1
|
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024; 12:1416. [PMID: 39061990 PMCID: PMC11274075 DOI: 10.3390/biomedicines12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Valproic acid (VPA) has anticancer, anti-inflammatory, and epigenetic effects. The study aimed to determine the expression of carcinogenesis-related SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 in adult glioblastoma U87 MG and T98G cells and the effects of 0.5 mM, 0.75 mM, and 1.5 mM doses of VPA. RNA gene expression was determined by RT-PCR. GAPDH was used as a control. U87 and T98G control cells do not express SLC5A8 or CDH1. SLC12A5 was expressed in U87 control but not in T98G control cells. The SLC12A2 expression in the U87 control was significantly lower than in the T98G control. T98G control cells showed significantly higher CDH2 expression than U87 control cells. VPA treatment did not affect SLC12A2 expression in U87 cells, whereas treatment dose-dependently increased SLC12A2 expression in T98G cells. Treatment with 1.5 mM VPA induced SLC5A8 expression in U87 cells, while treatment of T98G cells with VPA did not affect SLC5A8 expression. Treatment of U87 cells with VPA significantly increased SLC12A5 expression. VPA increases CDH1 expression depending on the VPA dose. CDH2 expression was significantly increased only in the U87 1.5 mM VPA group. Tested VPA doses significantly increased CDH2 expression in T98G cells. When approaching treatment tactics, assessing the cell's sensitivity to the agent is essential.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| |
Collapse
|
2
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Li J, Liu Y, Zheng R, Qu C, Li J. Molecular mechanisms of TACE refractoriness: Directions for improvement of the TACE procedure. Life Sci 2024; 342:122540. [PMID: 38428568 DOI: 10.1016/j.lfs.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Transcatheter arterial chemoembolisation (TACE) is the standard of care for intermediate-stage hepatocellular carcinoma and selected patients with advanced hepatocellular carcinoma. However, TACE does not achieve a satisfactory objective response rate, and the concept of TACE refractoriness has been proposed to identify patients who do not fully benefit from TACE. Moreover, repeated TACE is necessary to obtain an optimal and sustained anti-tumour response, which may damage the patient's liver function. Therefore, studies have recently been performed to improve the effectiveness of TACE. In this review, we summarise the detailed molecular mechanisms associated with TACE responsiveness and relapse after this treatment to provide more effective targets for adjuvant therapy while helping to improve TACE regimens.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingnan Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Chao Qu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
4
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Anagnostakis F, Kokkorakis M, Markouli M, Piperi C. Impact of Solute Carrier Transporters in Glioma Pathology: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24119393. [PMID: 37298344 DOI: 10.3390/ijms24119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Solute carriers (SLCs) are essential for brain physiology and homeostasis due to their role in transporting necessary substances across cell membranes. There is an increasing need to further unravel their pathophysiological implications since they have been proposed to play a pivotal role in brain tumor development, progression, and the formation of the tumor microenvironment (TME) through the upregulation and downregulation of various amino acid transporters. Due to their implication in malignancy and tumor progression, SLCs are currently positioned at the center of novel pharmacological targeting strategies and drug development. In this review, we discuss the key structural and functional characteristics of the main SLC family members involved in glioma pathogenesis, along with their potential targeting options to provide new opportunities for CNS drug design and more effective glioma management.
Collapse
Affiliation(s)
- Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Damanskienė E, Balnytė I, Valančiūtė A, Alonso MM, Stakišaitis D. Different Effects of Valproic Acid on SLC12A2, SLC12A5 and SLC5A8 Gene Expression in Pediatric Glioblastoma Cells as an Approach to Personalised Therapy. Biomedicines 2022; 10:968. [PMID: 35625705 PMCID: PMC9138981 DOI: 10.3390/biomedicines10050968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Valproic acid (VPA) is a histone deacetylase inhibitor with sex-specific immunomodulatory and anticancer effects. This study aimed to investigate the effect of 0.5 and 0.75 mM VPA on NKCC1 (SLC12A2), KCC2 (SLC12A5) and SLC5A8 (SLC5A8) co-transporter gene expressions in pediatric PBT24 (boy's) and SF8628 (girl's) glioblastoma cells. The SLC12A2, SLC12A5 and SLC5A8 RNA expressions were determined by the RT-PCR method. The SLC12A2 and SLC5A8 expressions did not differ between the PBT24 and SF8628 controls. The SLC12A5 expression in the PBT24 control was significantly higher than in the SF8628 control. VPA treatment significantly increased the expression of SLC12A2 in PBT24 but did not affect SF8628 cells. VPA increased the SLC12A5 expression in PBT24 and SF8628 cells. The SLC12A5 expression of the PBT24-treated cells was significantly higher than in corresponding SF8628 groups. Both VPA doses increased the SLC5A8 expression in PBT24 and SF8628 cells, but the expression was significantly higher in the PBT24-treated, compared to the respective SF8628 groups. The SLC5A8 expression in PBT24-treated cells was 10-fold higher than in SF8628 cells. The distinct effects of VPA on the expression of SLC12A2, SLC12A5 and SLC5A8 in PBT24 and SF8628 glioblastoma cells suggest differences in tumor cell biology that may be gender-related.
Collapse
Affiliation(s)
- Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| |
Collapse
|
7
|
Wang J, Liu W, Xu W, Yang B, Cui M, Li Z, Zhang H, Jin C, Xue H, Zhang J. Comprehensive Analysis of the Oncogenic, Genomic Alteration, and Immunological Landscape of Cation-Chloride Cotransporters in Pan-Cancer. Front Oncol 2022; 12:819688. [PMID: 35372048 PMCID: PMC8968682 DOI: 10.3389/fonc.2022.819688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Assessing the phenotypic diversity underlying tumor progression requires the identification of variations in the respective molecular interaction in the tumor microenvironment (TME). Despite emerging studies focusing on the association between cation-chloride cotransporters (CCCs) and carcinogenesis, direct evidence that CCCs (KCC2 and NKCC1) mediate tumor progression in pan-cancer remains unclear. Methods We conducted a comprehensive assessment of the expression, DNA variation profiles, and prognostic and immunologic implications of CCCs based on a large-scale pan-cancer population, including 10,967 cancer patients from the Cancer Genome Atlas, 9,162 cancer patients from Genomics Expression Omnibus, 48,834 cancer patients from 188 independent studies, and 356 cancer patients from three real-world cohorts. Results In this study, we first found that CCCs were highly expressed in most tumors, and prominently associated with prognosis. Kaplan-Meier analysis and Cox regression analysis revealed that KCC2 and NKCC1 significantly predicted survival for patients with pan-cancer, suggesting that CCCs have inconsistent tumorigenesis regulatory mechanisms in cancers. Next, we examined the DNA variation landscape of KCC2 and NKCC1 and their prognostic implications in pan-cancer. The results demonstrated that UCEC patients with somatic copy number variation (CNV) of NKCC1 received significantly better outcomes (p < 0.05). Besides emphasizing the clinical implications of CNV of CCCs for cancer patients, we found that NKCC1MUT could prominently prolong progression-free survival (p = 2.59e-04), disease-specific survival (p = 0.019), and overall survival (p = 0.034) compared with NKCC1WT cancer patients possibly via regulation of cell proliferation and oncogenic stress pathways. Additionally, KCC2 positively correlated with the levels of tumor-infiltrating macrophages and CD4+ T cells, but NKCC1 showed a significantly widely negative association with tumor-infiltrated lymphocytes, suggesting an immune-excluded TME in cancers. Similarly, expression of KCC2, rather than NKCC1, was positively correlated with the immune checkpoint molecules, indicating its role as an immune regulator in a wide variety of cancers. Finally, to verify our hypothesis and altered expression of CCCs, we performed IHC analysis and revealed the staining distribution in tumor and adjacent normal tissues of glioma, clear cell renal cell carcinoma, papillary cell renal cell carcinoma, and hepatocellular and breast cancer from three real-world cohorts, and validated prominently prognostic implications of CCCs in patients with clear cell renal cell carcinoma. Conclusion This study first comprehensively investigated the molecular and clinical role of CCCs, and illustrated the significant association among KCC2/NKCC1 expression, DNA variation profiles prognosis, and TME of pan-cancer. The pan-cancer findings provided an in-depth understanding of potential oncogenic and immunologic of differential expression and DNA alteration of KCC2/NKCC1 cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Baofeng Yang
- Department of Anesthesiology and Perioperative Medicine, Affiliate Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhu Cui
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chuntao Jin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huanzhou Xue
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Damanskienė E, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Stakišaitis D. The Different Temozolomide Effects on Tumorigenesis Mechanisms of Pediatric Glioblastoma PBT24 and SF8628 Cell Tumor in CAM Model and on Cells In Vitro. Int J Mol Sci 2022; 23:ijms23042001. [PMID: 35216113 PMCID: PMC8877228 DOI: 10.3390/ijms23042001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
It is necessary to elucidate the individual effects of temozolomide (TMZ) on carcinogenesis and tumor resistance to chemotherapy mechanisms. The study aimed to investigate the TMZ 50 and 100 μM dose effect difference between PBT24 and SF8628 cell line high-grade pediatric glioblastoma (phGBM) xenografts in a chicken chorioallantoic membrane (CAM) model, on PCNA and EZH2 immunohistochemical expression in the tumor and on the expression of NKCC1, KCC2, E- and N-cadherin genes in TMZ-treated and control cell groups in vitro. TMZ at a 100 μg dose reduced the incidence of PBT24 xenograft invasion into the CAM, CAM thickening and the number of blood vessels in the CAM (p < 0.05), but did not affect the SF8628 tumor in the CAM model. The TMZ impact on PBT24 and SF8628 tumor PCNA expression was similarly significantly effective but did not alter EZH2 expression in the studied tumors. The TMZ at 50 μM caused significantly increased RNA expression of the NKCC1 gene in both studied cell types compared with controls (p < 0.05). The expression of the KCC2 gene was increased in PBT24 TMZ-treated cells (p < 0.05), and no TMZ effect was found in SF8628-treated cells. The study supports the suggestion that individual sensitivity to TMZ should be assessed when starting treatment.
Collapse
Affiliation(s)
- Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
- Correspondence: (E.D.); (D.S.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
- Correspondence: (E.D.); (D.S.)
| |
Collapse
|
9
|
Smith TC, Vasilakos G, Shaffer SA, Puglise JM, Chou CH, Barton ER, Luna EJ. Novel γ-sarcoglycan interactors in murine muscle membranes. Skelet Muscle 2022; 12:2. [PMID: 35065666 PMCID: PMC8783446 DOI: 10.1186/s13395-021-00285-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sarcoglycan complex (SC) is part of a network that links the striated muscle cytoskeleton to the basal lamina across the sarcolemma. The SC coordinates changes in phosphorylation and Ca++-flux during mechanical deformation, and these processes are disrupted with loss-of-function mutations in gamma-sarcoglycan (Sgcg) that cause Limb girdle muscular dystrophy 2C/R5. METHODS To gain insight into how the SC mediates mechano-signaling in muscle, we utilized LC-MS/MS proteomics of SC-associated proteins in immunoprecipitates from enriched sarcolemmal fractions. Criteria for inclusion were co-immunoprecipitation with anti-Sgcg from C57BL/6 control muscle and under-representation in parallel experiments with Sgcg-null muscle and with non-specific IgG. Validation of interaction was performed in co-expression experiments in human RH30 rhabdomyosarcoma cells. RESULTS We identified 19 candidates as direct or indirect interactors for Sgcg, including the other 3 SC proteins. Novel potential interactors included protein-phosphatase-1-catalytic-subunit-beta (Ppp1cb, PP1b) and Na+-K+-Cl--co-transporter NKCC1 (SLC12A2). NKCC1 co-localized with Sgcg after co-expression in human RH30 rhabdomyosarcoma cells, and its cytosolic domains depleted Sgcg from cell lysates upon immunoprecipitation and co-localized with Sgcg after detergent permeabilization. NKCC1 localized in proximity to the dystrophin complex at costameres in vivo. Bumetanide inhibition of NKCC1 cotransporter activity in isolated muscles reduced SC-dependent, strain-induced increases in phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In silico analysis suggests that candidate SC interactors may cross-talk with survival signaling pathways, including p53, estrogen receptor, and TRIM25. CONCLUSIONS Results support that NKCC1 is a new SC-associated signaling protein. Moreover, the identities of other candidate SC interactors suggest ways by which the SC and NKCC1, along with other Sgcg interactors such as the membrane-cytoskeleton linker archvillin, may regulate kinase- and Ca++-mediated survival signaling in skeletal muscle.
Collapse
Affiliation(s)
- Tara C Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgios Vasilakos
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Scott A Shaffer
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Jason M Puglise
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Chih-Hsuan Chou
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, USA.
| | - Elizabeth J Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Hagiwara A, Bydder M, Oughourlian TC, Yao J, Salamon N, Jahan R, Villablanca JP, Enzmann DR, Ellingson BM. Sodium MR Neuroimaging. AJNR Am J Neuroradiol 2021; 42:1920-1926. [PMID: 34446457 PMCID: PMC8583254 DOI: 10.3174/ajnr.a7261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
Sodium MR imaging has the potential to complement routine proton MR imaging examinations with the goal of improving diagnosis, disease characterization, and clinical monitoring in neurologic diseases. In the past, the utility and exploration of sodium MR imaging as a valuable clinical tool have been limited due to the extremely low MR signal, but with recent improvements in imaging techniques and hardware, sodium MR imaging is on the verge of becoming clinically realistic for conditions that include brain tumors, ischemic stroke, and epilepsy. In this review, we briefly describe the fundamental physics of sodium MR imaging tailored to the neuroradiologist, focusing on the basics necessary to understand factors that play into making sodium MR imaging feasible for clinical settings and describing current controversies in the field. We will also discuss the current state of the field and the potential future clinical uses of sodium MR imaging in the diagnosis, phenotyping, and therapeutic monitoring in neurologic diseases.
Collapse
Affiliation(s)
- A Hagiwara
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - M Bydder
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - T C Oughourlian
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Neuroscience Interdepartmental Program (T.C.O., B.M.E.)
| | - J Yao
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Bioengineering (J.Y., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - N Salamon
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - R Jahan
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - J P Villablanca
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - D R Enzmann
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - B M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Bioengineering (J.Y., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
- Neuroscience Interdepartmental Program (T.C.O., B.M.E.)
- Department of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Stakišaitis D, Damanskienė E, Curkūnavičiūtė R, Juknevičienė M, Alonso MM, Valančiūtė A, Ročka S, Balnytė I. The Effectiveness of Dichloroacetate on Human Glioblastoma Xenograft Growth Depends on Na+ and Mg2+ Cations. Dose Response 2021; 19:1559325821990166. [PMID: 33716589 PMCID: PMC7923996 DOI: 10.1177/1559325821990166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
The study's aim was to investigate the effectiveness of sodium dichloroacetate (NaDCA) or magnesium dichloroacetate (MgDCA) on adult U87 MG and pediatric PBT24 cell lines glioblastoma (GB) xenografts in a chicken chorioallantoic membrane (CAM) model. The study groups were: treated with 10 mM, 5 mM of NaDCA, and 5 mM, 2.5 mM of MgDCA, and controls. The U87 MG and PBT24 xenografts growth, frequency of tumor invasion into CAM, CAM thickening, and the number of blood vessels in CAM differed depending on the dichloroacetate salt treatment. NaDCA impact on U87 MG and PBT24 tumor on proliferating cell nunclear antigen (PCNA) and enhancer of zeste homolog 2 (EZH2) expression in the tumor was different, depending on the NaDCA dose. The 5 mM MgDCA impact was more potent and had similar effects on U87 MG and PBT24 tumors, and its impact was also reflected in changes in PCNA and EZH2 expression in tumor cells. The U87 MG and PBT24 tumor response variations to treatment with different NaDCA concentration on tumor growth or a contrast between NaDCA and MgDCA effectiveness may reflect some differences in U87 MG and PBT24 cell biology.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Curkūnavičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Saulius Ročka
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
12
|
Hu Y, Lou J, Jin Z, Yang X, Shan W, Du Q, Liao Q, Xu J, Xie R. Advances in research on the regulatory mechanism of NHE1 in tumors. Oncol Lett 2021; 21:273. [PMID: 33717270 PMCID: PMC7885159 DOI: 10.3892/ol.2021.12534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Tumors pose a major threat to human health and present with difficulties that modern medicine has yet to overcome. It has been demonstrated that the acid-base balance of the tumor microenvironment is closely associated with the dynamic balance in the human body and that it regulates several processes, such as cell proliferation and differentiation, intracellular enzyme activity, and cytoskeletal assembly and depolymerization. It has been well established that the regulation of intra- and extracellular pH depends on a series of functional ion transporters and hydrogen ion channels, such as the Na+/H+ exchanger (NHE) protein and thee Cl/HCO3- exchange protein, among which the NHE1 member of the NHE family has been attracting increasing attention in recent years, particularly in studies on the correlation between pH regulation and tumors. NHE1 is a housekeeping gene encoding a protein that is widely expressed on the surface of all plasma membranes. Due to its functional domain, which determines the pHi at its N-terminus and C-terminus, NHE1 is involved in the regulation of the cellular pH microenvironment. It has been reported in the literature that NHE1 can regulate cell volume, participate in the transmembrane transport of intracellular and extracellular ions, affect cell proliferation and apoptosis, and regulate cell behavior and cell cycle progression; however, research on the role of NHE1 in tumorigenesis and tumor development in various systems is at its early stages. The aim of the present study was to review the current research on the correlation between the NHE family proteins and various systemic tumors, in order to indicate a new direction for antitumor drug development with the pH microenvironment as the target.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
13
|
Choudhari M, Hejmady S, Narayan Saha R, Damle S, Singhvi G, Alexander A, Kesharwani P, Kumar Dubey S. Evolving new-age strategies to transport therapeutics across the blood-brain-barrier. Int J Pharm 2021; 599:120351. [PMID: 33545286 DOI: 10.1016/j.ijpharm.2021.120351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
A basic understanding of the blood-brain barrier (BBB) is essential for the novel advancements in targeting drugs specific to the brain. Neoplasm compromising the internal structure of BBB that results in impaired vasculature is called as blood tumor barrier (BTB). Besides, the BBB serves as a chief hindrance to the passage of a drug into the brain parenchyma. The small and hydrophilic drugs majorly display an absence of desired molecular characteristics required to cross the BBB. Furthermore, all classes of biologics have failed in the clinical trials of brain diseases over the past years since these biologics are large molecules that do not cross the BBB. Also, new strategies have been discovered that use the Trojan horse technology with the re-engineered biologics for BBB transport. Thus, this review delivers information about the different grades of tumors (I-IV) i.e. examples of BBB/BTB heterogenicity along with the different mechanisms for transporting the therapeutics into the brain tumors by crossing BBB. This review also provides insights into the emerging approaches of peptide delivery and the non-invasive and brain-specific molecular Trojan horse targeting technologies. Also, the several challenges in the clinical development of BBB penetrating IgG fusion protein have been discussed.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ranendra Narayan Saha
- Birla Institute of Technology and Science, Pilani, Dubai Campus, United Arab Emirates
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd., Verna Industrial Estate, Verna 403722, Goa, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceutical Technology (Formulations), Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Government of India, Sila Village, Nizsundarighopa, Changsari, Kamrup (R), Guwahati, Assam 781101, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; R&D Healthcare Division Emami Ltd., 13, BT Road, Belgharia, Kolkata 700056, India.
| |
Collapse
|
14
|
Luo L, Wang J, Ding D, Hasan MN, Yang SS, Lin SH, Schreppel P, Sun B, Yin Y, Erker T, Sun D. Role of NKCC1 Activity in Glioma K + Homeostasis and Cell Growth: New Insights With the Bumetanide-Derivative STS66. Front Physiol 2020; 11:911. [PMID: 32848856 PMCID: PMC7413028 DOI: 10.3389/fphys.2020.00911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) is important in regulating intracellular K+ and Cl− homeostasis and cell volume. In this study, we investigated a role of NKCC1 in regulating glioma K+ influx and proliferation in response to apoptosis inducing chemotherapeutic drug temozolomide (TMZ). The efficacy of a new bumetanide (BMT)-derivative NKCC1 inhibitor STS66 [3-(butylamino)-2-phenoxy-5-[(2, 2, 2-trifluoroethylamino) methyl] benzenesulfonamide] in blocking NKCC1 activity was compared with well-established NKCC1 inhibitor BMT. Methods: NKCC1 activity in cultured mouse GL26 and SB28-GFP glioma cells was measured by Rb+ (K+) influx. The WNK1-SPAK/OSR1-NKCC1 signaling and AKT/ERK-mTOR signaling protein expression and activation were assessed by immunoblotting. Cell growth was determined by bromodeoxyuridine (BrdU) incorporation assay, MTT proliferation assay, and cell cycle analysis. Impact of STS66 and BMT on cell Rb+ influx and growth was measured in glioma cells treated with or without TMZ. Results: Rb+ influx assay showed that 10 μM BMT markedly decreased the total Rb+ influx and no additional inhibition detected at >10 μM BMT. In contrast, the maximum effects of STS66 on Rb+ influx inhibition were at 40–60 μM. Both BMT and STS66 reduced TMZ-mediated NKCC1 activation and protein upregulation. Glioma cell growth can be reduced by STS66. The most robust inhibition of glioma growth, cell cycle, and AKT/ERK signaling was achieved by the TMZ + STS66 treatment. Conclusion: The new BMT-derivative NKCC1 inhibitor STS66 is more effective than BMT in reducing glioma cell growth in part by inhibiting NKCC1-mediated K+ influx. TMZ + STS66 combination treatment reduces glioma cell growth via inhibiting cell cycle and AKT-ERK signaling.
Collapse
Affiliation(s)
- Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Jun Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dawei Ding
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Philipp Schreppel
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Baoshan Sun
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos, Portugal
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Harguindey S, Polo Orozco J, Alfarouk KO, Devesa J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019; 20:ijms20174278. [PMID: 31480530 PMCID: PMC6747469 DOI: 10.3390/ijms20174278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of cancer has been slowly but steadily progressing during the last fifty years. Some tumors with a high mortality in the past are curable nowadays. However, there is one striking exception: glioblastoma multiforme. No real breakthrough has been hitherto achieved with this tumor with ominous prognosis and very short survival. Glioblastomas, being highly glycolytic malignancies are strongly pH-dependent and driven by the sodium hydrogen exchanger 1 (NHE1) and other proton (H+) transporters. Therefore, this is one of those pathologies where the lessons recently learnt from the new pH-centered anticancer paradigm may soon bring a promising change to treatment. This contribution will discuss how the pH-centric molecular, biochemical and metabolic perspective may introduce some urgently needed and integral novel treatments. Such a prospective therapeutic approach for malignant brain tumors is developed here, either to be used alone or in combination with more standard therapies.
Collapse
Affiliation(s)
| | | | - Khalid O Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
- Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain
| |
Collapse
|
16
|
Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers (Basel) 2019; 11:cancers11081210. [PMID: 31434295 PMCID: PMC6721567 DOI: 10.3390/cancers11081210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
Sodium dichloroacetate (DCA) is an investigational medicinal product which has a potential anticancer preparation as a metabolic regulator in cancer cells’ mitochondria. Inhibition of pyruvate dehydrogenase kinases by DCA keeps the pyruvate dehydrogenase complex in the active form, resulting in decreased lactic acid in the tumor microenvironment. This literature review displays the preclinical research data on DCA’s effects on the cell pyruvate dehydrogenase deficiency, pyruvate mitochondrial oxidative phosphorylation, reactive oxygen species generation, and the Na+–K+–2Cl− cotransporter expression regulation in relation to gender. It presents DCA pharmacokinetics and the hepatocarcinogenic effect, and the safety data covers the DCA monotherapy efficacy for various human cancer xenografts in vivo in male and female animals. Preclinical cancer researchers report the synergistic effects of DCA combined with different drugs on cancer by reversing resistance to chemotherapy and promoting cell apoptosis. Researchers note that female and male animals differ in the mechanisms of cancerogenesis but often ignore studying DCA’s effects in relation to gender. Preclinical gender-related differences in DCA pharmacology, pharmacological mechanisms, and the elucidation of treatment efficacy in gonad hormone dependency could be relevant for individualized therapy approaches so that gender-related differences in treatment response and safety can be proposed.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania.
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 55 Pamplona, Spain.
| |
Collapse
|
17
|
Liskova V, Hudecova S, Lencesova L, Iuliano F, Sirova M, Ondrias K, Pastorekova S, Krizanova O. Type 1 Sodium Calcium Exchanger Forms a Complex with Carbonic Anhydrase IX and Via Reverse Mode Activity Contributes to pH Control in Hypoxic Tumors. Cancers (Basel) 2019; 11:cancers11081139. [PMID: 31395807 PMCID: PMC6721473 DOI: 10.3390/cancers11081139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
Hypoxia and acidosis are among the key microenvironmental factors that contribute to cancer progression. We have explored a possibility that the type 1Na+/Ca2+ exchanger (NCX1) is involved in pH control in hypoxic tumors. We focused on changes in intracellular pH, co-localization of NCX1, carbonic anhydrase IX (CA IX), and sodium proton exchanger type 1 (NHE1) by proximity ligation assay, immunoprecipitation, spheroid formation assay and migration of cells due to treatment with KB-R7943, a selective inhibitor of the reverse-mode NCX1. In cancer cells exposed to hypoxia, reverse-mode NCX1 forms a membrane complex primarily with CA IX and also with NHE1. NCX1/CA IX/NHE1 assembly operates as a metabolon with a potent ability to extrude protons to the extracellular space and thereby facilitate acidosis. KB-R7943 prevents formation of this metabolon and reduces cell migration. Thus, we have shown that in hypoxic cancer cells, NCX1 operates in a reverse mode and participates in pH regulation in hypoxic tumors via cooperation with CAIX and NHE1.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Sona Hudecova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Lubomira Lencesova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Filippo Iuliano
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Marta Sirova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia.
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, Trnava, 91701 Slovakia.
| |
Collapse
|
18
|
Juknevičienė M, Balnytė I, Valančiūtė A, Lesauskaitė V, Stanevičiūtė J, Curkūnavičiūtė R, Stakišaitis D. Valproic Acid Inhibits NA-K-2CL Cotransporter RNA Expression in Male But Not in Female Rat Thymocytes. Dose Response 2019; 17:1559325819852444. [PMID: 31210756 PMCID: PMC6545653 DOI: 10.1177/1559325819852444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023] Open
Abstract
Objective The NKCC1 is a recognized tumorigenesis marker as it is important for tumor cell proliferation, differentiation, apoptosis, and tumor progression. The study aim was to investigate the effect of sodium valproate (VPA) on thymus NKCC1 RNA expression. Material and Methods Wistar rats, age 4 to 5 weeks, were investigated in the control and VPA-treated male and female gonad-intact and castrated groups. The treatment duration with VPA 300 mg/kg/d was 4 weeks. Rat thymus was weighted; its lobe was taken for the expression of NKCC1 RNA determined by the real-time polymerase chain reaction method. Results The RNA expression of the Slc12a2 gene was found to be significantly higher in the gonad-intact male control compared with the gonad-intact female control (P = .04). There was a gender-related VPA treatment effect on NKCC1 RNA expression in thymus: The Slc12a2 gene RNA expression level was found to be decreased in VPA-treated gonad-intact males (P = .015), and no significant VPA effects were found in the castrated males and in the gonad-intact and castrated females compared with the respective controls (P > .05). Conclusions The study showed a gender-related difference in the NKCC1 RNA expression in rat thymus. The VPA decreases the NKCC1 expression in the thymus only in gonad-intact male rats. The NKCC1 RNA expression downregulation by VPA could be important for further VPA pharmacological studies in oncology.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Lesauskaitė
- Institute of Cardiology of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurate Stanevičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Curkūnavičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
19
|
Gender-Related Effect of Sodium Dichloroacetate on the Number of Hassall's Corpuscles and RNA NKCC1 Expression in Rat Thymus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602895. [PMID: 31179315 PMCID: PMC6507237 DOI: 10.1155/2019/1602895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/26/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
The aim was to investigate the effect of dichloroacetate (DCA) on thymus weight, Hassall's corpuscle number (HCs), and NKCC1 RNA expression in Wistar rats aged 4–5 weeks. They were investigated in the controls and DCA-treated gonad-intact and castrated males and females. The treatment lasted 4 weeks with DCA 200 mg/kg/day. At the end of the experiment, rat thymus was weighted, and its lobe was taken for the expression of NKCC1 RNA determined by the PCR method and of Hassall's corpuscles by immunohistochemistry. DCA caused a thymus weight decrease in DCA-treated gonad-intact rats of both genders as compared with their controls (p < 0.05), and no such impact was found in castrated DCA-treated males and females. DCA caused an increase of the HCs in gonad-intact males (p < 0.05), and no such increase in the DCA-treated gonad-intact females was found. There was gender-related difference in the HCs when comparing DCA-treated gonad-intact males and females: males showed significantly higher HCs (p < 0.05); no gender-related differences were found in the castrated DCA-treated groups. The Slc12a2 gene RNA expression level was found to be significantly decreased only in gonad-intact and in castrated DCA-treated males. The authors discuss the gender-related DCA effects on the thymus.
Collapse
|
20
|
Stanevičiūtė J, Juknevičienė M, Palubinskienė J, Balnytė I, Valančiūtė A, Vosyliūtė R, Sužiedėlis K, Lesauskaitė V, Stakišaitis D. Sodium Dichloroacetate Pharmacological Effect as Related to Na-K-2Cl Cotransporter Inhibition in Rats. Dose Response 2018; 16:1559325818811522. [PMID: 30479587 PMCID: PMC6247491 DOI: 10.1177/1559325818811522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
The study objective was to investigate a possible sodium dichloroacetate (DCA) pharmacological mechanism causing an increase in diuresis in rats. The aim was to define characteristics of 24-hour urinary Na+, K+, Cl-, Ca2+, and Mg2+ excretion in Wistar male rats and to evaluate effect of a single-dose DCA and repeated DCA dosage on diuresis. Six control and 6 DCA-treated male rats aged 5 to weeks after a single DCA dose and repeated dosage were tested. The single DCA dose treatment caused a significantly higher 24-hour diuresis when compared to control (P < .05), and it was related to increased Cl-, Na+, and K+ urine excretion and a significant increase in Ca2+ and Mg2+ excretion (P < .05); after the repeated 4-week DCA dosage, the diuresis was not increased, but the excretion of the Na+, Cl-, Ca2+, and Mg2+ ions was significantly higher. Kidney immunohistochemistry has revealed that DCA continuous treatment results in an increase in the size of Henle loop thick ascending limb epithelial cells (P < .001). The study results show a significantly reduced RNA expression of Na-K-2Cl co-transporter (NKCC1) in thymus of 4-week DCA-treated rats (P < .03). The study data have indicated a possible mechanism of such pharmacological effect to be NKCC inhibition.
Collapse
Affiliation(s)
- Jūratė Stanevičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Vosyliūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Vaiva Lesauskaitė
- Institute of Cardiology of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
21
|
Guan X, Luo L, Begum G, Kohanbash G, Song Q, Rao A, Amankulor N, Sun B, Sun D, Jia W. Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:255. [PMID: 30333031 PMCID: PMC6192309 DOI: 10.1186/s13046-018-0923-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Background Sodium/hydrogen exchanger 1 (NHE1), encoded by the SLC9A1 gene (SoLute Carrier family 9A1) in humans, is the main H+ efflux mechanism in maintaining alkaline intracellular pH (pHi) and Warburg effects in glioma. However, to date, there are no clinical studies exploring pharmacological inhibition of NHE1 protein in cancer treatment. In this study, we investigated NHE1 expression in gliomas and its relationship with glioma clinical outcome. Methods The Chinese Glioma Genome Atlas (CGGA) dataset containing transcriptome sequencing data of 325 glioma samples and the Cancer Genome Atlas (TCGA) with 698 glioma mRNAseq data were analyzed in this study. Mouse SB28 and GL26 intracranial syngeneic glioma models in C57BL/6 J mice were established to investigate NHE1 expression and impact of NHE1 protein inhibition with its inhibitor HOE642 on tumorigenesis and anti-PD1 therapy. Tumor angiogenesis, immunogenicity, and progression were assessed by immunofluorescence staining and flow cytometric profiling. Results Analysis of SLC9A1 mRNA expression in two data sets, CGGA and TCGA, reveals significantly higher SLC9A1 mRNA levels in higher grade gliomas. The SLC9A1 mRNA expression was especially enriched in isocitrate dehydrogenase (IDH)1/2 wild-type glioblastoma (GBM) and in mesenchymal glioma subtypes. Worsened survival probabilities were correlated with the elevated SLC9A1 mRNA levels in gliomas. The underlying mechanisms include promoting angiogenesis, and extracellular matrix remodeling. Increased SLC9A1 mRNA expression was also associated with tumor-associated macrophage accumulation. NHE1 inhibitor HOE642 reduced glioma volume, invasion, and prolonged overall survival in mouse glioma models. Blockade of NHE1 protein also stimulated immunogenic tumor microenvironment via activating CD8 T-cell accumulation, increasing expression of interferon-gamma (Ifng), and sensitized animals to anti-PD-1 therapy. Conclusion Our findings strongly suggest that NHE1 protein emerges as a marker for tumorigenesis and prognosis in glioma. Blocking NHE1 protein is a novel strategy for adjuvant anti-cancer therapies. Electronic supplementary material The online version of this article (10.1186/s13046-018-0923-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.,Chinese National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, 100050, China.,Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Lanxin Luo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qingkun Song
- Department of Science and Technology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Aparna Rao
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nduka Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Baoshan Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3 3501 Fifth Ave., Pittsburgh, PA, 15260, USA. .,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China. .,Chinese National Clinical Research Center for Neurological Diseases, Beijing, China. .,Beijing Neurosurgical Institute, Beijing, China. .,Chinese Glioma Genome Atlas Network, Beijing, 100050, China.
| |
Collapse
|
22
|
Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W, Sun D. Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis 2018; 9:1010. [PMID: 30262908 PMCID: PMC6160445 DOI: 10.1038/s41419-018-1062-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022]
Abstract
The weak immunogenicity of gliomas presents a barrier for effective immunotherapy. Na/H exchanger isoform 1 (NHE1) maintains alkaline intracellular pH (pHi) of glioma cells and acidic microenvironment. In addition, NHE1 is expressed in tumor-associated microglia and tumor-associated macrophages (TAMs) and involved in protumoral communications between glioma and TAMs. Therefore, we hypothesize that NHE1 plays a role in developing tumor resistance and immunosuppressive tumor microenvironment. In this study, we investigated the efficacy of pharmacological inhibition of NHE1 on combinatorial therapies. Here we show that temozolomide (TMZ) treatment stimulates NHE1 protein expression in two intracranial syngeneic mouse glioma models (SB28, GL26). Pharmacological inhibition of NHE1 potentiated the cytotoxic effects of TMZ, leading to reduced tumor growth and increased median survival of mice. Blockade of NHE1 stimulated proinflammatory activation of TAM and increased cytotoxic T cell infiltration into tumors. Combining TMZ, anti-PD-1 antibody treatment with NHE1 blockade significantly prolonged the median survival in the mouse glioma model. These results demonstrate that pharmacological inhibition of NHE1 protein presents a new strategy for potentiating TMZ-induced cytotoxicity and increasing tumor immunogenicity for immunotherapy to improve glioma therapy.
Collapse
Affiliation(s)
- Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Chinese National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria M Pigott
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Maria G Castro
- Department of Neurological Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Ma H, Li T, Tao Z, Hai L, Tong L, Yi L, Abeysekera IR, Liu P, Xie Y, Li J, Yuan F, Zhang C, Yang Y, Ming H, Yu S, Yang X. NKCC1 promotes EMT-like process in GBM via RhoA and Rac1 signaling pathways. J Cell Physiol 2018; 234:1630-1642. [PMID: 30159893 PMCID: PMC6282979 DOI: 10.1002/jcp.27033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022]
Abstract
Glioblastoma is the most common and lethal primary intracranial tumor. As the key regulator of tumor cell volume, sodium‐potassium‐chloride cotransporter 1 (NKCC1) expression increases along with the malignancy of the glioma, and NKCC1 has been implicated in glioblastoma invasion. However, little is known about the role of NKCC1 in the epithelial‐mesenchymal transition‐like process in gliomas. We noticed that aberrantly elevated expression of NKCC1 leads to changes in the shape, polarity, and adhesion of cells in glioma. Here, we investigated whether NKCC1 promotes an epithelial–mesenchymal transition (EMT)‐like process in gliomas via the RhoA and Rac1 signaling pathways. Pharmacological inhibition and knockdown of NKCC1 both decrease the expressions of mesenchymal markers, such as N‐cadherin, vimentin, and snail, whereas these treatments increase the expression of the epithelial marker E‐cadherin. These findings indicate that NKCC1 promotes an EMT‐like process in gliomas. The underlying mechanism is the facilitation of the binding of Rac1 and RhoA to GTP by NKCC1, which results in a significant enhancement of the EMT‐like process. Specific inhibition or knockdown of NKCC1 both attenuate activated Rac1 and RhoA, and the pharmacological inhibitions of Rac1 and RhoA both impair the invasion and migration abilities of gliomas. Furthermore, we illustrated that NKCC1 knockdown abolished the dissemination and spread of glioma cells in a nude mouse intracranial model. These findings suggest that elevated NKCC1 activity acts in the regulation of an EMT‐like process in gliomas, and thus provides a novel therapeutic strategy for targeting the invasiveness of gliomas, which might help to inhibit the spread of malignant intracranial tumors.
Collapse
Affiliation(s)
- Haiwen Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhennan Tao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Long Hai
- Department of Radiation Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Henan, China
| | - Luqing Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Iruni R Abeysekera
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yang Xie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Feng Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Chen Zhang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
25
|
Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 2018; 9:2167. [PMID: 29867199 PMCID: PMC5986890 DOI: 10.1038/s41467-018-04677-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl− cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics. Osmotic forces do not suffice to explain the rate of cerebrospinal fluid (CSF) production. Here, the authors show that the Na+/K+/2Cl− cotransporter in the choroid plexus contributes substantially to CSF production via its inherent ability to cotransport water.
Collapse
Affiliation(s)
- Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark.
| |
Collapse
|
26
|
Nunes Neto LP, Madelin G, Sood TP, Wu CC, Kondziolka D, Placantonakis D, Golfinos JG, Chi A, Jain R. Quantitative sodium imaging and gliomas: a feasibility study. Neuroradiology 2018; 60:795-802. [PMID: 29862413 DOI: 10.1007/s00234-018-2041-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Recent advances in sodium brain MRI have allowed for increased signal-to-noise ratio, faster imaging, and the ability of differentiating intracellular from extracellular sodium concentration, opening a new window of opportunity for clinical application. In gliomas, there are significant alterations in sodium metabolism, including increase in the total sodium concentration and extracellular volume fraction. The purpose of this study is to assess the feasibility of using sodium MRI quantitative measurements to evaluate gliomas. METHODS Eight patients with treatment-naïve gliomas were scanned at 3 T with a homemade 1H/23Na head coil, generating maps of pseudo-intracellular sodium concentration (C1), pseudo-extracellular volume fraction (α2), apparent intracellular sodium concentration (aISC), and apparent total sodium concentration (aTSC). Measurements were made within the contralateral normal-appearing putamen, contralateral normal-appearing white matter (NAWM), and solid tumor regions (area of T2-FLAIR abnormality, excluding highly likely areas of edema, cysts, or necrosis). Paired samples t test were performed comparing NAWM and putamen and between NAWM and solid tumor. RESULTS The normal-appearing putamen demonstrated significantly higher values for aTSC, aISC, C1 (p < 0.001), and α2 (p = 0.002) when compared to those of NAWM. The mean average of all solid tumors, when compared to that of NAWM, demonstrated significantly higher values of aTSC and α2 (p < 0.001), and significantly lower values of aISC (p = 0.02) for each patient. There was no significant difference between the values of C1 (p = 0.19). CONCLUSION Quantitative sodium measurements can be done in glioma patients and also has provided further evidence that total sodium and extracellular volume fraction are increased in gliomas.
Collapse
Affiliation(s)
- Lucidio P Nunes Neto
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Guillaume Madelin
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Terlika Pandit Sood
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Chih-Chun Wu
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Dimitris Placantonakis
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - John G Golfinos
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Andrew Chi
- Department of Medicine, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA. .,Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA.
| |
Collapse
|
27
|
Gill S, Gill R, Wen Y, Enderle T, Roth D, Liang D. A High-Throughput Screening Assay for NKCC1 Cotransporter Using Nonradioactive Rubidium Flux Technology. Assay Drug Dev Technol 2018. [PMID: 28631939 DOI: 10.1089/adt.2017.787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A high-throughput screening (HTS) assay was developed for cotransporter, NKCC1, which is a potential target for the treatment of diverse disorders. This nonradioactive rubidium flux assay coupled with ion channel reader series provides a working screen for this target expressed in human embryonic kidney (HEK) cell line. An eightfold window of detection was achieved with the optimized assay. This new functional assay offered a robust working model for NKCC1 in determining reliable and concordant rank orders of the test compounds supporting its sensitivity and specificity. The robustness of manual assay indicated by Z' of 0.9 qualified its amenability to automation. The Z' of 0.7 was displayed by automated assay employed in high-throughput screening of compound libraries against this target. Being electrically neutral, the NKCC1 screening is difficult to achieve by both manual and automated electrophysiological techniques. These techniques, although considered gold standard, suffer from their inherent problems of being too slow to be in high-throughput format and with high running costs. In addition to being a functional assay for NKCC1, it is nontoxic as compared with thallium flux assay, which is prone to generate high number of false-positive/false-negative rates because of its innate fluorescence issues.
Collapse
Affiliation(s)
| | | | - Yang Wen
- 2 Roche Innovation Center Basel , Hoffmann-La Roche, Basel, Switzerland
| | - Thilo Enderle
- 2 Roche Innovation Center Basel , Hoffmann-La Roche, Basel, Switzerland
| | - Doris Roth
- 2 Roche Innovation Center Basel , Hoffmann-La Roche, Basel, Switzerland
| | - Dong Liang
- 1 Aurora Biomed Inc. , Vancouver, Canada
| |
Collapse
|
28
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
29
|
Sizemore G, Lucke-Wold B, Rosen C, Simpkins JW, Bhatia S, Sun D. Temporal Lobe Epilepsy, Stroke, and Traumatic Brain Injury: Mechanisms of Hyperpolarized, Depolarized, and Flow-Through Ion Channels Utilized as Tri-Coordinate Biomarkers of Electrophysiologic Dysfunction. OBM NEUROBIOLOGY 2018; 2:009. [PMID: 29951646 PMCID: PMC6018002 DOI: 10.21926/obm.neurobiol.1802009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The brain is an integrated network of multiple variables that when compromised create a diseased state. The neuropathology of temporal lobe epilepsy (TLE), stroke, and traumatic brain injury (TBI) demonstrate both similarity and complexity that reflects this integrated variability; TLE with its live human tissue resection provides opportunity for translational science to demonstrate scale equivalent experimentation between the macroscopic world of clinical disease and the microscopic world of basic science. The extended value of this research is that the neuroinflammatory abnormalities that occur throughout astrocytes with hippocampal sclerosis and damaged or even reversed signaling pathways (inhibition to excitation such as with gaba-aminobutyric acid) are similar to those seen in post-stroke and TBI models. In evaluation of the epilepsy population this interconnectedness of pathology warrants further evaluation with collaborative efforts. This review summarizes patterns that could shift experimentation closer to the macro level of humanity, but still represent the micro world of genetics, epigenetics, and neuro-injury across etiologies of physiologic dysfunction such as TLE, stroke, and TBI with evaluation of cell function using electrophysiology. In conclusion we demonstrate the plausibility of electrophysiologic voltage and current measurement of brain tissue by patch clamp analysis to specify actual electrophysiologic function for comparison to electroencephalography in order to aid neurologic evaluation. Finally, we discuss the opportunity with multiscale modeling to display integration of the hyperpolarization cyclic-nucleotide gated channel, the depolarized calcium channels, and sodium-potassium-chloride-one/potassium-chloride-two co-transporter channels as potential mechanisms utilized as tri-coordinate biomarkers with these three forms of neurologic disease at a molecular scale of electrophysiologic pathology.
Collapse
Affiliation(s)
- Gina Sizemore
- Department of Clinical and Translational Science, West Virginia School of Medicine, Morgantown, WV
| | - Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia School of Medicine, Morgantown, WV
| | - Charles Rosen
- Department of Neurosurgery, West Virginia School of Medicine, Morgantown, WV
| | - James W. Simpkins
- Center for Basic and Translational Stroke Research, West Virginia School of Medicine, Morgantown, WV
| | - Sanjay Bhatia
- Department of Neurosurgery, West Virginia School of Medicine, Morgantown, WV
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
30
|
Xipell E, Gonzalez-Huarriz M, Martinez de Irujo JJ, García-Garzón A, Lang FF, Jiang H, Fueyo J, Gomez-Manzano C, Alonso MM. Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget 2017; 7:30626-41. [PMID: 27121320 PMCID: PMC5058706 DOI: 10.18632/oncotarget.8905] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/02/2016] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most frequent malignant brain tumor. Even with aggressive treatment, prognosis for patients is poor. One characteristic of glioblastoma cells is its intrinsic resistance to apoptosis. Therefore, drugs that induce alternative cell deaths could be interesting to evaluate as alternative therapeutic candidates for glioblastoma. Salinomycin (SLM) was identified through a chemical screening as a promising anticancer drug, but its mechanism of cell death remains unclear. In the present work we set out to elucidate how SLM causes cell death in glioblastoma cell lines (both established cell lines and brain tumor stem cell lines), aiming to find a potential antitumor candidate. In addition, we sought to determine the mechanism of action of SLM so that this mechanism can be can be exploited in the fight against cancer. Our data showed that SLM induces a potent endoplasmic reticulum (ER) stress followed by the trigger of the unfolded protein response (UPR) and an aberrant autophagic flux that culminated in necrosis due to mitochondria and lysosomal alterations. Of importance, the aberrant autophagic flux was orchestrated by the production of Reactive Oxygen Species (ROS). Alleviation of ROS production restored the autophagic flux. Altogether our data suggest that in our system the oxidative stress blocks the autophagic flux through lipid oxidation. Importantly, oxidative stress could be instructing the type of cell death in SLM-treated cells, suggesting that cell death modality is a dynamic concept which depends on the cellular stresses and the cellular mechanism activated.
Collapse
Affiliation(s)
- Enric Xipell
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | | | | | - Fred F Lang
- Brain Tumor Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Jiang
- Brain Tumor Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Fueyo
- Brain Tumor Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marta M Alonso
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| |
Collapse
|
31
|
Zhang J, Pu H, Zhang H, Wei Z, Jiang X, Xu M, Zhang L, Zhang W, Liu J, Meng H, Stetler RA, Sun D, Chen J, Gao Y, Chen L. Inhibition of Na +-K +-2Cl - cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int 2017; 111:23-31. [PMID: 28577991 DOI: 10.1016/j.neuint.2017.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) can lead to long-term motor and cognitive dysfunction, which can be at least partly attributed to blood-brain barrier (BBB) disruption. The mechanisms underlying post-TBI BBB disruption, however, are poorly understood thus far. Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) is a universally expressed ion transporter that maintains intracellular ion homeostasis by increasing intracellular K+ and Cl-. Having been characterized in stroke models, NKCC1 is activated in various cell types in the ischemic brain, and is thought to mediate BBB disruption, brain edema, and neuronal cell death. In this study, we tested the hypothesis that inhibition of NKCC1 may improve neurological outcomes via protecting against BBB disruption in a TBI mouse model. Adult male C57BL/6 J mice or NKCC1 deficient mice were subjected to controlled cortical impact (CCI). As an alternative to the genetic-based NKCC1 depletion, bumetanide, a selective NKCC1 inhibitor, was administrated (25 mg/kg, i.p.) 15 min after CCI and then every 6 h up to 48 h. Short-term sensorimotor function recovery was determined by rotarod, cylinder test, grid walking and foot fault test. BBB integrity was examined at 48 h post-CCI by measuring Evans blue extravasation, brain water content, and expression levels of tight junction proteins. Our results revealed that administration of bumetanide or genetic depletion of NKCC1 improved short-term neurological recovery against TBI. Bumetanide treatment markedly decreased brain water content and BBB leakage, correlated with reduction of MMP-9 expression and preventing the degradation of tight junction proteins. These findings suggest an important role of NKCC1 activation in mediating BBB disruption after TBI. Thus, NKCC1 inhibition may offer the potential for improving neurological outcomes in clinical TBI.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Hongjian Pu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Haiyue Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Zhishuo Wei
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Lili Zhang
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Wenting Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Jialin Liu
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Hengxing Meng
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Dandan Sun
- Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| | - Ling Chen
- Department of Neurosurgery, General Hospital of PLA, Beijing, China.
| |
Collapse
|
32
|
Pollak J, Rai KG, Funk CC, Arora S, Lee E, Zhu J, Price ND, Paddison PJ, Ramirez JM, Rostomily RC. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy. PLoS One 2017; 12:e0172884. [PMID: 28264064 PMCID: PMC5338779 DOI: 10.1371/journal.pone.0172884] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.
Collapse
Affiliation(s)
- Julia Pollak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Karan G. Rai
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Cory C. Funk
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Patrick J. Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Neurosurgery, University of Washington, Seattle, Washington, United States of America
| | - Robert C. Rostomily
- Department of Neurosurgery, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas, United States of America
| |
Collapse
|
33
|
Giampà M, Lissel MB, Patschkowski T, Fuchser J, Hans VH, Gembruch O, Bednarz H, Niehaus K. Maleic anhydride proton sponge as a novel MALDI matrix for the visualization of small molecules (<250 m/z) in brain tumors by routine MALDI ToF imaging mass spectrometry. Chem Commun (Camb) 2016; 52:9801-4. [DOI: 10.1039/c6cc02387h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel MALDI matrix MAPS, able to visualize deviating metabolism in glioma using a routine MALDI-ToF-MSI procedure, is presented.
Collapse
Affiliation(s)
- M. Giampà
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - M. B. Lissel
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - T. Patschkowski
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - J. Fuchser
- Bruker Daltonics GmbH
- BU Pharma
- 28259 Bremen
- Germany
| | - V. H. Hans
- Institut für Pathologie Ruhr-Universität Bochum
- 44789 Bochum
- Germany
- Institut für Neuropathologie
- Universitätsklinikum Essen (AöR)
| | - O. Gembruch
- Klinik für Neurochirurgie
- Universitätsklinikum Essen (AöR)
- 45147 Essen
- Germany
| | - H. Bednarz
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - K. Niehaus
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| |
Collapse
|