1
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
2
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
4
|
Angi B, Muccioli S, Szabò I, Leanza L. A Meta-Analysis Study to Infer Voltage-Gated K+ Channels Prognostic Value in Different Cancer Types. Antioxidants (Basel) 2023; 12:antiox12030573. [PMID: 36978819 PMCID: PMC10045123 DOI: 10.3390/antiox12030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Potassium channels are often highly expressed in cancer cells with respect to healthy ones, as they provide proliferative advantages through modulating membrane potential, calcium homeostasis, and various signaling pathways. Among potassium channels, Shaker type voltage-gated Kv channels are emerging as promising pharmacological targets in oncology. Here, we queried publicly available cancer patient databases to highlight if a correlation exists between Kv channel expression and survival rate in five different cancer types. By multiple gene comparison analysis, we found a predominant expression of KCNA2, KCNA3, and KCNA5 with respect to the other KCNA genes in skin cutaneous melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). This analysis highlighted a prognostic role of KCNA3 and KCNA5 in SKCM, LUAD, LUSC, and STAD, respectively. Interestingly, KCNA3 was associated with a positive prognosis in SKCM and LUAD but not in LUSC. Results obtained by the analysis of KCNA3-related differentially expressed genes (DEGs); tumor immune cell infiltration highlighted differences that may account for such differential prognosis. A meta-analysis study was conducted to investigate the role of KCNA channels in cancer using cancer patients’ datasets. Our study underlines a promising correlation between Kv channel expression in tumor cells, in infiltrating immune cells, and survival rate.
Collapse
|
5
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
6
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Cancer as a Channelopathy—Appreciation of Complimentary Pathways Provides a Different Perspective for Developing Treatments. Cancers (Basel) 2022; 14:cancers14194627. [PMID: 36230549 PMCID: PMC9562872 DOI: 10.3390/cancers14194627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary While improvements in technology have improved our ability to treat many forms of cancer when diagnosed at an early stage of the disease, the ability to improve survival and quality of life for patients with late stage disease has been limited, largely due to the ability of cancer cells to evade destruction when treatments block preferred paths for survival. Here, we review the role that ions and ion channels play in normal cell function, the development of disease and their role in the life and death of a cell. It is hoped that viewing cancer from the perspective of altered ion channel expression and ion balance may provide a novel approach for developing more effective treatments for this devastating disease. Abstract Life depends upon the ability of cells to evaluate and adapt to a constantly changing environment and to maintain internal stability to allow essential biochemical reactions to occur. Ions and ion channels play a crucial role in this process and are essential for survival. Alterations in the expression of the transmembrane proteins responsible for maintaining ion balance that occur as a result of mutations in the genetic code or in response to iatrogenically induced changes in the extracellular environment is a characteristic feature of oncogenesis and identifies cancer as one of a constellation of diseases known as channelopathies. The classification of cancer as a channelopathy provides a different perspective for viewing the disease. Potentially, it may expand opportunities for developing novel ways to affect or reverse the deleterious changes that underlie establishing and sustaining disease and developing tolerance to therapeutic attempts at treatment. The role of ions and ion channels and their interactions in the cell’s ability to maintain ionic balance, homeostasis, and survival are reviewed and possible approaches that mitigate gain or loss of ion channel function to contribute to new or enhance existing cancer therapies are discussed.
Collapse
|
8
|
Li P, Kurata Y, Taufiq F, Kuwabara M, Ninomiya H, Higaki K, Tsuneto M, Shirayoshi Y, Lanaspa MA, Hisatome I. Kv1.5 channel mediates monosodium urate-induced activation of NLRP3 inflammasome in macrophages and arrhythmogenic effects of urate on cardiomyocytes. Mol Biol Rep 2022; 49:5939-5952. [PMID: 35368226 PMCID: PMC9270276 DOI: 10.1007/s11033-022-07378-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1β secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1β. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1β, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1β and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.
Collapse
Affiliation(s)
- Peili Li
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, 36-1, Nishimachi, Yonago, Tottori, 683-8504, Japan.
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Fikri Taufiq
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, 36-1, Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University, Yonago, 683-8504, Japan
| | - Katsumi Higaki
- Research Center for Bioscience and Technology, Tottori University, Yonago, 683-8504, Japan
| | - Motokazu Tsuneto
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, 36-1, Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, 36-1, Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University, 36-1, Nishimachi, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
9
|
Capera J, Navarro-Pérez M, Moen AS, Szabó I, Felipe A. The Mitochondrial Routing of the Kv1.3 Channel. Front Oncol 2022; 12:865686. [PMID: 35402277 PMCID: PMC8990977 DOI: 10.3389/fonc.2022.865686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated potassium channels control neuronal excitability and cardiac action potentials. In addition, these proteins are involved in a myriad of cellular processes. The potassium channel Kv1.3 plays an essential role in the immune response mediated by leukocytes. Kv1.3 is functional both at the plasma membrane and the inner mitochondrial membrane. Plasma membrane Kv1.3 mediates cellular activation and proliferation, whereas mitochondrial Kv1.3 participates in cell survival and apoptosis. Therefore, this protein emerges as an important target in cancer therapies. Several forward-traffic motifs target the channel to the plasma membrane in a COPII-dependent manner. However, the mitochondrial import pathway for Kv1.3 is largely unknown. Here, we deciphered the mitochondrial routing of the mitoKv1.3 channel. Kv1.3 uses the TIM23 complex to translocate to the inner mitochondrial membrane. This mechanism is unconventional because the channel is a multimembrane spanning protein without a defined N-terminal presequence. We found that transmembrane domains cooperatively mediate Kv1.3 mitochondrial targeting and identified the cytosolic HSP70/HSP90 chaperone complex as a key regulator of the process. Our results provide insights into the mechanisms mediating the localization of Kv1.3 to mitochondrial membranes, further extending the knowledge of ion channel biogenesis and turnover in mitochondria.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Anne Stine Moen
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ildiko Szabó
- Department of Biology, University of Padova, Padova, Italy
| | - Antonio Felipe
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Severin F, Urbani A, Varanita T, Bachmann M, Azzolini M, Martini V, Pizzi M, Tos APD, Frezzato F, Mattarei A, Ghia P, Bertilaccio MTS, Gulbins E, Paradisi C, Zoratti M, Semenzato GC, Leanza L, Trentin L, Szabò I. Pharmacological modulation of Kv1.3 potassium channel selectively triggers pathological B lymphocyte apoptosis in vivo in a genetic CLL model. J Exp Clin Cancer Res 2022; 41:64. [PMID: 35172855 PMCID: PMC8848658 DOI: 10.1186/s13046-022-02249-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ion channels are emerging as promising oncological targets. The potassium channels Kv1.3 and IKCa are highly expressed in the plasma membrane and mitochondria of human chronic lymphocytic leukemia (CLL) cells, compared to healthy lymphocytes. In vitro, inhibition of mitoKv1.3 by PAPTP was shown to kill ex vivo primary human CLL cells, while targeting IKCa with TRAM-34 decreased CLL cell proliferation. METHODS Here we evaluated the effect of the above drugs in CLL cells from ibrutinib-resistant patients and in combination with Venetoclax, two drugs used in the clinical practice. The effects of the drugs were tested also in the Eμ-TCL1 genetic CLL murine model, characterized by a lympho-proliferative disease reminiscent of aggressive human CLL. Eμ-TCL1 mice showing overt disease state were treated with intraperitoneal injections of non-toxic 5 nmol/g PAPTP or 10 nmol/g TRAM-34 once a day and the number and percentage of pathological B cells (CD19+CD5+) in different, pathologically relevant body districts were determined. RESULTS We show that Kv1.3 expression correlates with sensitivity of the human and mouse neoplastic cells to PAPTP. Primary CLL cells from ibrutinib-resistant patients could be killed with PAPTP and this drug enhanced the effect of Venetoclax, by acting on mitoKv1.3 of the inner mitochondrial membrane and triggering rapid mitochondrial changes and cytochrome c release. In vivo, after 2 week- therapy of Eμ-TCL1 mice harboring distinct CLL clones, leukemia burden was reduced by more than 85%: the number and percentage of CLL B cells fall in the spleen and peritoneal cavity and in the peripheral blood, without signs of toxicity. Notably, CLL infiltration into liver and spleen and splenomegaly were also drastically reduced upon PAPTP treatment. In contrast, TRAM-34 did not exert any beneficial effect when administered in vivo to Eμ-TCL1 mice at non-toxic concentration. CONCLUSION Altogether, by comparing vehicle versus compound effect in different Eμ-TCL1 animals bearing unique clones similarly to CLL patients, we conclude that PAPTP significantly reduced leukemia burden in CLL-relevant districts, even in animals with advanced stage of the disease. Our results thus identify PAPTP as a very promising drug for CLL treatment, even for the chemoresistant forms of the disease.
Collapse
Affiliation(s)
- Filippo Severin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | | | | | - Michele Azzolini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Marco Pizzi
- Department of Medicine, Pathology Branch, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, Pathology Branch, University of Padua School of Medicine, Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCC Ospedale San Raffaele, Milan, Italy
| | | | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Gianpietro Carlo Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.
| | - Ildiko Szabò
- Department of Biology, University of Padua, Padua, Italy. .,CNR Institute of Neurosciences, University of Padua, Padua, Italy.
| |
Collapse
|
11
|
Olszewska AM, Sieradzan AK, Bednarczyk P, Szewczyk A, Żmijewski MA. Mitochondrial potassium channels: A novel calcitriol target. Cell Mol Biol Lett 2022; 27:3. [PMID: 34979905 PMCID: PMC8903690 DOI: 10.1186/s11658-021-00299-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calcitriol (an active metabolite of vitamin D) modulates the expression of hundreds of human genes by activation of the vitamin D nuclear receptor (VDR). However, VDR-mediated transcriptional modulation does not fully explain various phenotypic effects of calcitriol. Recently a fast non-genomic response to vitamin D has been described, and it seems that mitochondria are one of the targets of calcitriol. These non-classical calcitriol targets open up a new area of research with potential clinical applications. The goal of our study was to ascertain whether calcitriol can modulate mitochondrial function through regulation of the potassium channels present in the inner mitochondrial membrane. METHODS The effects of calcitriol on the potassium ion current were measured using the patch-clamp method modified for the inner mitochondrial membrane. Molecular docking experiments were conducted in the Autodock4 program. Additionally, changes in gene expression were investigated by qPCR, and transcription factor binding sites were analyzed in the CiiiDER program. RESULTS For the first time, our results indicate that calcitriol directly affects the activity of the mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa) from the human astrocytoma (U-87 MG) cell line but not the mitochondrial calcium-independent two-pore domain potassium channel (mitoTASK-3) from human keratinocytes (HaCaT). The open probability of the mitoBKCa channel in high calcium conditions decreased after calcitriol treatment and the opposite effect was observed in low calcium conditions. Moreover, using the AutoDock4 program we predicted the binding poses of calcitriol to the calcium-bound BKCa channel and identified amino acids interacting with the calcitriol molecule. Additionally, we found that calcitriol influences the expression of genes encoding potassium channels. Such a dual, genomic and non-genomic action explains the pleiotropic activity of calcitriol. CONCLUSIONS Calcitriol can regulate the mitochondrial large-conductance calcium-regulated potassium channel. Our data open a new chapter in the study of non-genomic responses to vitamin D with potential implications for mitochondrial bioenergetics and cytoprotective mechanisms.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland.
| |
Collapse
|
12
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
13
|
Kravenska Y, Checchetto V, Szabo I. Routes for Potassium Ions across Mitochondrial Membranes: A Biophysical Point of View with Special Focus on the ATP-Sensitive K + Channel. Biomolecules 2021; 11:1172. [PMID: 34439838 PMCID: PMC8393992 DOI: 10.3390/biom11081172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Potassium ions can cross both the outer and inner mitochondrial membranes by means of multiple routes. A few potassium-permeable ion channels exist in the outer membrane, while in the inner membrane, a multitude of different potassium-selective and potassium-permeable channels mediate K+ uptake into energized mitochondria. In contrast, potassium is exported from the matrix thanks to an H+/K+ exchanger whose molecular identity is still debated. Among the K+ channels of the inner mitochondrial membrane, the most widely studied is the ATP-dependent potassium channel, whose pharmacological activation protects cells against ischemic damage and neuronal injury. In this review, we briefly summarize and compare the different hypotheses regarding the molecular identity of this patho-physiologically relevant channel, taking into account the electrophysiological characteristics of the proposed components. In addition, we discuss the characteristics of the other channels sharing localization to both the plasma membrane and mitochondria.
Collapse
Affiliation(s)
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, 35131 Padova, Italy; (Y.K.); (V.C.)
| |
Collapse
|
14
|
Midazolam's Effects on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-lymphocytes. Int J Mol Sci 2021; 22:ijms22137198. [PMID: 34281255 PMCID: PMC8267671 DOI: 10.3390/ijms22137198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Midazolam (MDZ) could affect lymphocyte immune functions. However, the influence of MDZ on cell’s K+ currents has never been investigated. Thus, in the present study, the effects of MDZ on Jurkat T lymphocytes were studied using the patch-clamp technique. Results showed that MDZ suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in concentration-, time-, and state-dependent manners. The IC50 for MDZ-mediated reduction of IK(DR) density was 5.87 μM. Increasing MDZ concentration raised the rate of current-density inactivation and its inhibitory action on IK(DR) density was estimated with a dissociation constant of 5.14 μM. In addition, the inactivation curve of IK(DR) associated with MDZ was shifted to a hyperpolarized potential with no change on the slope factor. MDZ-induced inhibition of IK(DR) was not reversed by flumazenil. In addition, the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels was suppressed by MDZ. Furthermore, inhibition by MDZ on both IK(DR) and IKCa-channel activity appeared to be independent from GABAA receptors and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes. In conclusion, MDZ suppressed current density of IK(DR) in concentration-, time-, and state-dependent manners in Jurkat T-lymphocytes and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes.
Collapse
|
15
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
16
|
Pedersen SF, Flinck M, Pardo LA. The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. Int J Mol Sci 2021; 22:ijms22105209. [PMID: 34069047 PMCID: PMC8156689 DOI: 10.3390/ijms22105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Transport of ions and nutrients is a core mitochondrial function, without which there would be no mitochondrial metabolism and ATP production. Both ion homeostasis and mitochondrial phenotype undergo pervasive changes during cancer development, and both play key roles in driving the malignancy. However, the link between these events has been largely ignored. This review comprehensively summarizes and critically discusses the role of the reciprocal relationship between ion transport and mitochondria in crucial cellular functions, including metabolism, signaling, and cell fate decisions. We focus on Ca2+, H+, and K+, which play essential and highly interconnected roles in mitochondrial function and are profoundly dysregulated in cancer. We describe the transport and roles of these ions in normal mitochondria, summarize the changes occurring during cancer development, and discuss how they might impact tumorigenesis.
Collapse
Affiliation(s)
- Stine F. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (S.F.P.); (L.A.P.)
| | - Mette Flinck
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Correspondence: (S.F.P.); (L.A.P.)
| |
Collapse
|
17
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
18
|
Deng Z, Zeng Q, Tang J, Zhang B, Chai J, Andersen JF, Chen X, Xu X. Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea Xenopsylla cheopis. J Biol Chem 2021; 296:100670. [PMID: 33864815 PMCID: PMC8131326 DOI: 10.1016/j.jbc.2021.100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated potassium (Kv) 1.3 channel plays a crucial role in the immune responsiveness of T-lymphocytes and macrophages, presenting a potential target for treatment of immune- and inflammation related-diseases. FS48, a protein from the rodent flea Xenopsylla cheopis, shares the three disulfide bond feature of scorpion toxins. However, its three-dimensional structure and biological function are still unclear. In the present study, the structure of FS48 was evaluated by circular dichroism and homology modeling. We also described its in vitro ion channel activity using patch clamp recording and investigated its anti-inflammatory activity in LPS-induced Raw 264.7 macrophage cells and carrageenan-induced paw edema in mice. FS48 was found to adopt a common αββ structure and contain an atypical dyad motif. It dose-dependently exhibited the Kv1.3 channel in Raw 264.7 and HEK 293T cells, and its ability to block the channel pore was demonstrated by the kinetics of activation and competition binding with tetraethylammonium. FS48 also downregulated the secretion of proinflammatory molecules NO, IL-1β, TNF-α, and IL-6 by Raw 264.7 cells in a manner dependent on Kv1.3 channel blockage and the subsequent inactivation of the MAPK/NF-κB pathways. Finally, we observed that FS48 inhibited the paw edema formation, tissue myeloperoxidase activity, and inflammatory cell infiltrations in carrageenan-treated mice. We therefore conclude that FS48 identified from the flea saliva is a novel potassium channel inhibitor displaying anti-inflammatory activity. This discovery will promote understanding of the bloodsucking mechanism of the flea and provide a new template molecule for the design of Kv1.3 channel blockers.
Collapse
Affiliation(s)
- Zhenhui Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Intitutes of Health, Bethesda, Maryland, USA
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Styles FL, Al-Owais MM, Scragg JL, Chuntharpursat-Bon E, Hettiarachchi NT, Lippiat JD, Minard A, Bon RS, Porter K, Sukumar P, Peers C, Roberts LD. Kv1.3 voltage-gated potassium channels link cellular respiration to proliferation through a non-conducting mechanism. Cell Death Dis 2021; 12:372. [PMID: 33828089 PMCID: PMC8027666 DOI: 10.1038/s41419-021-03627-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023]
Abstract
Cellular energy metabolism is fundamental for all biological functions. Cellular proliferation requires extensive metabolic reprogramming and has a high energy demand. The Kv1.3 voltage-gated potassium channel drives cellular proliferation. Kv1.3 channels localise to mitochondria. Using high-resolution respirometry, we show Kv1.3 channels increase oxidative phosphorylation, independently of redox balance, mitochondrial membrane potential or calcium signalling. Kv1.3-induced respiration increased reactive oxygen species production. Reducing reactive oxygen concentrations inhibited Kv1.3-induced proliferation. Selective Kv1.3 mutation identified that channel-induced respiration required an intact voltage sensor and C-terminal ERK1/2 phosphorylation site, but is channel pore independent. We show Kv1.3 channels regulate respiration through a non-conducting mechanism to generate reactive oxygen species which drive proliferation. This study identifies a Kv1.3-mediated mechanism underlying the metabolic regulation of proliferation, which may provide a therapeutic target for diseases characterised by dysfunctional proliferation and cell growth.
Collapse
Affiliation(s)
- Faye L Styles
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Moza M Al-Owais
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jason L Scragg
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | - Aisling Minard
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen Porter
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Chris Peers
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Peruzzo R, Mattarei A, Azzolini M, Becker-Flegler KA, Romio M, Rigoni G, Carrer A, Biasutto L, Parrasia S, Kadow S, Managò A, Urbani A, Rossa A, Semenzato G, Soriano ME, Trentin L, Ahmad S, Edwards M, Gulbins E, Paradisi C, Zoratti M, Leanza L, Szabò I. Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biol 2020; 37:101705. [PMID: 33007503 PMCID: PMC7527709 DOI: 10.1016/j.redox.2020.101705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool. The mitochondrial channel mitoKv1.3 is a promising pharmacological target. MitoKv1.3 interacts with Complex I of the respiratory chain. Psoralenic inhibitors of Kv1.3 facilitate the diversion of e− from complex I to O2. A novel psoralenic Kv1.3 inhibitor with increased solubility reduces melanoma volume.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | | | | | - Matteo Romio
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Sofia Parrasia
- Department of Biomedical Sciences, University of Padua, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Andrea Urbani
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | | | | | - Syed Ahmad
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Michael Edwards
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
22
|
Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules 2020; 10:E1200. [PMID: 32824877 PMCID: PMC7466137 DOI: 10.3390/biom10081200] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (B.A.); (M.Ż.)
| |
Collapse
|
23
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|
24
|
Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion 2020; 53:224-233. [PMID: 32540403 DOI: 10.1016/j.mito.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.
Collapse
|
25
|
León-Aparicio D, Salvador C, Aparicio-Trejo OE, Briones-Herrera A, Pedraza-Chaverri J, Vaca L, Sampieri A, Padilla-Flores T, López-González Z, León-Contreras JC, Hernández-Pando R, Escobar LI. Novel Potassium Channels in Kidney Mitochondria: The Hyperpolarization-Activated and Cyclic Nucleotide-Gated HCN Channels. Int J Mol Sci 2019; 20:ijms20204995. [PMID: 31601020 PMCID: PMC6834191 DOI: 10.3390/ijms20204995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperpolarization-activated cationic HCN channels comprise four members (HCN1–4) that control dendritic integration, synaptic transmission and action potential firing. In the kidney, HCN1, HCN2 and HCN3 are differentially expressed and contribute to the transport of sodium, potassium (K+) and ammonium into the nephrons. HCN3 is regulated by K+ diets in the kidney. In this work we performed a proteomic analysis of HCN3 expressed in human embryonic kidney cells (HEK293 cells). More than 50% of the interacting proteins belonged to mitochondria. Therefore, we explored the presence of HCN channels in kidney mitochondria. By immunoblotting and immunogold electron microscopy HCN3 protein expression was found in rat kidney mitochondria; it was also confirmed in human kidney. Patch-clamp recordings of renal mitochondria and mitochondria from HEK293 cells overexpressing HCN1, HCN2 and HCN3 channels, stained with MitoTracker Green FM, indicated that only HCN3 could produce inwardly K+ currents that were inhibited by ZD7288, a specific blocker of HCN channels. Furthermore, ZD7288 caused inhibition of the oxygen consumption coupled to ATP synthesis and hyperpolarization of the inner mitochondrial membrane. In conclusion, we show for the first time that pacemaker HCN channels contribute to K+ transport in mitochondria facilitating the activity of the respiratory chain and ATP synthesis by controlling the inner mitochondrial membrane potential.
Collapse
Affiliation(s)
- Daniel León-Aparicio
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Carolina Salvador
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Teresa Padilla-Flores
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Zinaeli López-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Juan C León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Laura I Escobar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
26
|
Mei Y, Fang C, Ding S, Liu X, Hu J, Xu J, Mei Q. PAP-1 ameliorates DSS-induced colitis with involvement of NLRP3 inflammasome pathway. Int Immunopharmacol 2019; 75:105776. [DOI: 10.1016/j.intimp.2019.105776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
|
27
|
Prosdocimi E, Checchetto V, Leanza L. Targeting the Mitochondrial Potassium Channel Kv1.3 to Kill Cancer Cells: Drugs, Strategies, and New Perspectives. SLAS DISCOVERY 2019; 24:882-892. [PMID: 31373829 DOI: 10.1177/2472555219864894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the consequence of aberrations in cell growth or cell death. In this scenario, mitochondria and ion channels play a critical role in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. In this review, we focus on Kv1.3 and specifically on mitoKv1.3, which showed an aberrant expression in cancer cells compared with healthy tissues and which is involved in the apoptotic pathway. In recent years, mitoKv1.3 has become an oncological target since its pharmacological modulation has been demonstrated to reduce tumor growth and progression both in vitro and in vivo using preclinical mouse models of different types of tumors.
Collapse
Affiliation(s)
| | | | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
28
|
Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019; 11:cancers11060761. [PMID: 31159324 PMCID: PMC6627730 DOI: 10.3390/cancers11060761] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.
Collapse
|
29
|
Singh J, Hussain Y, Luqman S, Meena A. Targeting Ca 2+ signalling through phytomolecules to combat cancer. Pharmacol Res 2019; 146:104282. [PMID: 31129179 DOI: 10.1016/j.phrs.2019.104282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Cancer is amongst the life-threatening public health issue worldwide, hence responsible for millions of death every year. It is affecting human health regardless of their gender, age, eating habits, and ecological location. Many drugs and therapies are available for its cure still the need for effective targeted drugs and therapies are of paramount importance. In the recent past, Ca2+ signalling (including channels/transporters/pumps) are being studied as a plausible target for combating the cancer menace. Many evidence has shown that the intracellular Ca2+ homeostasis is altered in cancer cells and the remodelling is linked with tumor instigation, angiogenesis, progression, and metastasis. Focusing on these altered Ca2+ signalling tool kit for cancer treatment is a cross-cutting and emerging area of research. In addition, there are numerous phytomolecules which can be exploited as a potential Ca2+ (channels/transporters/ pumps) modulators in the context of targeting Ca2+ signalling in the cancer cell. In the present review, a list of plant-based potential Ca2+ (channel/transporters/pumps) modulators has been reported which could have application in the framework of repurposing the potential drugs to target Ca2+ signalling pathways in cancer cells. This review also aims to gain attention in and support for prospective research in this field.
Collapse
Affiliation(s)
- Jyoti Singh
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
30
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
31
|
|
32
|
Zaccagnino A, Managò A, Leanza L, Gontarewitz A, Linder B, Azzolini M, Biasutto L, Zoratti M, Peruzzo R, Legler K, Trauzold A, Kalthoff H, Szabo I. Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget 2018; 8:38276-38293. [PMID: 27542263 PMCID: PMC5503532 DOI: 10.18632/oncotarget.11299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries. Unfortunately, the overall 5-year survival rate is still less than 5%. The most frequent oncogenic mutations in PDAC are loss-of function mutations in p53 and gain-of-function mutations in KRAS. Here we show that clofazimine (Lamprene), a drug already used in the clinic for autoimmune diseases and leprosy, is able to efficiently kill in vitro five different PDAC cell lines harboring p53 mutations. We provide evidence that clofazimine induces apoptosis in PDAC cells with an EC50 in the μM range via its specific inhibitory action on the potassium channel Kv1.3. Intraperitoneal injection of clofazimine resulted in its accumulation in the pancreas of mice 8 hours after administration. Using an orthotopic PDAC xenotransplantation model in SCID beige mouse, we show that clofazimine significantly and strongly reduced the primary tumor weight. Thus, our work identifies clofazimine as a promising therapeutic agent against PDAC and further highlights ion channels as possible oncological targets.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Artur Gontarewitz
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Bernhard Linder
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Karen Legler
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
33
|
Jiang XJ, Cretoiu D, Shen ZJ, Yang XJ. An in vitro investigation of telocytes-educated macrophages: morphology, heterocellular junctions, apoptosis and invasion analysis. J Transl Med 2018; 16:85. [PMID: 29615057 PMCID: PMC5883889 DOI: 10.1186/s12967-018-1457-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telocytes (TCs), a recently discovered novel type of interstitial cells, were also found in a wide variety of human and mammalian reproductive organs/tissues, including uterus, oviduct and placenta. Previously, we demonstrated that TCs-conditioned media was capable of activating peritoneal macrophages (pMACs) through paracrine effects. This study investigates the hypothesis that direct interaction of TCs with pMACs will also play a significant role in immunoregulation of pMACs. METHODS TCs and pMACs were derived from the uterus and intraperitoneal cavity of female BALB/c mice, respectively. TCs were identified by immunofluorescence and then co-cultured directly with pMACs for 24 h without added cytokines, to observe the in vitro biological behavior of pMACs. We used histochemical staining to study morphology and mitochondrial metabolism of pMACs, scanning electron microscopy to study heterocellular junctions, flow cytometry to investigate mitochondrial membrane potential (ΔΨm) and apoptosis, and transwell chambers to study invasion ability. Student-t test was used accordingly. RESULTS Presently, TCs with typical structure and immunophenotype of double CD-34-positive/vimentin-positive were successfully isolated. pMACs co-cultured with TCs showed obviously morphological activation, with enhanced energy metabolism (P < 0.05). Meanwhile, direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs. Furthermore, TCs treatment markedly reduced the depletion of ΔΨm in co-cultured pMACs (all P < 0.05), and inhibited their apoptosis (P < 0.05). Functionally, pMACs co-cultured with TCs showed enhanced invasion ability (P < 0.05). CONCLUSIONS Direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs, presumably responsible for the observed novel efficient way of pMACs activation via mitochondrial signaling pathway. TCs-educated pMACs might be a promising way to restore the defective immunosurveillance in endometriosis (EMs), led to the enhanced treatment efficacy of EMs in a simple and clinically feasible fashion.
Collapse
Affiliation(s)
- Xiao-Juan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute of Mother and Child Health, Bucharest, Romania
| | - Zong-Ji Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
34
|
Brini M, Leanza L, Szabo I. Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxid Redox Signal 2018; 28:949-972. [PMID: 28679281 DOI: 10.1089/ars.2017.7215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Ion channels play an important role in the regulation of organelle function within the cell, as proven by increasing evidence pointing to a link between altered function of intracellular ion channels and different pathologies ranging from cancer to neurodegenerative diseases, ischemic damage, and lysosomal storage diseases. Recent Advances: A link between these pathologies and redox state as well as lipid homeostasis and ion channel function is in the focus of current research. Critical Issues: Ion channels are target of modulation by lipids and lipid messengers, although in most cases the mechanistic details have not been clarified yet. Ion channel function importantly impacts production of reactive oxygen species (ROS), especially in the case of mitochondria and lysosomes. ROS, in turn, may modulate the function of intracellular channels triggering thereby a feedback control under physiological conditions. If produced in excess, ROS can be harmful to lipids and may produce oxidized forms of these membrane constituents that ultimately affect ion channel function by triggering a "circulus vitiosus." Future Directions: The present review summarizes our current knowledge about the contribution of intracellular channels to oxidative stress and gives examples of how these channels are modulated by lipids and how this modulation may affect ROS production in ROS-related diseases. Future studies need to address the importance of the regulation of intracellular ion channels and related oxidative stress by lipids in various physiological and pathological contexts. Antioxid. Redox Signal. 28, 949-972.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
35
|
Coşan DT, Öner Ç, Soyocak A, Metcalfe E, Djamgoz M. Meme kanserinde Kv 1.3 ve Kv 10.1 voltaj bağımlı potasyum kanallarının inhibisyonunun oksidatif stres üzerindeki rolü. DICLE MEDICAL JOURNAL 2017. [DOI: 10.5798/dicletip.298591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
37
|
Guo Q, Jin Z, Yuan Y, Liu R, Xu T, Wei H, Xu X, He S, Chen S, Shi Z, Hou W, Hua B. New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy. J Immunol Res 2016; 2016:9720912. [PMID: 27975071 PMCID: PMC5128713 DOI: 10.1155/2016/9720912] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
The majority of basic and clinical studies have shown a protumor function of tumor-associated macrophages (TAMs), which represent a large proportion of matrix cells. TAMs promote tumorigenesis, and their number is related to the malignancy degree and poor prognosis of many kinds of tumors. Macrophage plasticity makes it possible to change the tumor microenvironment and remodel antitumor immunity during cancer immunotherapy. Increasing numbers of studies have revealed the effects of TAMs on the tumor microenvironment, for example, via promotion of tumor growth and tumorigenesis and through an increase in the number of cancer stem cells or via facilitation of angiogenesis, lymphangiogenesis, and metastasis. Investigators also proposed tumor-immunological treatments targeting TAMs by inhibiting TAM recruitment and differentiation, by regulating TAM polarization, and by blocking factors and pathways associated with the protumor function of TAMs. This comprehensive review presents recent research on TAMs in relation to prediction of poor outcomes, remodeling of the tumor immune microenvironment, and immunological targeted therapies.
Collapse
Affiliation(s)
- Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Zhichao Jin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yuan Yuan
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Tao Xu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, No. 1 Playground Road, Haidian District, Beijing 100091, China
| | - Huamin Wei
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xinyao Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Shuntai Chen
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine (IBRCM), China Academy of Chinese Medicine Sciences, No. 16 Dongzhimen Nanxiaojie, Dongcheng District, Beijing 100700, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, No. 5 Beixiange, Xicheng District, Beijing 100053, China
| |
Collapse
|
38
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
39
|
Checchetto V, Teardo E, Carraretto L, Leanza L, Szabo I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1258-1266. [PMID: 26970213 DOI: 10.1016/j.bbabio.2016.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131 Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; CNR Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
40
|
Laskowski M, Augustynek B, Kulawiak B, Koprowski P, Bednarczyk P, Jarmuszkiewicz W, Szewczyk A. What do we not know about mitochondrial potassium channels? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1247-1257. [PMID: 26951942 DOI: 10.1016/j.bbabio.2016.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Michał Laskowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bartłomiej Augustynek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
41
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
42
|
The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2016; 240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms as well as the development of new therapeutic strategies and as a tool for gauging disease progression in neurodegeneration, diabetes, cancer, and cardiovascular disease. The view is emerging that inner mitochondrial membrane (IMM) cation channels have a profound effect on mitochondrial function and, consequently, on the metabolic state and survival of the whole cell. Since disruption of the sustained integrity of mitochondria is strongly linked to human disease, pharmacological intervention offers a new perspective concerning neurodegenerative and cardiovascular diseases as well as cancer. This review summarizes our current knowledge regarding IMM cation channels and their roles under physiological conditions as well as in cancer, with special emphasis on potassium channels and the mammalian mitochondrial calcium uniporter.
Collapse
|
43
|
Zhu H, Yan L, Gu J, Hao W, Cao J. Kv1.3 channel blockade enhances the phagocytic function of RAW264.7 macrophages. SCIENCE CHINA-LIFE SCIENCES 2015; 58:867-75. [PMID: 26354506 DOI: 10.1007/s11427-015-4915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/13/2015] [Indexed: 11/25/2022]
Abstract
This study aimed to comprehend the largely unknown role of voltage-gated potassium channel 1.3 (Kv1.3) in the phagocytic function of macrophages. We found that blocking of the Kv1.3 channel with 100 pmol L(-1) Stichodactyla helianthus neurotoxin (ShK) enhanced the phagocytic capacities of both resting and lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in the chicken erythrocyte system. In the fluorescein isothiocyanate (FITC)-labeled Escherichia coli k-12 system, ShK increased the phagocytic capacities of resting RAW264.7 cells, but not of the LPS-stimulated cells, as LPS alone stimulated almost saturated phagocytosis of the macrophages. ShK increased the nitric oxide (NO) production in LPS-activated cells, but not in resting RAW264.7 cells. There was no effect of ShK alone on the cytokine secretions in resting RAW264.7 cells, but it suppressed IL-1β secretion in LPS-stimulated RAW264.7 cells. At a concentration of 100 pmol L(-1), ShK did not affect the viability of the tested cells. Kv1.3 was expressed in RAW264.7 cells; this expression was downregulated by LPS, but significantly upregulated by disrupting caveolin-dependent endocytosis with filipin III. In addition, cytochalasin D, an inhibitor of actin polymerization, did not affect the Kv1.3 expression. Thus, blocking of the Kv1.3 channel enhances the phagocytic capacity and NO production of this cell line. Our results suggest that Kv1.3 channel serves as a negative regulator of phagocytosis in macrophages and can therefore be a potential target in the treatment of macrophage dysfunction.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - JingLi Gu
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wei Hao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - JiMin Cao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
| |
Collapse
|
44
|
Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium 2015; 58:131-8. [DOI: 10.1016/j.ceca.2014.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
|
45
|
Warsi J, Elvira B, Bissinger R, Hosseinzadeh Z, Lang F. Regulation of Voltage-Gated K+ Channel Kv1.5 by the Janus Kinase JAK3. J Membr Biol 2015; 248:1061-70. [PMID: 26100849 DOI: 10.1007/s00232-015-9817-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/08/2015] [Indexed: 01/30/2023]
Abstract
The tyrosine kinase Janus kinase 3 (JAK3) participates in the regulation of cell proliferation and apoptosis. The kinase further influences ion channels and transport proteins. The present study explored whether JAK3 contributes to the regulation of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. To this end, cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active (A568V)JAK3, or inactive (K851A)JAK3. Voltage-gated K(+) channel activity was measured utilizing dual electrode voltage clamp, and Kv1.5 channel protein abundance in the cell membrane was quantified utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). As a result, Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type JAK3 and (A568V)JAK3, but not by (K851A)JAK3. Inhibition of Kv1.5 protein insertion into the cell membrane by brefeldin A (5 μM) resulted in a decline of the voltage-gated current, which was similar in the absence and presence of (A568V)JAK3, suggesting that (A568V)JAK3 did not accelerate Kv1.5 protein retrieval from the cell membrane. A 24 h treatment with ouabain (100 µM) significantly decreased the voltage-gated current in oocytes expressing Kv1.5 without or with (A568V)JAK3 and dissipated the difference between oocytes expressing Kv1.5 alone and oocytes expressing Kv1.5 with (A568V)JAK3. In conclusion, JAK3 contributes to the regulation of membrane Kv1.5 protein abundance and activity, an effect sensitive to ouabain and thus possibly involving Na(+)/K(+) ATPase activity.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Rosi Bissinger
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Zohreh Hosseinzadeh
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany.
| |
Collapse
|
46
|
Involvement of potassium channels in the progression of cancer to a more malignant phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2477-92. [PMID: 25517985 DOI: 10.1016/j.bbamem.2014.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
47
|
Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2532-46. [PMID: 25450339 DOI: 10.1016/j.bbamem.2014.10.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|
48
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
49
|
Elvira B, Warsi J, Munoz C, Lang F. SPAK and OSR1 sensitivity of voltage-gated K+ channel Kv1.5. J Membr Biol 2014; 248:59-66. [PMID: 25315612 DOI: 10.1007/s00232-014-9741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1) are potent regulators of several transporters and ion channels. The kinases are under regulation of with-no-K(Lys) (WNK) kinases. The present study explored whether SPAK and/or OSR1 modify the expression and/or activity of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1, and catalytically inactive (D164A)OSR1. Voltage-gated K(+) channel activity was quantified utilizing dual electrode voltage clamp and Kv1.5 channel protein abundance in the cell membrane utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type SPAK and (T233E)SPAK, but not by (T233A)SPAK and (D212A)SPAK. Similarly, Kv1.5 activity and Kv1.5-HA protein abundance were significantly down-regulated by wild-type OSR1 and (T185E)OSR1, but not by (T185A)OSR1 and (D164A)OSR1. Both, SPAK and OSR1 decrease cell membrane Kv1.5 protein abundance and activity.
Collapse
Affiliation(s)
- Bernat Elvira
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|