1
|
G H, Patil A, Mg H, Moqbel Redhwan MA, Guha S. "Development, optimization, and characterization of Eudragit-based nanoparticles for Dasatinib delivery". JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-23. [PMID: 39560680 DOI: 10.1080/09205063.2024.2427489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
This study focused on developing and evaluating dasatinib-loaded nanoparticles (DST-NPs) using Eudragit L100 as a polymer matrix for enhanced breast cancer treatment. The optimized formulation exhibited a particle size of 202.1 ± 5.7 nm, a zeta potential of -18 ± 1.01 mV, and an entrapment efficiency of 93.11 ± 0.2%. In-vitro release studies demonstrated sustained drug release from DST-NPs, following Fickian diffusion. Pharmacokinetic studies in rats revealed higher Cmax and AUC0-t for DST-NPs compared to pure DST, indicating improved bioavailability. Tissue distribution studies showed enhanced targeting of DST-NPs, with higher concentrations in the liver and spleen. In vivo efficacy in a DMBA-induced mammary carcinoma model demonstrated that DST-NPs significantly reduced tumor volume, maintained stable body weight, and improved survival rates compared to pure DST. Hematologic analysis indicated a favorable blood profile with DST-NPs, and histopathological examinations confirmed the restoration of normal mammary gland and liver architecture. MTT assays showed higher cytotoxicity of DST-NPs against MCF-7, MDA-MB231, and 4T1 cell lines, with lower IC50 values than pure DST. Stability studies indicated that DST-NPs maintained their properties over six months at various storage conditions. These findings highlight the potential of DST-NPs as an effective nanocarrier system for cancer therapy.
Collapse
Affiliation(s)
- Hemanth G
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| | - Hariprasad Mg
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
| | | | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
| |
Collapse
|
2
|
Ouyang D, Ye N, Yang K, Wang Y, Hu L, Chao S, Toner M, Li Y. Precision Isolation of Circulating Leukemia Cells in Chronic Myelogenous Leukemia Patients Using a Novel Microfluidic Device and Its Clinical Applications. Cancers (Basel) 2023; 15:5696. [PMID: 38067399 PMCID: PMC10705219 DOI: 10.3390/cancers15235696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024] Open
Abstract
Chronic Myelogenous Leukemia (CML) is a prevalent hematologic malignancy characterized by the malignant transformation of myeloid cells and their proliferation in the peripheral blood. The management of CML poses significant challenges, particularly in detecting and eradicating minimal residual disease, which is crucial for preventing relapse and improving survival outcomes. Traditional minimal residual disease detection methods, such as bone marrow aspiration, are invasive and have limitations which include the potential for sampling errors and false negatives. This study introduces a novel label-free microfluidic chip designed for the segregation and recovery of circulating leukemia cells, offering a non-invasive liquid biopsy approach with potential applications in precision medicine. Over July 2021 to October 2023, we recruited 56 CML patients across various disease stages and collected blood samples for analysis using our microfluidic device. The device demonstrated high efficacy in isolating circulating leukemia cells, with an optimal capture efficiency of 78% at a sample flow rate of 3 mL/h. Our results indicate that the microfluidic device can efficiently segregate and quantify circulating leukemia cells, providing a detailed understanding of CML progression and treatment response. The significant reduction in circulating leukemia cell counts in patients in complete remission highlights the device's potential in monitoring treatment efficacy. Furthermore, the device's sensitivity in detecting minimal residual disease could offer a more reliable prognostic tool for therapeutic decision-making in CML management.
Collapse
Affiliation(s)
- Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Ningxin Ye
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kun Yang
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Yiyang Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Lina Hu
- Department of Hematology, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Shuen Chao
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Yonghua Li
- Department of Hematology, PLA General Hospital of Southern Theater Command, Guangzhou 510010, China
| |
Collapse
|