1
|
Zhang Q, Chen S, Chen H, Hu Y, Lin Q. A novel oxidized hierarchical porous carbon with vesicule-like ultrathin graphitic walls for efficient removal of anionic and cationic dyes. ENVIRONMENTAL RESEARCH 2024; 267:120702. [PMID: 39732422 DOI: 10.1016/j.envres.2024.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m2 g-1 with a high pore volume, but also has abundant oxygen-containing functional groups. These unique structural features endow the OHPC2 with high adsorption capacities for CR (2729.5 mg g-1) and MG (1697.3 mg g-1) removal. The adsorption processes of CR and MG are in accordance with the Langmuir isotherm and Quasi-second-order kinetic models. The thermodynamic studies illustrate that the adsorption processes were thermodynamically feasible and spontaneous. Various characterization analysis explained that the adsorption mechanism may involve pore-filling effect, π-π conjugation, hydrogen bonding, and electrostatic attraction. Moreover, the OHPC2 exhibits good cycling stability and is identified as a desirable adsorbent for actual wastewater treatment.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Shunda Chen
- College of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Haobin Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yixiao Hu
- College of Advanced Manufacturing, Fuzhou University, Jinjiang, 362251, PR China
| | - Qilang Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
2
|
Kumar V, Malyan SK, Apollon W, Verma P. Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach. RENEWABLE ENERGY 2024; 228:120566. [DOI: 10.1016/j.renene.2024.120566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Wang X, Liu B, Liu Z, Li J, Lu R, Gao H, Pan C, Zhou W. Promising adsorbent for dye detoxification: Exploring the potential of chitosan sodium carboxymethylcellulose silk fibroin aerogel. Int J Biol Macromol 2024; 260:129127. [PMID: 38219947 DOI: 10.1016/j.ijbiomac.2023.129127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
The main goal of this study is to create a CS-CMC-SF aerogel consisting of chitosan sodium carboxymethylcellulose and silk fibroin. The aerogel is designed to remove types of dyes from water while also being environmentally friendly. This innovative adsorbent has been optimized for extracting both cationic and anionic dyes from solutions. It incorporates chitosan sodium carboxymethylcellulose and silk filament fibers to enhance its strength. Experimental data illustrates that the CS-CMC-SF aerogel possesses remarkable adsorption capabilities - 5461.77 mg/g for Congo Red (CR), 2392.83 mg/g for Malachite Green (MG), and 1262.20 mg/g for Crystal Violet (CV). A kinetic study aligns with the pseudo-second-order kinetic model suggesting predominant chemisorption phenomena occur during adsorption process. Isotherm analysis further identifies multilayered adsorption occurring on irregularly shaped surfaces of the aerogel while thermodynamic assessments validate exothermic and spontaneous characteristics inherent in its absorption mechanism. Several analytical methods such as SEM, FT-IR, XRD, and XPS were employed to examine physicochemical attributes tied to this unique material design conceptually; identifying mechanisms including pore filling, π-π interactions, ion exchange activity, electrostatic connections along with hydrogen bonding inducing overall superior performance output. Furthermore substantial soil biodegradability alongside compostable features associated with our proposed CS-CMC-SF aerogels established it's potential suitability within applications demanding sustainable options thereby validating its underlying ecological credibility.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Binbin Liu
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Zhili Liu
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Jing Li
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Runhua Lu
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Haixiang Gao
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Canping Pan
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China.
| |
Collapse
|
4
|
Yang IH, Szabó L, Sasaki M, Uto K, Henzie J, Lin FH, Samitsu S, Ebara M. Biobased chitosan-derived self-nitrogen-doped porous carbon nanofibers containing nitrogen-doped zeolites for efficient removal of uremic toxins during hemodialysis. Int J Biol Macromol 2023; 253:126880. [PMID: 37709226 DOI: 10.1016/j.ijbiomac.2023.126880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Highly efficient adsorbents are needed to remove uremic toxins and reduce the economic and societal burden of the current dialysis treatments in resource-limited environments. In this study, nanostructured porous carbon nanofibers with nitrogen-doped zeolites (NZ-PCNF) were prepared, by electrospinning zeolites with chitosan-poly(ethylene oxide) blends, followed by a one-step carbonization process, without further activation steps or aggressive chemical additives for N-doping. The results showed that N-zeolites were successfully integrated into an ultrafine carbon nanofiber network, with a uniform nanofiber diameter of approximately 25 nm, hierarchical porous structure (micro- and mesopores), and high specific surface area (639.29 m2/g), facilitating uremic toxin diffusion and adsorption. The self-N-doped structure in the NZ-PCNF removed more creatinine (∼1.8 times) than the porous carbon nanofibers when using the same weight of precursor materials. Cytotoxicity and hemolysis tests were performed to verify the safety of NZ-PCNF. This study provides a novel strategy for transforming chitosan-based materials into state-of-the-art porous carbon nanofiber/zeolite self-N-doped composites, affording an efficient bioderived adsorbent for the removal of uremic toxins in patients with chronic kidney disease.
Collapse
Affiliation(s)
- I-Hsuan Yang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei 10672, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - László Szabó
- International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Makoto Sasaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei 10672, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Sadaki Samitsu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1 Tennodai, Tsukuba 305-8577, Japan; Graduate School of Industrial Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Cheng C, Shi Q, Zhu W, Zhang Y, Su W, Lu Z, Yan J, Chen K, Wang Q, Li J. Microwave-Assisted Synthesis of MoS 2/BiVO 4 Heterojunction for Photocatalytic Degradation of Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091522. [PMID: 37177067 PMCID: PMC10180445 DOI: 10.3390/nano13091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Compared with traditional hydrothermal synthesis, microwave-assisted synthesis has the advantages of being faster and more energy efficient. In this work, the MoS2/BiVO4 heterojunction photocatalyst was synthesized by the microwave-assisted hydrothermal method within 30 min. The morphology, structure and chemical composition were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and high-resolution transmission electron microscopy (HRTEM). The results of characterizations demonstrated that the synthesized MoS2/BiVO4 heterojunction was a spherical structure with dimensions in the nanorange. In addition, the photocatalytic activity of the samples was investigated by degrading tetracycline hydrochloride (TC) under visible light irradiation. Results indicated that the MoS2/BiVO4 heterojunction significantly improved the photocatalytic performance compared with BiVO4 and MoS2, in which the degradation rate of TC (5 mg L-1) by compound where the mass ratio of MoS2/BiVO4 was 5 wt% (MB5) was 93.7% in 90 min, which was 2.36 times of BiVO4. The active species capture experiments indicated that •OH, •O2- and h+ active species play a major role in the degradation of TC. The degradation mechanism and pathway of the photocatalysts were proposed through the analysis of the band structure and element valence state. Therefore, microwave technology provided a quick and efficient way to prepare MoS2/BiVO4 heterojunction photocatalytic efficiently.
Collapse
Affiliation(s)
- Cixin Cheng
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Qin Shi
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530006, China
| | - Weiwei Zhu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Yuheng Zhang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wanyi Su
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Zizheng Lu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kao Chen
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Qi Wang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|