1
|
Abdelrahman AM, Ali BH, Ali H, Manoj P, Al-Suleimani Y. The effect of diminazene, an angiotensin-converting enzyme 2 activator, on adenine-induced chronic kidney disease in rats. Fundam Clin Pharmacol 2023; 37:235-244. [PMID: 36300543 DOI: 10.1111/fcp.12845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
The present study investigated the effect of diminazene, lisinopril, or valsartan on adenine-induced chronic kidney disease (CKD) in rats. The animals were divided into five groups (n = 6). The first and second groups received normal diet and adenine in the feed at a dose of 0.25% w/w for 35 days, respectively. The third, fourth, and fifth groups were treated as the second group but also received diminazene (15 mg/kg/day), lisinopril (10 mg/kg/day), and valsartan (30 mg/kg/day), respectively, for 35 days. Adenine significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), calcium, phosphorus, and uric acid. In addition, adenine increased urinary albumin/creatinine ratio and N-Acetyl-β-D-glucosaminidase (NAG)/creatinine ratio and reduced creatinine clearance. Adenine also significantly increased the plasma concentrations of inflammatory cytokines (plasma tumor necrosis factor-alpha [TNF-α] and interleukin-1beta [IL-1β]) and significantly reduced antioxidant indices (catalase, glutathione reductase [GR], and superoxide dismutase [SOD]). Histopathologically, renal tissue from adenine-treated rats showed necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. All drugs ameliorated adenine-induced biochemical and histopathological changes. The protective effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Our results show that administration of diminazene, lisinopril, or valsartan had a comparable effect on the reversal of the biochemical and histopathological indices of adenine-induced CKD in rats.
Collapse
Affiliation(s)
- Aly M Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| | - Yousuf Al-Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khod, Oman
| |
Collapse
|
2
|
Dos Anjos AA, de Paiva IT, Simões Lima GL, da Silva Filha R, Fróes BPE, Brant Pinheiro SV, Silva ACSE. Nephrotic Syndrome and Renin-angiotensin System: Pathophysiological Role and Therapeutic Potential. Curr Mol Pharmacol 2023; 16:465-474. [PMID: 35713131 DOI: 10.2174/1874467215666220616152312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
Idiopathic Nephrotic Syndrome (INS) is the most frequent etiology of glomerulopathy in pediatric patients and one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in this population. In this review, we aimed to summarize evidence on the pathophysiological role and therapeutic potential of the Renin-Angiotensin System (RAS) molecules for the control of proteinuria and for delaying the onset of CKD in patients with INS. This is a narrative review in which the databases PubMed, Web of Science, and Sci- ELO were searched for articles about INS and RAS. We selected articles that evaluated the pathophysiological role of RAS and the effects of the alternative RAS axis as a potential therapy for INS. Several studies using rodent models of nephropathies showed that the treatment with activators of the Angiotensin-Converting Enzyme 2 (ACE2) and with Mas receptor agonists reduces proteinuria and improves kidney tissue damage. Another recent paper showed that the reduction of urinary ACE2 levels in children with INS correlates with proteinuria and higher concentrations of inflammatory cytokines, although data with pediatric patients are still limited. The molecules of the alternative RAS axis comprise a wide spectrum, not yet fully explored, of potential pharmacological targets for kidney diseases. The effects of ACE2 activators and receptor Mas agonists show promising results that can be useful for nephropathies including INS.
Collapse
Affiliation(s)
- Alessandra Aguiar Dos Anjos
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isadora Tucci de Paiva
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Giovanna Letícia Simões Lima
- Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta da Silva Filha
- Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Brunna Pinto E Fróes
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Veloso Brant Pinheiro
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Simões E Silva
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Angiotensin-Converting Enzyme 2 (ACE2) in the Context of Respiratory Diseases and Its Importance in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Pharmaceuticals (Basel) 2021; 14:ph14080805. [PMID: 34451902 PMCID: PMC8398530 DOI: 10.3390/ph14080805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-Converting Enzyme 2 (ACE2) is an 805 amino acid protein encoded by the ACE2 gene expressed in various human cells, especially in those located in the epithelia. The primary function of ACE2 is to produce angiotensin (1–7) from angiotensin II (Ang II). The current research has described the importance of ACE2 and Ang (1–7) in alternative routes of the renin-angiotensin system (RAS) that promote the downregulation of fibrosis, inflammation, and oxidative stress processes in a great variety of diseases, such as hypertension, acute lung injury, liver cirrhosis, and kidney abnormalities. Investigations into the recent outbreak of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have revealed the importance of ACE2 during infection and its role in recognizing viral binding proteins through interactions with specific amino acids of this enzyme. Additionally, the ACE2 expression in several organs has allowed us to understand the clinical picture related to the infection caused by SARS-CoV-2. This review aims to provide context for the functions and importance of ACE2 with regards to SARS-CoV-2 in the general clinical aspect and its impact on other diseases, especially respiratory diseases.
Collapse
|
4
|
Gu WT, Zhou F, Xie WQ, Wang S, Yao H, Liu YT, Gao L, Wu ZB. A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors. Endocrine 2021; 72:340-348. [PMID: 33786714 PMCID: PMC8009460 DOI: 10.1007/s12020-021-02697-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Angiotensin-converting enzyme 2 (ACE2) is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The effects of SARS-CoV-2 on normal pituitary glands function or pituitary neuroendocrine tumors (PitNETs) have not yet been elucidated. Thus, the present study aimed to investigate the potential risks of SARS-CoV-2 infection on the impairment of pituitary glands and the development of PitNETs. METHODS PitNETs tissues were obtained from 114 patients, and normal pituitary gland tissues were obtained from the autopsy. The mRNA levels of ACE2 and angiotensin II receptor type 1 (AGTR1) were examined by quantitative real-time PCR. Immunohistochemical staining was performed for ACE2 in 69 PitNETs and 3 normal pituitary glands. The primary tumor cells and pituitary cell lines (MMQ, GH3 and AtT-20/D16v-F2) were treated with diminazene aceturate (DIZE), an ACE2 agonist, with various dose regimens. The pituitary hormones between 43 patients with SARS-CoV-2 infection were compared with 45 healthy controls. RESULTS Pituitary glands and the majority of PitNET tissues showed low/negative ACE2 expression at both the mRNA and protein levels, while AGTR1 showed high expression in normal pituitary and corticotroph adenomas. ACE2 agonist increased the secretion of ACTH in AtT-20/D16v-F2 cells through downregulating AGTR1. The level of serum adrenocorticotropic hormone (ACTH) was significantly increased in COVID-19 patients compared to normal controls (p < 0.001), but was dramatically decreased in critical cases compared to non-critical patients (p = 0.003). CONCLUSIONS This study revealed a potential impact of SARS-CoV-2 infection on corticotroph cells and adenomas.
Collapse
Affiliation(s)
- Wei Ting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Fen Zhou
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Wan Qun Xie
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yan Ting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
5
|
ACE2 activator diminazene aceturate exerts renoprotective effects in gentamicin-induced acute renal injury in rats. Clin Sci (Lond) 2021; 134:3093-3106. [PMID: 33206153 DOI: 10.1042/cs20201022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Acute Kidney Injury (AKI) comprises a rapidly developed renal failure and is associated with high mortality rates. The Renin-Angiotensin System (RAS) plays a pivotal role in AKI, as the over-active RAS axis exerts major deleterious effects in disease progression. In this sense, the conversion of Angiotensin II (Ang II) into Angiotensin-(1-7) (Ang-(1-7)) by the Angiotensin-converting enzyme 2 (ACE2) is of utmost importance to prevent worse clinical outcomes. Previous studies reported the beneficial effects of oral diminazene aceturate (DIZE) administration, an ACE2 activator, in renal diseases models. In the present study, we aimed to evaluate the therapeutic effects of DIZE administration in experimental AKI induced by gentamicin (GM) in rats. Our findings showed that treatment with DIZE improved renal function and tissue damage by increasing Ang-(1-7) and ACE2 activity, and reducing TNF-α. These results corroborate with a raising potential of ACE2 activation as a strategy for treating AKI.
Collapse
|
6
|
Qaradakhi T, Gadanec LK, McSweeney KR, Abraham JR, Apostolopoulos V, Zulli A. The Anti-Inflammatory Effect of Taurine on Cardiovascular Disease. Nutrients 2020; 12:E2847. [PMID: 32957558 PMCID: PMC7551180 DOI: 10.3390/nu12092847] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Taurine is a non-protein amino acid that is expressed in the majority of animal tissues. With its unique sulfonic acid makeup, taurine influences cellular functions, including osmoregulation, antioxidation, ion movement modulation, and conjugation of bile acids. Taurine exerts anti-inflammatory effects that improve diabetes and has shown benefits to the cardiovascular system, possibly by inhibition of the renin angiotensin system. The beneficial effects of taurine are reviewed.
Collapse
Affiliation(s)
- Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (L.K.G.); (K.R.M.); (J.R.A.); (V.A.); (A.Z.)
| | | | | | | | | | | |
Collapse
|
7
|
Medina D, Arnold AC. Angiotensin-(1-7): Translational Avenues in Cardiovascular Control. Am J Hypertens 2019; 32:1133-1142. [PMID: 31602467 DOI: 10.1093/ajh/hpz146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/06/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research and numerous treatment approaches, hypertension and cardiovascular disease remain leading global public health problems. A major contributor to regulation of blood pressure, and the development of hypertension, is the renin-angiotensin system. Of particular concern, uncontrolled activation of angiotensin II contributes to hypertension and associated cardiovascular risk, with antihypertensive therapies currently available to block the formation and deleterious actions of this hormone. More recently, angiotensin-(1-7) has emerged as a biologically active intermediate of the vasodilatory arm of the renin-angiotensin system. This hormone antagonizes angiotensin II actions as well as offers antihypertensive, antihypertrophic, antiatherogenic, antiarrhythmogenic, antifibrotic and antithrombotic properties. Angiotensin-(1-7) elicits beneficial cardiovascular actions through mas G protein-coupled receptors, which are found in numerous tissues pivotal to control of blood pressure including the brain, heart, kidneys, and vasculature. Despite accumulating evidence for favorable effects of angiotensin-(1-7) in animal models, there is a paucity of clinical studies and pharmacokinetic limitations, thus limiting the development of therapeutic agents to better understand cardiovascular actions of this vasodilatory peptide hormone in humans. This review highlights current knowledge on the role of angiotensin-(1-7) in cardiovascular control, with an emphasis on significant animal, human, and therapeutic research efforts.
Collapse
Affiliation(s)
- Daniela Medina
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|