu-Rim Ahn
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Choi
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Ouk Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Sharma A, Goel H, Sharma S, Rathore HS, Jamir I, Kumar A, Thimmappa SC, Kesari KK, Kashyap BK. Cutting edge technology for wastewater treatment using smart nanomaterials: recent trends and futuristic advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58263-58293. [PMID: 39298031 DOI: 10.1007/s11356-024-34977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Water is a vital component of our existence. Many human activities, such as improper waste disposal from households, industries, hospitals, and synthetic processes, are major contributors to the contamination of water streams. It is the responsibility of every individual to safeguard water resources and reduce pollution. Among the various available wastewater treatment (WWT) methods, smart nanomaterials stand out for their effectiveness in pollutant removal through absorption and adsorption. This paper examines the application of valuable smart nanomaterials in treating wastewater. Various nanomaterials, including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), nanoadsorbents, nanometals, nanofilters, nanocatalysts, carbon nanotubes (CNTs), nanosilver, nanotitanium dioxide, magnetic nanoparticles, nanozero-valent metallic nanoparticles, nanocomposites, nanofibers, and quantum dots, are identified as promising candidates for WWT. These smart nanomaterials efficiently eliminate toxic substances, microplastics, nanoplastics, and polythene particulates from wastewater. Additionally, the paper discusses comparative studies on the purification efficiency of nanoscience technology versus conventional methods.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, School of Basic and Applied Sciences, Career Point University, Kota, 325003, Rajasthan, India
| | - Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, 110042, Delhi, India
| | - Saurabh Sharma
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, 140307, Chandigarh, India
| | - Hanumant Singh Rathore
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, 797004, Nagaland, India
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, 797004, Nagaland, India
| | - Abhishek Kumar
- Department of Molecular Biology and Genetic Engineering, BAC Sabour, Bihar Agricultural University Sabour, Bhagalpur, 813210, Bihar, India
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150, Espoo, Finland
- University Center for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, Uttar Pradesh, India.
| |
Collapse
|
5
|
Ormaniec P. Occurrence and analysis of microplastics in municipal wastewater, Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49646-49655. [PMID: 39080172 PMCID: PMC11324700 DOI: 10.1007/s11356-024-34488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Microplastics are a growing environmental threat and wastewater treatment plants have been identified as significant conduits for these pollutants. This study addresses microplastic loading in the influent of a large urban wastewater treatment plant, presenting a detailed analysis of their prevalence and characteristics. Our findings reveal a concentration of 4.09 microplastic particles per litre in the tributary. We performed a detailed statistical comparison of the microplastic particles, categorising them by shape, size, colour, and polymer type. Using Fourier transform total reflectance infrared spectroscopy, we identified 13 different polymer types, with polyethylene terephthalate, rubber, and polyethylene predominating. The analysis showed that textile fibres, mainly from clothing, are the most prevalent form of microplastic in wastewater, followed by fragments from the breakdown of larger plastic objects and films. This research highlights the critical need for strategic interventions to mitigate microplastic pollution at municipal sources.
Collapse
Affiliation(s)
- Paulina Ormaniec
- Department of Environmental Technologies, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, Cracow, Poland.
| |
Collapse
|
6
|
Mompó-Curell R, Alonso-Molina JL, Amorós-Muñoz I, Mendoza-Roca JA, Bes-Piá MA. Characterization of HDPE microparticles in sludge aerobic digestion and their influence on the process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121704. [PMID: 38968892 DOI: 10.1016/j.jenvman.2024.121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The occurrence of microplastics (MPs) in wastewater has been studied in the last years. The high efficiency of their removal from wastewater is linked to their transfer to the sludge. In this work, the effect of high-density polyethylene (HDPE) on aerobic digestion was evaluated and these MPs were monitored, characterizing them by three different techniques. Two parallel batch digesters were monitored. AD-Control (meaning Aerobic Digester) operated as a reference, with no external HDPE particles, whereas these polymeric fragments were introduced to the second aerobic digester (AD-HDPE) using ring pulls as microplastic support. FTIR, Raman spectroscopies and fluorescence analysis of these microparticles showed some relevant results that should be highlighted. Higher fluorescence appeared after 7 days in the digester. It coincided with an increase of active volatile suspended solids (AVSS) in the AD-HDPE, which means that an increase of the microbial activity took place. Despite the presence of HDPE particles in the sludge, the digester performance was not compromised. Besides, the HDPE particles did not affect the microbial diversity (Shannon index) of the bacterial community at the end of the experiment compared to the bacterial community of the aerobic digester control tank. Based on the analysis of the relative abundances of microbial taxa, it was concluded that HDPE had selective effects on sludge microbial community, increasing the relative abundance of Bacteroridota phylum.
Collapse
Affiliation(s)
- R Mompó-Curell
- Research Institute for Industrial Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - J L Alonso-Molina
- Water and Environmental Engineering University Research Institute (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - I Amorós-Muñoz
- Water and Environmental Engineering University Research Institute (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - J A Mendoza-Roca
- Research Institute for Industrial Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| | - M A Bes-Piá
- Research Institute for Industrial Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain
| |
Collapse
|
7
|
Feng J, Li H, Lu Y, Li R, Cavaco-Paulo A, Fu J. Non-ionic surfactant PEG: Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate. Int J Biol Macromol 2024; 273:133049. [PMID: 38857727 DOI: 10.1016/j.ijbiomac.2024.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jundan Feng
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Yuzheng Lu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; Mechanical Engineering College, Tarim University, Alar, Xinjiang, China
| | - Rong Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | | | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| |
Collapse
|
8
|
Giyahchi M, Moghimi H. Acceleration a yeast-based biodegradation process of polyethylene terephthalate microplastics by Tween 20: Efficiency, by-product analysis, and metabolic pathway Prediction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124106. [PMID: 38705445 DOI: 10.1016/j.envpol.2024.124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Polyethylene terephthalate is a widely produced plastic polymer that exhibits considerable biodegradation resistance, making its derived microplastics ubiquitous environmental pollutants. In this study, a new yeast strain (Vanrija sp. SlgEBL5) was isolated and found to have lipase and esterase-positive capabilities for degrading polyethylene terephthalate microplastics. This isolate changed the microplastic surface charge from -19.3 to +31.0 mV and reduced more than 150 μm of its size in addition to reducing the intensity of the terephthalate, methylene, and ester bond functional groups of the polymer in 30 days. Tween 20 as a chemical auxiliary treatment combined with biodegradation increased the microplastic degradation rate from 10 to 16.6% and the thermal degradation rate from 85 to 89%. Releasing less potentially hazardous by-products like 1,2 diethyl-benzene despite the higher abundance of long-chain n-alkanes, including octadecane and tetracosane was also the result of the bio + chemical treatment. Altogether, the findings showed that Vanrija sp. SlgEBL5 has the potential as a biological treating agent for polyethylene terephthalate microplastics, and the simultaneous bio + chemical treatment enhanced the biodegradation rate and efficiency.
Collapse
Affiliation(s)
- Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Acarer Arat S. A review of microplastics in wastewater treatment plants in Türkiye: Characteristics, removal efficiency, mitigation strategies for microplastic pollution and future perspective. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1771-1786. [PMID: 38619902 DOI: 10.2166/wst.2024.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
The effluent of WWTPs is an important source of microplastics (MP) for the aquatic environment. In this review study, MPs in wastewater treatment plants (WWTP) in Türkiye and their removal from WWTPs are reviewed for the first time. First, MP characteristics in the influent and effluent of WWTPs in Türkiye are discussed. In the next section, the abundance of MPs in the influent and effluent of WWTPs in Türkiye and the MP removal efficiency of WWTPs in Türkiye are evaluated. Then, the results of studies on MP abundance and characteristics in Türkiye's aquatic environments are presented and suggestions are made to reduce MPs released from WWTPs into the receiving environments. Strategies for reducing MPs released to the receiving environment from WWTPs of Türkiye are summarized. In the last section, research gaps regarding MPs in WWTPs in Türkiye are identified and suggestions are made for future studies. This review paper provides a comprehensive assessment of the abundance, dominant characteristics, and removal of MPs in WWTPs in Türkiye, as well as the current status and deficiencies in Türkiye. Therefore, this review can serve as a scientific guide to improve the MP removal efficiency of WWTPs in Türkiye.
Collapse
Affiliation(s)
- Seren Acarer Arat
- Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye E-mail:
| |
Collapse
|
10
|
Zahid H, Afzal N, Arif MM, Zahid M, Nawab S, Qasim MM, Alvi FN, Nazir S, Perveen I, Abbas N, Saleem Y, Mazhar S, Nawaz S, Faridi TA, Awan HMA, Syed Q, Abidi SHI. Microorganism-mediated biodegradation for effective management and/or removal of micro-plastics from the environment: a comprehensive review. Arch Microbiol 2024; 206:198. [PMID: 38558101 DOI: 10.1007/s00203-024-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.
Collapse
Affiliation(s)
- Hassan Zahid
- Department of Public Health, University of Health Sciences, Lahore, Pakistan
| | - Nimra Afzal
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Maaz Arif
- Department of Medical Education, University of Health Sciences, Lahore, Pakistan
| | - Mahnoor Zahid
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Samia Nawab
- Government Graduate College (W), Township, Lahore, Pakistan
| | | | | | | | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan.
| | - Naaz Abbas
- Minhaj University Lahore, Lahore, Pakistan
| | - Yasar Saleem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Sania Mazhar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Shaista Nawaz
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | | | | | - Quratulain Syed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| |
Collapse
|
11
|
Talukdar A, Kundu P, Bhattacharya S, Dutta N. Microplastic contamination in wastewater: Sources, distribution, detection and remediation through physical and chemical-biological methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170254. [PMID: 38253100 DOI: 10.1016/j.scitotenv.2024.170254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Microplastics are tiny plastic particles smaller than 5 mm. that have been widely detected in the environment, including in wastewater. They originate from various sources including breakdown of larger plastic debris, release of plastic fibres from textiles, and microbeads commonly used in personal care products. In wastewater, microplastics can pass through the treatment process and enter the environment, causing harm to biodiversity by potentially entering the food chain. Additionally, microplastics can act as a vector for harmful pollutants, increasing their transport and distribution in the environment. To address this issue, there is a growing need for effective wastewater treatment methods that can effectively remove microplastics. Currently, several physical and chemical methods are available, including filtration, sedimentation, and chemical degradation. However, these methods are costly, low efficiency and generate secondary pollutants. Furthermore, lack of standardization in the measurement and reporting of microplastics in wastewater, makes it difficult to accurately assess microplastic impact on the environment. In order to effectively manage these issues, further research and development of effective and efficient methods for removing microplastics from wastewater, as well as standardization in measurement and reporting, are necessary to effectively manage these detrimental contaminants.
Collapse
Affiliation(s)
- Avishek Talukdar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | - Nalok Dutta
- Biochemical Engineering Department, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Contreras-Llin A, Diaz-Cruz MS. Microplastic removal in managed aquifer recharge using wastewater effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122967. [PMID: 38030113 DOI: 10.1016/j.envpol.2023.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental issue, with its impacts on ecosystems and human health yet to be fully understood. This study aims to investigate the presence and distribution of MPs in the soil of a managed aquifer recharge (MAR) system, built with different reactive barriers of natural materials and irrigated with the secondary effluent of a wastewater treatment plant (WWTP). MPs were extracted from reactive barrier material following an approach based on the density separation of MPs with posterior oxidant digestion, combined with visual and chemical characterisation by Fourier-Transform Infrared Spectroscopy (FTIR). The results revealed the widespread occurrence of MPs in the MAR soil samples. MPs concentration in the different barrier materials ranged from 60 to 236 n kg-1. The most dominant morphologies were fragments (60%) and fibers (17%), and the most abundant colour was white (51%), followed by transparent MPs (20%). Polypropylene (PP) was detected in all the samples with an abundance of 47%, followed by polyethylene (PE, 34%). The interplay of barrier composition significantly influences the retention of MPs, with compost (T5) and woodchips (T4) exhibiting the most notable retention rates. Remarkably, the outer layers of the reactive barriers display superior retention compared to the deeper layers. The findings of this study demonstrate the good performance of the MAR system in retaining MPs and contribute to the growing body of knowledge on MPs pollution in freshwater systems while providing insights into the dynamics of MPs transport and accumulation in soil. Such information can inform the development of effective wastewater management strategies to mitigate the impacts of these pollutants on water resources and safeguard the environment.
Collapse
Affiliation(s)
- Albert Contreras-Llin
- ENFOCHEM, Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- ENFOCHEM, Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
13
|
Ahmed SF, Islam N, Tasannum N, Mehjabin A, Momtahin A, Chowdhury AA, Almomani F, Mofijur M. Microplastic removal and management strategies for wastewater treatment plants. CHEMOSPHERE 2024; 347:140648. [PMID: 37952815 DOI: 10.1016/j.chemosphere.2023.140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Discharging microplastics into the environment with treated wastewater is becoming a major concern around the world. Wastewater treatment plants (WWTPs) release microplastics into terrestrial and aquatic habitats, mostly from textile, laundry, and cosmetic industries. Despite extensive research on microplastics in the environment, their removal, and WWTP management strategies, highlighting their environmental effects, little is known about microplastics' fate and behaviour during various treatment processes. Microplastics interact with treatment technologies differently due to their diverse physical and chemical characteristics, resulting in varying removal efficiency. Microplastics removed from WWTPs may accumulate in soil and harm terrestrial ecosystems. Few studies have examined the cost, energy use, and trade-offs of large-scale implementation of modern treatment methods for the removal of microplastics. To safeguard aquatic and terrestrial habitats from microplastics' contamination, focused and efficient management techniques must bridge these knowledge gaps. This review summarizes microplastic detection, collection, removal and management strategies. A compilation of treatment process studies on microplastics' removal efficiency and their destiny and transit paths shows recent improvement. Bioremediation, membrane bioreactor (MBR), electrocoagulation, sol-gel technique, flotation, enhanced filtering, and AOPs are evaluated for microplastic removal. The fate and behaviour of microplastics in WWTPs suggest they may be secondary suppliers of microplastics to receiving ecosystems. Innovative microplastic removal strategies and technologies such as nanoparticles, microorganism-based remediation, and tertiary treatment raise issues. These new WWTP technologies are examined for feasibility, limitations, and implementation issues. Pretreatment modifies microplastic size, adsorption potential, and surface morphology to remove microplastics from WWTPs. Membrane bioreactors (MBR) can remove 99.9% of microplastics more efficiently than other approaches. MBR systems require membrane cleaning and fouling control, which raises operational and capital costs. To reduce MPs, plastic alternatives and strict controls, including microplastic waste transformation, should be prioritized. Microplastics must be controlled through monitoring policy execution and awareness.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - Nafisa Islam
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Aanushka Mehjabin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD, 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Collage of Engineering, Qatar University, Qatar.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
14
|
Ahmad M, Lubis NMA, Usama M, Ahmad J, Al-Wabel MI, Al-Swadi HA, Rafique MI, Al-Farraj ASF. Scavenging microplastics and heavy metals from water using jujube waste-derived biochar in fixed-bed column trials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122319. [PMID: 37544401 DOI: 10.1016/j.envpol.2023.122319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.
Collapse
Affiliation(s)
- Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Nahrir M A Lubis
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Usama
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Hamed A Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Imran Rafique
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdullah S F Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Honarmandrad Z, Kaykhaii M, Gębicki J. Microplastics removal from aqueous environment by metal organic frameworks. BMC Chem 2023; 17:122. [PMID: 37735691 PMCID: PMC10514943 DOI: 10.1186/s13065-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
This paper provides an overview of recent research performed on the applications of metal-organic frameworks (MOFs) for microplastics (MPs) removal from aqueous environments. MPs pollution has become a major environmental concern due to its negative impacts on aquatic ecosystems and human health. Therefore, developing effective and sustainable methods for removing them from aqueous environments is crucial. In recent years, MOFs have emerged as a promising solution for this purpose due to their unique properties such as high surface area, renewability, chemical stability, and versatility. Moreover, their specific properties such as their pore size and chemical composition can be tailored to enhance their efficiency in removing MPs. It has been shown that MOFs can effectively adsorb MPs from aqueous media in the range of 70-99.9%. Besides some high price concerns, the main drawback of using MOFs is their powder form which can pose challenges due to their instability. This can be addressed by supporting MOFs on other substrates such as aerogels or foams. Meanwhile, there is a need for more research to investigate the long-term stability of MOFs in aqueous environments and developing efficient regeneration methods for their repeated use.
Collapse
Affiliation(s)
- Zhila Honarmandrad
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Massoud Kaykhaii
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
16
|
Cetinkaya Atesci Z, Inan H. Removal of microfiber and surfactants from household laundry washing effluents by powdered activated carbon: kinetics and isotherm studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1578-1593. [PMID: 37768756 PMCID: wst_2023_281 DOI: 10.2166/wst.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Domestic laundry wastewater discharge contributes significantly to the presence of microfiber and surfactant pollutants in aquatic ecosystems, which have detrimental and toxic effects on humans and the environment. Investigating the efficacy of powdered activated carbon (PAC) in removing micro-/nanofibers with or without surfactant from household laundry effluent is the purpose of the current research. To simulate real-world scenarios, PAC adsorption kinetics and isotherms in laundry effluents under controlled conditions were studied. These studies showed that the kinetics obeyed a pseudo-second-order process and the isotherms varied between Langmuir and Freundlich models depending on the water types. In the results of experiments using distilled water and tap water, it was observed that the adsorption capacity was higher in tap water. When the adsorption of 0.1 μm filtered synthetic garments, detergent, and tap water was compared with the adsorption of the raw sample, it was observed that the adsorption capacity of the 0.1 μm filtered version was higher. Even though this study is preliminary, the results indicate that PAC has the capacity to serve as a viable approach for mitigating micro-/nanoplastic and surfactant contamination from laundry wastewater, thereby offering valuable guidance for advancing eco-friendly laundry techniques.
Collapse
Affiliation(s)
- Zuhal Cetinkaya Atesci
- Environmental Engineering Department, Gebze Technical University, Cayırova, Kocaeli 41400, Turkey E-mail:
| | - Hatice Inan
- Environmental Engineering Department, Gebze Technical University, Cayırova, Kocaeli 41400, Turkey
| |
Collapse
|
17
|
Muthulakshmi L, Mohan S, Tatarchuk T. Microplastics in water: types, detection, and removal strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84933-84948. [PMID: 37386221 DOI: 10.1007/s11356-023-28460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Microplastics are one of the most concerning groups of contaminants that pollute most of the surroundings of the Earth. The abundance of plastic materials available in the environment moved the scientific community in defining a new historical era known as Plasticene. Regardless of their minuscule size, microplastics have posed severe threats to the life forms like animals, plants, and other species present in the ecosystem. Ingestion of microplastics could lead to harmful health effects like teratogenic and mutagenic abnormalities. The source of microplastics could be either primary or secondary in which the components of microplastics are directly released into the atmosphere and the breakdown of larger units to generate the smaller molecules. Though numerous physical and chemical techniques are reported for the removal of microplastics, their increased cost prevents the large-scale applicability of the process. Coagulation, flocculation, sedimentation, and ultrafiltration are some of the methods used for the removal of microplastics. Certain species of microalgae are known to remove microplastics by their inherent nature. One of the biological treatment strategies for microplastic removal is the activated sludge strategy that is used for the separation of microplastic. The overall microplastic removal efficiency is significantly high compared to conventional techniques. Thus, the reported biological avenues like the bio-flocculant for microplastic removal are discussed in this review article.
Collapse
Affiliation(s)
- Lakshmanan Muthulakshmi
- Biomaterials and Product Development Lab, Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Shalini Mohan
- Biomaterials and Product Development Lab, Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu, 626126, India
| | - Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Kraków, 30-387, Poland.
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
18
|
Meegoda JN, Hettiarachchi MC. A Path to a Reduction in Micro and Nanoplastics Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085555. [PMID: 37107837 PMCID: PMC10139116 DOI: 10.3390/ijerph20085555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Microplastics (MP) are plastic particles less than 5 mm in size. There are two categories of MP: primary and secondary. Primary or microscopic-sized MP are intentionally produced material. Fragmentation of large plastic debris through physical, chemical, and oxidative processes creates secondary MP, the most abundant type in the environment. Microplastic pollution has become a global environmental problem due to their abundance, poor biodegradability, toxicological properties, and negative impact on aquatic and terrestrial organisms including humans. Plastic debris enters the aquatic environment via direct dumping or uncontrolled land-based sources. While plastic debris slowly degrades into MP, wastewater and stormwater outlets discharge a large amount of MP directly into water bodies. Additionally, stormwater carries MP from sources such as tire wear, artificial turf, fertilizers, and land-applied biosolids. To protect the environment and human health, the entry of MP into the environment must be reduced or eliminated. Source control is one of the best methods available. The existing and growing abundance of MP in the environment requires the use of multiple strategies to combat pollution. These strategies include reducing the usage, public outreach to eliminate littering, reevaluation and use of new wastewater treatment and sludge disposal methods, regulations on macro and MP sources, and a wide implementation of appropriate stormwater management practices such as filtration, bioretention, and wetlands.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: ; Tel.: +1-973-596-2464
| | | |
Collapse
|
19
|
Zhang X, Feng Q, Li X, Guo L, Ma D, Cheng X, Qi Y. Microplastics in household fecal sewage treatment facilities of rural China. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130925. [PMID: 36753913 DOI: 10.1016/j.jhazmat.2023.130925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Fecal sewage (FS), composed of human feces and wastewater, potentially contains microplastics (MPs) that are prone to environmental pollution. In this study, 65 FS samples, as collected from 65 villages in 27 Chinese provinces, have been employed to investigate the characteristics of MPs in three kinds of household FS treatment facilities of rural regions, and the possibility of FS irrigation as the source of MPs in farmlands. As a result, seven physicochemical properties and microbial community of FS were detected, and pertinent social statistical data were collected to determine influencing factors of MPs. The abundance of FS-based MPs ranged from 47.16 to 143.05 particles L-1, with an average 90.38 ± 20.63 particles L-1. The FS from northern China had higher MPs abundance than that from southern and northwestern China. Average MPs abundance was cesspit (101.33) > septic tank (86.54) > biogas digester (84.11). The estimated mass of FS-based MPs entering farmlands in China was 7.8 × 103-5.6 × 104 tons a year. Chemical oxygen demand and genus Phascolarctobacterium might mainly affected MPs abundance in FS, while some other factors such as suspended substance, ambient temperature, and medical care spending were also significantly correlated with FS-based MPs abundance.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Qingge Feng
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Li Guo
- College of Design Art, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaodie Cheng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuan Qi
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
20
|
Silori R, Shrivastava V, Mazumder P, Mootapally C, Pandey A, Kumar M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120978. [PMID: 36586556 DOI: 10.1016/j.envpol.2022.120978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST), Gujarat Technological University (GTU), Ahmedabad, Gujarat, India
| | - Ashok Pandey
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
21
|
Adegoke KA, Adu FA, Oyebamiji AK, Bamisaye A, Adigun RA, Olasoji SO, Ogunjinmi OE. Microplastics toxicity, detection, and removal from water/wastewater. MARINE POLLUTION BULLETIN 2023; 187:114546. [PMID: 36640497 DOI: 10.1016/j.marpolbul.2022.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The world has witnessed massive and preeminent microplastics (MPs) pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Folasade Abimbola Adu
- Discipline of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Rasheed Adewale Adigun
- Department of Chemical Sciences, Fountain University, P. M. B. 4491, Osogbo, Osun State, Nigeria.
| | | | | |
Collapse
|
22
|
Singh S, Lundborg CS, Diwan V. Factors influencing the adsorption of antibiotics onto activated carbon in aqueous media. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2260-2269. [PMID: 36378179 DOI: 10.2166/wst.2022.334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Widespread use of antibiotics for treating human and animal ailments has increased their discharge in the environment through excreta. Moreover, unscientific disposal of unused antibiotics has further increased their presence in the environmental matrices. Thus, occurrence of used and/or discarded antibiotics in water resources is becoming a growing concern across the globe. Antibiotics and their residues in the aquatic environment are emerging contaminants which pose a serious threat to the aquatic biota as well as human beings by enhancing antibiotic resistance. Various methods are being adopted for the removal of these contaminants. Adsorption over activated carbon is one such promising method which is environmentally friendly, cost-effective, and efficient. However, there are various factors which affect the overall process efficiency, such as, properties of activated carbon/antibiotics/reaction medium etc. In this article, emphasis has been laid down on evaluating these factors, so that the experimental procedures may be optimized to obtain the highest possible removal efficiency for antibiotics in the aqueous media.
Collapse
Affiliation(s)
- Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India E-mail:
| | | | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health, Bhopal 462 030, India E-mail: ; Department of Global Public Health, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
23
|
Upadhyay R, Singh S, Kaur G. Sorption of pharmaceuticals over microplastics' surfaces: interaction mechanisms and governing factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:803. [PMID: 36121501 DOI: 10.1007/s10661-022-10475-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are one of the emerging and ubiquitous environmental pollutants. Recent studies have proven their co-existence with pharmaceuticals in the environment wherein microplastics act as a potential vector for the transportation of pharmaceuticals. Both microplastics and pharmaceuticals are charged moieties enriched with diverse functional groups resulting in the possibility of multiple interactions. Major interactions could be electrostatic, hydrogen bonding, and hydrophobic, while minor interactions may occur through π-π interaction, cationic bridging mechanism, van der Waals interaction, partition, and pore-filling mechanism. These interactions have both short- and long-term effects over pharmaceutical sorption on microplastics and possibly, ensuing toxicity. This review analyses and summarises the currently reported interactions between microplastic particles and pharmaceuticals as well as establishes the link to various factors affecting the process, viz. pH, salinity, dissolved organic matter, and physiochemical properties of microplastics.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal, 462 030, India.
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
24
|
Parashar V, Singh S, Purohit MR, Tamhankar AJ, Singh D, Kalyanasundaram M, Lundborg CS, Diwan V. Utility of constructed wetlands for treatment of hospital effluent and antibiotic resistant bacteria in resource limited settings: A case study in Ujjain, India. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10783. [PMID: 36073662 PMCID: PMC9544608 DOI: 10.1002/wer.10783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing generation of wastewater and its indiscriminate disposal is detrimental to human and animal health. Resource-limited settings often struggle for efficient wastewater treatment systems owing to lack of funds and operational difficulties. Therefore, alternative treatment systems involving low expenditure and simplistic operations are need of the hour. Constructed wetlands are one such alternative that can efficiently remove variety of pollutants from wastewater. In this study, we have assessed the utility of constructed wetlands for treatment of hospital wastewater in Ujjain. An in-house wetland system was designed and constructed using Typha latifolia and Phragmites karka. Results showed that wetland was efficient for removal of various physico-chemical and biological contaminants, namely, biochemical-oxygen-demand (77.1%), chemical-oxygen-demand (64.9%), turbidity (68.3%), suspended-solids (63%), total-phosphorus (58.7%), nitrate-nitrogen (33%), fecal coliforms (96.8%), and total coliforms (95.6%). Paired t test revealed that removal efficiencies for various parameters were significantly different among Phragmites, Typha, and control cells (p ≤ 0.05). Study also depicted that most of the bacterial isolates in inlet wastewater were selectively resistant to antibiotics (ciprofloxacin and sulphamethaxazole) as well and these isolates were also removed. Precisely, Typha was fairly suitable for antibiotic resistant bacteria removal. Thus, constructed wetlands were found to be one of the suitable options for wastewater treatment in resource-limited settings. PRACTITIONER POINTS: Constructed wetlands are one of the suitable options for wastewater treatment in resource limited settings. These systems involve wetland vegetation, soil, and associated microbial assemblages to improve the water quality. Typha and Phragmites were found to be efficient for treating the hospital wastewater. Experiments showed that antibiotic resistant bacteria may also be removed through constructed wetland systems. Easy operation, cost effectiveness, and efficiency are important attributes.
Collapse
Affiliation(s)
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil)ICMR – National Institute for Research in Environmental HealthBhopalIndia
| | - Manju R. Purohit
- R.D. Gardi Medical CollegeUjjainIndia
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| | - Ashok J. Tamhankar
- R.D. Gardi Medical CollegeUjjainIndia
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| | | | | | | | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil)ICMR – National Institute for Research in Environmental HealthBhopalIndia
- Department of Global Public HealthKarolinska InstitutetStockholmSweden
| |
Collapse
|
25
|
Zhu N, Yan Q, He Y, Wang X, Wei Z, Liang D, Yue H, Yun Y, Li G, Sang N. Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128756. [PMID: 35358818 DOI: 10.1016/j.jhazmat.2022.128756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastic has become a prominent threat to the aquatic ecosystem, and the cost-effective technologies for controlling that are still insufficient. The aim of this study is to use contaminated corncobs collected in mining area to prepare functional mesoporous biochar (MBC) and to investigate its ability to remove polystyrene nanoplastics (PSNPs) from water. The adsorption of PSNPs by MBC could be better described by the Sips isotherm and followed the second-order kinetics, with the theoretical maximum adsorption capacity of MBC for PSNPs was 56.02 mg·g-1. Then the PSNPs adsorbed on MBC could be hydrothermally degraded and the biochar could be simultaneously regenerated. The ability was affected by various factors, including oxygen-containing functional groups, metallic components, superoxide radicals and holes. The degradation products were dominated as low-molecule-weight oligomers and the main possible pathways involved scission, hydrolysis and radical reaction. The findings highlight the great potential of biochar prepared using contaminated biowaste in mining area to remove the nanoplastic pollutants in the aqueous environment.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Qian Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Yupeng He
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Xingyang Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Zhina Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Dong Liang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
26
|
Šaravanja A, Pušić T, Dekanić T. Microplastics in Wastewater by Washing Polyester Fabrics. MATERIALS 2022; 15:ma15072683. [PMID: 35408015 PMCID: PMC9000408 DOI: 10.3390/ma15072683] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Microplastics have become one of the most serious environmental hazards today, raising fears that concentrations will continue to rise even further in the near future. Micro/nanoparticles are formed when plastic breaks down into tiny fragments due to mechanical or photochemical processes. Microplastics are everywhere, and they have a strong tendency to interact with the ecosystem, putting biogenic fauna and flora at risk. Polyester (PET) and polyamide (PA) are two of the most important synthetic fibres, accounting for about 60% of the total world fibre production. Synthetic fabrics are now widely used for clothing, carpets, and a variety of other products. During the manufacturing or cleaning process, synthetic textiles have the potential to release microplastics into the environment. The focus of this paper is to explore the main potential sources of microplastic pollution in the environment, providing an overview of washable polyester materials.
Collapse
|