1
|
Ethnomedicinal Plants with Protective Effects against Beta-Amyloid Peptide (Aβ)1-42 Indicate Therapeutic Potential in a New In Vivo Model of Alzheimer's Disease. Antioxidants (Basel) 2022; 11:antiox11101865. [PMID: 36290588 PMCID: PMC9598277 DOI: 10.3390/antiox11101865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with unmet medical need. This investigation consisted of testing a range of ethanolic ethnomedicinal plant extracts (n = 18) traditionally used in the treatment of disorders such as anxiety, delirium, and memory loss. They were then screened for in vitro inhibitory activity against acetylcholinesterase (AChE), butylcholinesterase (BuChE), beta-secretase 1/beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), and antioxidant activities. Plants with potent activities were further characterised using a recently developed in vivo model of AD, Globodera pallida. The ability of phytoextracts to protect this organism against amyloid-beta Aβ (1-42) exposure was assessed by measuring chemosensing, survival rate, production of reactive oxygen species (ROS), and antioxidant responses. Extracts (n = 5) from Juglans regia (leaves), Ellettaria cardamomum (seeds), Cinnamomum zeylanicum (bark), Salvia officinalis (leaves/flowers), and Hypericum perforatum (flowers) exerted concentration-dependent inhibitory activities against AChE and BuChE. Three of these plant extracts (i.e., J. regia, E. cardamomum, and S. officinalis) possessed strong concentration-dependent inhibitory activity against BACE1. Furthermore, the five selected medicinal plant extracts not only enhanced significantly (p < 0.05) the nematode’s chemosensing, survival rate, and antioxidant responses (i.e., anti-ROS production, mitochondrial reductase activity, oxidized glutathione (GSSG) to reduced glutathione (GSH) ratio), but also greatly restored (p < 0.05) in a concentration-dependent manner the Aβ (1-42)-induced deleterious changes in these same parameters. In brief, this investigation highlights plant extracts with strong anti-AD activities which could be trialled as novel therapeutic supplements or undergo further biodiscovery research.
Collapse
|
2
|
Amaryllidaceae, Lycopodiaceae Alkaloids and Coumarins—A Comparative Assessment of Safety and Pharmacological Activity. J Clin Med 2022; 11:jcm11154291. [PMID: 35893381 PMCID: PMC9332316 DOI: 10.3390/jcm11154291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The study aimed to evaluate the safety and pharmacological activity Amaryllidaceae, Lycopodiaceae alkaloids and coumarins obtained from Narcissus triandrus L., Lycopodium clavatum L., Lycopodium annotinum L., Huperzia selago L. and Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. In the in vivo studies. The influence of the tested compounds on the central nervous system of rats was assessed in behavioral tests (locomotor activity, Y-maze, passive avoidance). In order to investigate the mechanisms of action, biochemical determinations were performed (AChE activity, BChE activity, IL-1β, IL-6 concentration). In order to assess safety, the concentrations of AST, ALT, GGT and urea and creatinine were determined. The results of the conducted studies indicate a high safety profile of the tested compounds. Behavioral tests showed that they significantly improved rodent memory in a passive avoidance test. The results of biochemical studies showed that by reducing the activity of AChE and BChE and lowering the concentration of IL-1β and IL-6, the coumarin-rich Angelica dahurica extract shows the most promising potential for future therapeutic AD strategies.
Collapse
|
3
|
Mot MD, Gavrilaș S, Lupitu AI, Moisa C, Chambre D, Tit DM, Bogdan MA, Bodescu AM, Copolovici L, Copolovici DM, Bungau SG. Salvia officinalis L. Essential Oil: Characterization, Antioxidant Properties, and the Effects of Aromatherapy in Adult Patients. Antioxidants (Basel) 2022; 11:808. [PMID: 35624672 PMCID: PMC9137537 DOI: 10.3390/antiox11050808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study is to reveal the chemical and biochemical characteristics and the potential aromatherapy applications of the essential oil (EO) of Salvia officinalis (common sage) within a hospital environment. The chemical composition was determined by gas chromatography with mass spectrometry and ATR-FTIR spectroscopy. Three types of sage EOs were included in this study: two commercial oils and one oil obtained by in-house hydrodistillation. Based on the findings, these EOs were included in different chemotypes. The first two samples were similar to the most common chemotype (α-thujone > camphor > 1,8-cineole > β-thujone), while the in-house sage EO revealed a high content of 1,8-cineole, borneol, α-thujone, similar to the Dalmatian type. The latter sample was selected to be evaluated for its antioxidant and medical effects, as borneol, a bicyclic monoterpene, is known as a substance with anesthetic and analgesic effects in traditional Asian medicine. The study suggests that the antioxidant capacity of the sage EO is modest (33.61% and 84.50% inhibition was determined by DPPH and ABTS assays, respectively), but also that the inhalation of sage EO with high borneol content by hospitalized patients could improve these patients’ satisfaction.
Collapse
Affiliation(s)
- Maria-Daniela Mot
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Andreea I. Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Dorina Chambre
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Delia Mirela Tit
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihaela Alexandra Bogdan
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
| | | | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (S.G.); (A.I.L.); (C.M.); (D.C.); (L.C.)
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (M.-D.M.); (D.M.T.); (M.A.B.); (S.G.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
4
|
Althobaiti NA, Menaa F, Albalawi AE, Dalzell JJ, Warnock ND, Mccammick EM, Alsolais A, Alkhaibari AM, Green BD. Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer's Disease. Cells 2021; 10:2481. [PMID: 34572130 PMCID: PMC8465914 DOI: 10.3390/cells10092481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer's disease (AD). AIM In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aβ) peptides (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. RESULTS We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-β (Aβ) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aβ isoforms (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16) impairs G. pallida's chemotaxis to differing extents; (iii) Aβ peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aβ (1-42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.
Collapse
Affiliation(s)
- Norah A. Althobaiti
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia
| | - Farid Menaa
- Departments of Internal Medicine and Advanced Technologies, Fluorotronics-California Innovations Corporation, San Diego, CA 92037, USA
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.E.A.); (A.M.A.)
| | - Johnathan J. Dalzell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Neil D. Warnock
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Erin M. Mccammick
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| | - Abdulellah Alsolais
- Nursing Department, Faculty of Applied Health Science, Shaqra University, Al Dawadmi 17452, Saudi Arabia;
| | - Abeer M. Alkhaibari
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.E.A.); (A.M.A.)
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (J.J.D.); (N.D.W.); (E.M.M.)
| |
Collapse
|
5
|
Mroczek T, Dymek A, Widelski J, Wojtanowski KK. The Bioassay-Guided Fractionation and Identification of Potent Acetylcholinesterase Inhibitors from Narcissus c.v. 'Hawera' Using Optimized Vacuum Liquid Chromatography, High Resolution Mass Spectrometry and Bioautography. Metabolites 2020; 10:metabo10100395. [PMID: 33020380 PMCID: PMC7599570 DOI: 10.3390/metabo10100395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Bioassay-guided isolation of bioactive compound is a modern and efficient technique in metabolites screening. It may shorten the total time of the entire process and reduce some costs of it. The aim of this paper was to fractionate and isolate alkaloids by developing an innovative vacuum liquid chromatography method for a species of Narcissus c.v. ‘Hawera’ rarely investigated so far and establishing the inhibitory activity of acetylcholinesterase (AChE). The studies consisted of the extraction of plant material by modern pressurized liquid extraction (PLE), followed by the isolation of alkaloidal fractions. For this purpose, the pioneering gradient vacuum liquid chromatography (gVLC) technique was employed by using two sorbents in various proportions packed in polypropylene cartridges for the first time. This step was performed in order to pre-clean the samples but also to establish the best combination of sorbents which permits obtaining potentially strong AChE inhibitors. The collected fractions were examined by HPLC/ESI-QTOF-MS in order to compare which combination of sorbents would allow us to obtain the highest concentration of alkaloids. The combination of these techniques confirmed the presence of the alkaloids and enabled the development of a modern method for the fractionation and isolation of the compounds with strong anti-AChE activity.
Collapse
|
6
|
Nobakht M, Trueman SJ, Wallace HM, Brooks PR, Streeter KJ, Katouli M. Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana. PLANTS 2017; 6:plants6030039. [PMID: 28906457 PMCID: PMC5620595 DOI: 10.3390/plants6030039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/16/2022]
Abstract
Traditional medicine and ecological cues can both help to reveal bioactive natural compounds. Indigenous Australians have long used kino from trunks of the eucalypt tree, Corymbia citriodora, in traditional medicine. A closely related eucalypt, C. torelliana, produces a fruit resin with antimicrobial properties that is highly attractive to stingless bees. We tested the antimicrobial activity of extracts from kino of C. citriodora, C. torelliana × C. citriodora, and C. torelliana against three Gram-negative and two Gram-positive bacteria and the unicellular fungus, Candida albicans. All extracts were active against all microbes, with the highest activity observed against P. aeruginosa. We tested the activity of seven flavonoids from the kino of C. torelliana against P. aeruginosa and S. aureus. All flavonoids were active against P. aeruginosa, and one compound, (+)-(2S)-4',5,7-trihydroxy-6-methylflavanone, was active against S. aureus. Another compound, 4',5,7-trihydroxy-6,8-dimethylflavanone, greatly increased biofilm formation by both P. aeruginosa and S. aureus. The presence or absence of methyl groups at positions 6 and 8 in the flavonoid A ring determined their anti-Staphylococcus and biofilm-stimulating activity. One of the most abundant and active compounds, 3,4',5,7-tetrahydroxyflavanone, was tested further against P. aeruginosa and was found to be bacteriostatic at its minimum inhibitory concentration of 200 µg/mL. This flavanonol reduced adhesion of P. aeruginosa cells while inducing no cytotoxic effects in Vero cells. This study demonstrated the antimicrobial properties of flavonoids in eucalypt kino and highlighted that traditional medicinal knowledge and ecological cues can reveal valuable natural compounds.
Collapse
Affiliation(s)
- Motahareh Nobakht
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | - Stephen J Trueman
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | - Helen M Wallace
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | - Peter R Brooks
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | - Klrissa J Streeter
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| | - Mohammad Katouli
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia.
| |
Collapse
|
7
|
Johnson RL, Anderson VJ, Yankee AT, Anderson Z. Seed Predation in Wild Populations of Chamisso Arnica (Arnica chamissonis Less: Asteraceae) and New Host Records for Campiglossa snowi (Hering) (Diptera: Tephritidae). WEST N AM NATURALIST 2017. [DOI: 10.3398/064.077.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Robert L. Johnson
- Department of Biology, Brigham Young University, Provo, UT 84602
- E-mail:
| | - Val J. Anderson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Adam T. Yankee
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - Zachary Anderson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| |
Collapse
|