1
|
Lee YHG, Cerf NT, Shalaby N, Montes MR, Clarke RJ. Bioinformatic Study of Possible Acute Regulation of Acid Secretion in the Stomach. J Membr Biol 2024; 257:79-89. [PMID: 38436710 PMCID: PMC11006737 DOI: 10.1007/s00232-024-00310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.
Collapse
Affiliation(s)
- Yan Hay Grace Lee
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicole T Cerf
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicholas Shalaby
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mónica R Montes
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Lev B, Chennath M, Cranfield CG, Cornelius F, Allen TW, Clarke RJ. Involvement of the alpha-subunit N-terminus in the mechanism of the Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119539. [PMID: 37479188 DOI: 10.1016/j.bbamcr.2023.119539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have shown that cytoplasmic K+ release and the associated E2 → E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m-2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m-2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m-2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.
Collapse
Affiliation(s)
- B Lev
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - M Chennath
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - C G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, C, Denmark
| | - T W Allen
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Clarke R, Hossain K, Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183382. [DOI: 10.1016/j.bbamem.2020.183382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
4
|
Garcia A, Lev B, Hossain KR, Gorman A, Diaz D, Pham THN, Cornelius F, Allen TW, Clarke RJ. Cholesterol depletion inhibits Na +,K +-ATPase activity in a near-native membrane environment. J Biol Chem 2019; 294:5956-5969. [PMID: 30770471 PMCID: PMC6463725 DOI: 10.1074/jbc.ra118.006223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Cholesterol's effects on Na+,K+-ATPase reconstituted in phospholipid vesicles have been extensively studied. However, previous studies have reported both cholesterol-mediated stimulation and inhibition of Na+,K+-ATPase activity. Here, using partial reaction kinetics determined via stopped-flow experiments, we studied cholesterol's effect on Na+,K+-ATPase in a near-native environment in which purified membrane fragments were depleted of cholesterol with methyl-β-cyclodextrin (mβCD). The mβCD-treated Na+,K+-ATPase had significantly reduced overall activity and exhibited decreased observed rate constants for ATP phosphorylation (ENa3+ → E2P, i.e. phosphorylation by ATP and Na+ occlusion from the cytoplasm) and K+ deocclusion with subsequent intracellular Na+ binding (E2K2+ → E1Na3+). However, cholesterol depletion did not affect the observed rate constant for K+ occlusion by phosphorylated Na+,K+-ATPase on the extracellular face and subsequent dephosphorylation (E2P → E2K2+). Thus, partial reactions involving cation binding and release at the protein's intracellular side were most dependent on cholesterol. Fluorescence measurements with the probe eosin indicated that cholesterol depletion stabilizes the unphosphorylated E2 state relative to E1, and the cholesterol depletion-induced slowing of ATP phosphorylation kinetics was consistent with partial conversion of Na+,K+-ATPase into the E2 state, requiring a slow E2 → E1 transition before the phosphorylation. Molecular dynamics simulations of Na+,K+-ATPase in membranes with 40 mol % cholesterol revealed cholesterol interaction sites that differ markedly among protein conformations. They further indicated state-dependent effects on membrane shape, with the E2 state being likely disfavored in cholesterol-rich bilayers relative to the E1P state because of a greater hydrophobic mismatch. In summary, cholesterol extraction from membranes significantly decreases Na+,K+-ATPase steady-state activity.
Collapse
Affiliation(s)
- Alvaro Garcia
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Bogdan Lev
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Khondker R Hossain
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Amy Gorman
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; the Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Dil Diaz
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- the Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Toby W Allen
- the School of Science, RMIT University, Melbourne, VIC 3001, Australia; the Department of Chemistry, University of California, Davis, California 95616
| | - Ronald J Clarke
- From the School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Diaz D, Clarke RJ. Evolutionary Analysis of the Lysine-Rich N-terminal Cytoplasmic Domains of the Gastric H +,K +-ATPase and the Na +,K +-ATPase. J Membr Biol 2018; 251:653-666. [PMID: 30056551 DOI: 10.1007/s00232-018-0043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The catalytic α-subunits of both the Na+,K+-ATPase and the gastric H+,K+-ATPase possess lysine-rich N-termini which project into the cytoplasm. Due to conflicting experimental results, it is currently unclear whether the N-termini play a role in ion pump function or regulation, and, if they do, by what mechanism. Comparison of the lysine frequencies of the N-termini of both proteins with those of all of their extramembrane domains showed that the N-terminal lysine frequencies are far higher than one would expect simply from exposure to the aqueous solvent. The lysine frequency was found to vary significantly between different vertebrate classes, but this is due predominantly to a change in N-terminal length. As evidenced by a comparison between fish and mammals, an evolutionary trend towards an increase of the length of the N-terminus of the H+,K+-ATPase on going from an ancestral fish to mammals could be identified. This evolutionary trend supports the hypothesis that the N-terminus is important in ion pump function or regulation. In placental mammals, one of the lysines is replaced by serine (Ser-27), which is a target for protein kinase C. In most other animal species, a lysine occupies this position and hence no protein kinase C target is present. Interaction with protein kinase C is thus not the primary role of the lysine-rich N-terminus. The disordered structure of the N-terminus may, via increased flexibility, facilitate interaction with another binding partner, e.g. the surrounding membrane, or help to stabilise particular enzyme conformations via the increased entropy it produces.
Collapse
Affiliation(s)
- Dil Diaz
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia. .,The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Asano S, Morii M, Takeguchi N. Molecular and Cellular Regulation of the Gastric Proton Pump. Biol Pharm Bull 2004; 27:1-12. [PMID: 14743830 DOI: 10.1248/bpb.27.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gastric H+, K+-ATPase is a proton pump that is responsible for gastric acid secretion and that actively transports protons and K+ ions in opposite directions to generate in excess of a million-fold gradient across the membrane under physiological conditions. This pump is also a target molecule of proton pump inhibitors which are used for the clinical treatment of hyperacidity. In this review, we wish to summarize the molecular regulation of this pump based on mutational studies, particularly those used for the identification of binding sites for cations and specific inhibitors. Recent reports by Toyoshima et al (2000, 2002) presented precise three-dimensional (3-D) structures of the sarcoplasmic reticulum (SR) Ca2+-ATPase, which belongs to the same family as the gastric H+, K+-ATPase. We have studied the structure-function relationships for the gastric H+, K+-ATPase using 3-D structures constructed by homology modeling of the related SR Ca2+-ATPase, which was used as a template molecule. We also discuss in this review, the regulation of cell surface expression and synthesis control of the gastric proton pump.
Collapse
Affiliation(s)
- Shinji Asano
- Life Scientific Research Center, Toyama Medican and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|