1
|
Wolska A, Drzewiecka-Antonik A, Barboza CA, Struga M, Stefanska J, Rejmak P, Klepka M. Structural and Biological Studies of Bioactive Silver(I) Complexes with Coumarin Acid Derivatives. Molecules 2024; 29:4993. [PMID: 39519634 PMCID: PMC11547378 DOI: 10.3390/molecules29214993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Two new Ag(I) complexes with coumaric carboxylic acid derivatives have been synthesized. Structural studies of these noncrystalline complexes have been performed using a methodology that combines laboratory and synchrotron techniques, supported by density functional theory calculations. The arrangement of ligands around the Ag(I) cation has been refined using infrared, extended X-ray absorption fine structure, and X-ray absorption near edge structure spectroscopies. Different coordination modes of carboxylate ligands are observed for the studied compounds. Carboxylate bridges are characteristic for the Ag(I) complex with 4-oxo-4H-1-benzopyran-2-carboxylic acid (1), while a bidentate chelating motif was found for the complex with 2-oxo-2H-1-benzopyran-3-carboxylic acid (2). Additionally, the carbonyl oxygen atom of the coumarin ring coordinates to the silver cation in complex 2, while it is inactive in complex 1. Antimicrobial evaluation has been performed for both compounds. The complexes show activity against selected bacteria as well as Candida yeast. This activity is slightly lower for bacteria and the same or higher for Candida in relation to the reference substances: ciprofloxacin or fluconazole.
Collapse
Affiliation(s)
- Anna Wolska
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Aleksandra Drzewiecka-Antonik
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Cristina Aparecida Barboza
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, PL-02097 Warsaw, Poland;
| | - Joanna Stefanska
- Department of Pharmaceutical Microbiology and Bioanalysis, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, PL-02097 Warsaw, Poland;
| | - Pawel Rejmak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| | - Marcin Klepka
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (A.D.-A.); (C.A.B.); (M.K.)
| |
Collapse
|
2
|
Hassoon AA, Smith SJ, Harrison RG. Cadmium and silver complexes of a pyridine containing ligand: syntheses, structural studies, biological activity and docking studies. RSC Adv 2024; 14:31850-31860. [PMID: 39380643 PMCID: PMC11459448 DOI: 10.1039/d4ra05305b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
The current study aimed to synthesize seven new metal coordination complexes (Q1-Q7) with potential biomedical applications. Novel mononuclear, polynuclear and mixed-ligand coordination compounds of the elements, cadmium(ii) and silver(i) derived from a pyridine containing ligand (2,4,6-tris-(2-pyridyl)-1,3,5-triazine (TPT)) have been synthesized successfully with the general formulae [Cd(TPT)Cl6]·H2O and [Ag x (TPT) y (L)2(ClO4)](ClO4) z (x = 1,2,3, y = 1,2,3, L = PPh3 or phen, z = 1,2). The structural features were fully characterized using various spectroscopic techniques, such as infrared, ultraviolet-visible spectroscopy, 1D and 2D-NMR (1H, 13C, 31P, 1H-1H COSY and 1H-13C HSQCAD), CHN analysis, molar conductance (Λ), thermogravimetric analysis (TGA), and powder X-ray diffraction analysis. The structure of complex Q6 was also confirmed by single-crystal X-ray analysis. The luminescence and electrochemical properties of complexes, in solution, have been studied. X-ray crystallographic determination of the [Ag(TPT)(PPh3)2]ClO4·EtOH (Q6) complex shows that the Ag+ cation is bonded to one tridentate TPT ligand through NNN set of donor atoms and two triphenylphosphine ligands, giving the Ag+ a distorted trigonal bipyramidal geometry. X-ray powder diffraction analysis showed that metal complexes Q3, Q6 and Q7 display crystalline peaks. The complexes were evaluated for their in vitro antibacterial efficacy against various bacterial and fungal species. The in vitro efficacy against the MCF-7 human breast cancer cell line was assessed to determine the anticancer activities. The tri-nuclear silver complex Q3 shows great potential as a therapeutic candidate for treating breast cancer, since it exhibits a half-maximal inhibition concentration (IC50) of 13.45 ± 0.9 μM. Molecular docking simulations were also carried out to evaluate the interaction strength and properties of the metal complexes with selected cancer and bacteria relevant proteins namely cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 6 (CDK6), signal transducer and activator of transcription 3 (STAT3), and beta-lactamases from Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Azza A Hassoon
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Stacey J Smith
- Department of Chemistry & Biochemistry, Brigham Young University USA
| | - Roger G Harrison
- Department of Chemistry & Biochemistry, Brigham Young University USA
| |
Collapse
|
3
|
Shao X, Xing F, Zhang Y, Lok CN, Che CM. Integrative chemoproteomics reveals anticancer mechanisms of silver(i) targeting the proteasome regulatory complex. Chem Sci 2024; 15:5349-5359. [PMID: 38577372 PMCID: PMC10988589 DOI: 10.1039/d3sc04834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Silver compounds have favorable properties as promising anticancer drug candidates, such as low side effects, anti-inflammatory properties, and high potential to overcome drug resistance. However, the exact mechanism by which Ag(i) confers anticancer activity remains unclear, which hinders further development of anticancer applications of silver compounds. Here, we combine thermal proteome profiling, cysteine profiling, and ubiquitome profiling to study the molecular mechanisms of silver(i) complexes supported by non-toxic thiourea (TU) ligands. Through the formation of AgTU complexes, TU ligands deliver Ag+ ions to cancer cells and tumour xenografts to elicit inhibitory potency. Our chemical proteomics studies show that AgTU acts on the ubiquitin-proteasome system (UPS) and disrupts protein homeostasis, which has been identified as a main anticancer mechanism. Specifically, Ag+ ions are released from AgTU in the cellular environment, directly target the 19S proteasome regulatory complex, and may oxidize its cysteine residues, thereby inhibiting proteasomal activity and accumulating ubiquitinated proteins. After AgTU treatment, proteasome subunits are massively ubiquitinated and aberrantly aggregated, leading to impaired protein homeostasis and paraptotic death of cancer cells. This work reveals the unique anticancer mechanism of Ag(i) targeting the 19S proteasome regulatory complex and opens up new avenues for optimizing silver-based anticancer efficacy.
Collapse
Affiliation(s)
- Xiaojian Shao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong P. R. China
| | - Fangrong Xing
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong P. R. China
| | - Yiwei Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong P. R. China
| | - Chun-Nam Lok
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong P. R. China
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories Hong Kong P. R. China
| |
Collapse
|
4
|
Pueyo J, Joven-Sancho D, Martín A, Menjón B, Baya M. The Fluoride Method: Access to Silver(III) NHC Complexes. Chemistry 2024; 30:e202303937. [PMID: 38157456 DOI: 10.1002/chem.202303937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
We have synthesized the first silver(III) carbene complexes, (CF3 )3 Ag(NHC), by direct reaction of the silver(III) fluoride precursor complex [PPh4 ][(CF3 )3 AgF] with different imidazolium salts. This novel methodology circumvents the use of free NHC molecules. The silver(III) carbene complexes thus prepared are unprecedented and show remarkable thermal stabilities. They display square-planar or square-pyramidal geometry. Following our calculations, the electronic structure of a model representative complex exhibits Inverse Ligand Field (ILF). The compounds reported herein are synthetic analogues of the elusive difluorocarbene and carbonyl species proposed as intermediates in the acidic decomposition of [Ag(CF3 )4 ]- . The synthetic procedure reported is envisaged to enable access to carbene complexes of other late transition-metals in high oxidation states.
Collapse
Affiliation(s)
- Juan Pueyo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Daniel Joven-Sancho
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| |
Collapse
|
5
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2023:10.1007/s10895-023-03494-8. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
6
|
Evans C, Ahmed M, Beirne DF, McCann M, Kavanagh K, Devereux M, Rooney D, Heaney F. Synthesis, characterisation, and solution behaviour of Ag(I) bis(phenanthroline-oxazine) complexes and the evaluation of their biological activity against the pathogenic yeast Candida albicans. Biometals 2023; 36:1241-1256. [PMID: 37378710 PMCID: PMC10684714 DOI: 10.1007/s10534-023-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Three Ag(I) bis(phenanthroline-oxazine) complexes with varying lipophilicity were synthesised and characterised. The solution stoichiometry of 1:2 Ag(I):ligand was determined for each complex by the continuous variation Job's plot method using NMR spectroscopy. NMR studies were also carried out to investigate the fluxional behaviour of the Ag(I) complexes in solution. The biological activity of the silver(I) complexes and the corresponding ligands towards a clinical strain of Candida albicans MEN was studied using broth microdilution assays. Testing showed the choice of media and the duration of incubation were key determinants of the inhibitory behaviour towards Candida albicans, however, the difference between freshly prepared and pre-prepared solutions was insignificant in minimal media. The activity of the metal-free ligands correlated with the length of the alkyl chain. In minimal media, the methyl ester phenanthroline-oxazine ligand was effective only at 60 μM, limiting growth to 67% of the control, while a 60 μM dose of the propyl ester analogue limited fungal growth at < 20% of the control. MIC50 and MIC80 values for the propyl and hexyl ester analogues were calculated to be 45 and 59 µM (propyl), and 18 and 45 µM (hexyl). Moreover, in a study of activity as a function of time it was observed that the hexyl ester ligand maintained its activity for longer than the methyl and propyl analogues; after 48 h a 60 μM dose held fungal growth at 24% of that of the control. Complexation to Ag(I) was much more effective in enhancing biological activity of the ligands than was increasing the ester chain length. Significantly no difference in activity between the three silver(I) complexes was observed under the experimental conditions. All three complexes were substantially more active than their parent ligands against Candida albicans and AgClO4 and the three silver(I) bis(phen-oxazine) complexes have MIC80 values of < 15 μM. The ability of the silver(I) complexes to hold fungal growth at about 20% of the control even after 48 h incubation at low dosages (15 μM) showcases their superiority over the simple silver(I) perchlorate salt, which ceased to be effective at dosages below 60 μM at the extended time point.
Collapse
Affiliation(s)
- Clara Evans
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Muhib Ahmed
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Darren F Beirne
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Kevin Kavanagh
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
- Department of Biology, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin 8, Ireland
| | - Denise Rooney
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland.
| | - Frances Heaney
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| |
Collapse
|
7
|
Kircheva N, Angelova S, Dobrev S, Petkova V, Nikolova V, Dudev T. Cu +/Ag + Competition in Type I Copper Proteins (T1Cu). Biomolecules 2023; 13:biom13040681. [PMID: 37189429 DOI: 10.3390/biom13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Due to the similarity in the basic coordination behavior of their mono-charged cations, silver biochemistry is known to be linked to that of copper in biological systems. Still, Cu+/2+ is an essential micronutrient in many organisms, while no known biological process requires silver. In human cells, copper regulation and trafficking is strictly controlled by complex systems including many cytosolic copper chaperones, whereas some bacteria exploit the so-called "blue copper" proteins. Therefore, evaluating the controlling factors of the competition between these two metal cations is of enormous interest. By employing the tools of computational chemistry, we aim to delineate the extent to which Ag+ might be able to compete with the endogenous copper in its Type I (T1Cu) proteins, and where and if, alternatively, it is handled uniquely. The effect of the surrounding media (dielectric constant) and the type, number, and composition of amino acid residues are taken into account when modelling the reactions in the present study. The obtained results clearly indicate the susceptibility of the T1Cu proteins to a silver attack due to the favorable composition and geometry of the metal-binding centers, along with the similarity between the Ag+/Cu+-containing structures. Furthermore, by exploring intriguing questions of both metals' coordination chemistry, an important background for understanding the metabolism and biotransformation of silver in organisms is provided.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
8
|
Elsayed SA, Saleh EE, Aboelnga MM, Toson EA. Experimental and computational studies of silver(I) dibenzoylmethane-based complexes, interaction with DNA/RNA/BSA biomolecules, and in vitro cytotoxic activity. J Inorg Biochem 2023; 241:112132. [PMID: 36701985 DOI: 10.1016/j.jinorgbio.2023.112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Two silver(I) complexes of composition [Ag2(L)2] (1) and [Ag(L)(PPh3)2](2) (HL = dibenzoyl- methane, PPh3 = triphenylphosphine) were synthesized and characterized by elemental analysis, FTIR, NMR, XRPD, and UV-visible spectra. The molecular structures of the studied ligands and Ag(I) complexes have been characterized using Density Function Theory (DFT) calculations. This analysis has enabled us to determine the reactivity and the coordination site(s) for each ligand. Ag(I) ion is found to be coordinated with the ligand's oxygens in almost a linear fashion in complex (1), while in complex (2) it adopts a tetrahedral geometry. The interaction compounds with biomolecules; calf thymus (ct DNA), yeast-tRNA, and bovine serum albumin (BSA) were investigated using both absorption and fluorescence spectroscopy. The in vitro cytotoxic studies of the complexes against normal human lung fibroblast (WI38), cancerous breast (MDA-MB-231), mammary gland breast (MCF7), hepatocellular (HePG2), and prostate (PC3) cell lines indicated that the complexes are highly toxic to the cancer cells but less toxic towards the normal one when compared with the ligand. Flow cytometric results showed that complex (1) induced cell cycle arrest at the G2/M phase, and complex (2) at G2/M and S phases. Moreover, the results of apoptotic genes (caspase3 and p53) and anti-apoptotic (Bcl2) led us to suggest an apoptotic killing mechanism of cells rather than a necrotic one.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Elham E Saleh
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Elshahat A Toson
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| |
Collapse
|
9
|
Hkiri S, Coşkun KA, Üstün E, Samarat A, Tutar Y, Şahin N, Sémeril D. Silver(I) Complexes Based on Oxadiazole-Functionalized α-Aminophosphonate: Synthesis, Structural Study, and Biological Activities. Molecules 2022; 27:8131. [PMID: 36500224 PMCID: PMC9738469 DOI: 10.3390/molecules27238131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Two silver(I) complexes, bis{diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-κN3:κN4-amino) (4-trifluoromethylphenyl)methyl]phosphonate-(tetrafluoroborato-κF)}-di-silver(I) and tetrakis-{diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-κN3-amino)(4-trifluoromethylphenyl)methyl]phosphonate} silver(I) tetrafluoroborate, were prepared starting from the diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-amino)(4-trifluoromethylphenyl)methyl]phosphonate (1) ligand and AgBF4 salt in Ag/ligand ratios of 1/1 and 1/4, respectively. The structure, stoichiometry, and geometry of the silver complexes were fully characterized by elemental analyses, infrared, single-crystal X-ray diffraction studies, multinuclear NMR, and mass spectroscopies. The binuclear complex ([Ag2(1)2(BF4)2]; 2) crystallizes in the monoclinic asymmetric space group P21/c and contains two silver atoms adopting a {AgN2F} planar trigonal geometry, which are simultaneously bridged by two oxadiazole rings of two ligands, while the mononuclear complex ([Ag(1)4]BF4; 3) crystallizes in the non-usual cubic space group Fd-3c in which the silver atom binds to four distinct electronically enriched nitrogen atoms of the oxadiazole ring, in a slightly distorted {AgN4} tetrahedral geometry. The α-aminophosphonate and the monomeric silver complex were evaluated in vitro against MCF-7 and PANC-1 cell lines. The silver complex is promising as a drug candidate for breast cancer and the pancreatic duct with half-maximal inhibitory concentration (IC50) values of 8.3 ± 1.0 and 14.4 ± 0.6 μM, respectively. Additionally, the interactions of the ligand and the mononuclear complex with Vascular Endothelial Growth Factor Receptor-2 and DNA were evaluated by molecular docking methods.
Collapse
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, University of Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Kübra Açıkalın Coşkun
- Department of Medical Biology and Genetics, Faculty of Medicine, University of İstanbul Aydın, Istanbul 34295, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, University of Ordu, Ordu 52200, Turkey
| | - Ali Samarat
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Yusuf Tutar
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences-Turkey, Istanbul 34668, Turkey
| | - Neslihan Şahin
- Department of Science Education, Faculty of Education, University of Cumhuriyet, Sivas 58140, Turkey
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, University of Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
10
|
Stability and Structure of Silver–l-methionine Complexes. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStability and structure of complexes between silver (I) and l-methionine (L) deduced from potentiometric and 1H NMR measurements allow to assume the prevailing of several protonated species. The experimental data are compatible with the formation of the following complexes: AgL, AgL2, AgH2L, AgH1L2, AgH2L2, AgH3L2 and AgH4L2. The coordination sites are obtained by 1H NMR spectra, showing that only the bond between the methylthioether sulfur atom and silver (I) is responsible of the complex stability. The system is studied potentiometrically with silver and glass electrodes at 25 °C and 1.00 mol·dm−3 NaClO4 as ionic medium. Amino acids containing sulfur are few and not extensively studied. In particular, l-methionine, even if it is the most important, enantiomer and their complexes with silver (I) present anticarcinogenic properties, is quite not investigated. In the same experimental conditions, l-methionine protonation constants are determined. The 1H NMR data allow one to assume that, in moderately alkaline solution, silver (I) is bond with six membered chelate rings with sulfur and amino nitrogen, while carboxylic groups are not involved. No polynuclear species are present. The high stability of the complex with ratio 1:2 (silver (I)/l-methionine), involving also two hydrogen ions, predominating in a wide range of hydrogen ion concentration suggests to propose a study for the preparation of an electrode to measure the deprotonated l-methionine concentration.
Collapse
|
11
|
Luciani L, Galassi R, Wang J, Marchini C, Cogo A, Di Paolo ML, Dalla Via L. Coinage Metal Compounds With 4-Methoxy-Diphenylphosphane Benzoate Ligand Inhibit Female Cancer Cell Growth. Front Chem 2022; 10:924584. [PMID: 35910727 PMCID: PMC9325969 DOI: 10.3389/fchem.2022.924584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
In the continuous effort to find new metal-based compounds as alternatives to platinum-related anticancer drugs, 11th group metal phosphane compounds have been thoroughly taken into consideration. Tris-arylphosphane metal derivatives have been extensively considered as heteroleptic metal compounds exhibiting remarkable cytotoxic activities. Functional groups in the aryl moieties modulate the activity reinforcing or eliminating it. Previous works have highlighted that the presence of hydrophilic groups in the phosphane ligands, such as COOH or OH, hampers the anticancer activity of gold azolate/PPh3 compounds. To increase the polarity of the triarylphosphane ligand without affecting the activity, we considered the preparation of esters starting from the 4-diphenylphosphane-benzoic acid. The resulting phosphanes are poorer donators than the PPh3, leading to poly-phosphane M(I) compounds, and they exhibit intense emissive properties. A homologous series of L3MX-type compounds (where M = Au and X = Cl, M = Cu and X = BF4, and M = Ag and X = PF6) were obtained with the 4-methoxy-diphenylphosphane benzoate. The homologous metal compounds have been characterized by analytical and spectroscopic methods and, remarkably, their formation was associated with high frequencies of 31P NMR chemical shift variations (5–35 ppm in CDCl3). The new complexes and the ligand were evaluated on sensitive and cisplatin-resistant human tumor cell lines. The ligand is ineffective on cells while the complexes exert a notable antiproliferative effect. The homologous series of the L3MX complexes were able to significantly reduce the cell viability of human triple-negative breast cancer cells (MDA-MB-231), representing the most aggressive subtype of breast cancer, and of ovarian carcinoma (A2780). Among these coinage metal compounds, L3AgPF6 results the most interesting, showing the lowest GI50 values in all cell lines. Interestingly, this silver complex is more cytotoxic than cisplatin, taken as reference drug. The investigation of the mechanism of action of L3AgPF6 in A2780 cells highlighted the induction of the apoptotic pathway, the depolarization of the mitochondrial inner membrane, and a significant accumulation in cells.
Collapse
Affiliation(s)
- Lorenzo Luciani
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Rossana Galassi
- School of Science and Technology, University of Camerino, Camerino, Italy
- *Correspondence: Rossana Galassi, ; Lisa Dalla Via,
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Alessia Cogo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Maria Luisa Di Paolo
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padova, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
- *Correspondence: Rossana Galassi, ; Lisa Dalla Via,
| |
Collapse
|
12
|
Ahmad S, Hanif M, Monim-ul-Mehboob M, Isab AA, Alotaibi MA, Ahmad T. Versatile coordination chemistry of mixed ligand silver(I) complexes of phosphanes and thioamides: Structural features and biological properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Guterres KB, Rossi GG, de Campos MMA, Moreira KS, Burgo TAL, Iglesias BA. Nanomolar effective and first report of tetra-cationic silver(II) porphyrins against non-tuberculous mycobacteria in antimicrobial photodynamic approaches. Photodiagnosis Photodyn Ther 2022; 38:102770. [DOI: 10.1016/j.pdpdt.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
14
|
Kaloğlu M, Kaloğlu N, Günal S, Özdemir İ. Synthesis of N-heterocyclic carbene-based silver complexes and their antimicrobial properties against bacteria and fungi. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2014457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Murat Kaloğlu
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Nazan Kaloğlu
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Selami Günal
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Drug Application and Research Center, İnönü University, Malatya, Turkey
| |
Collapse
|
15
|
Mnasri A, Mejri A, Al-Hazmy SM, Arfaoui Y, Özdemir I, Gürbüz N, Hamdi N. Silver-N-heterocyclic carbene complexes-catalyzed multicomponent reactions: Synthesis, spectroscopic characterization, density functional theory calculations, and antibacterial study. Arch Pharm (Weinheim) 2021; 354:e2100111. [PMID: 34128256 DOI: 10.1002/ardp.202100111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, silver-N-heterocyclic carbene (silver-NHCs) complexes are widely used in medicinal chemistry due to their low toxic nature toward humans. Due to the success of silver-NHCs in medicinal applications, interest in these compounds is rapidly increasing. Therefore, the interaction of N,N-disubstituted benzimidazolium salts with Ag2 O in dichloromethane to prepare novel Ag(I)-NHCs complexes was carried out at room temperature for 120 h in the absence of light. The obtained complexes were identified and characterized by 1 H and 13 C nuclear magnetic resonance, Fourier-transform infrared, UV-Vis, and elemental analysis techniques. Then, the silver complexes were applied for three-component coupling reactions of aldehydes, amines, and alkynes. The effect of changing the alkyl substituent on the NHCs ligand on the catalytic performance was investigated. In addition, it has been found that the complexes are antimicrobially active and show higher activity than the free ligand. The silver-carbene complexes showed antimicrobial activity against specified microorganisms with MIC values between 0.24 and 62.5 μg/ml. These results showed that the silver-NHC complexes exhibit an effective antimicrobial activity against bacterial and fungal strains. A density functional theory calculation study was performed to identify the stability of the obtained complexes. All geometries were optimized employing an effective core potential basis, such as LANL2DZ for the Ag atom and 6-311+G(d,p) for all the other atoms in the gas phase. Electrostatic potential surfaces and LUMO-HOMO energy were computed. Transition energies and excited-state structures were obtained from the time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Aziza Mnasri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia.,Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Amal Mejri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Sadeq M Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Ismail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia.,Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
16
|
Guarra F, Pratesi A, Gabbiani C, Biver T. A focus on the biological targets for coinage metal-NHCs as potential anticancer complexes. J Inorg Biochem 2021; 217:111355. [PMID: 33596529 DOI: 10.1016/j.jinorgbio.2021.111355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Metal complexes of N-heterocyclic carbene (NHC) ligands are the object of increasing attention for therapeutic purposes. Among the different metal centres, interest on Au-based compounds started with the application as anti-arthritis drugs. On the other hand, Ag(I) antimicrobial properties have been known for a long time. For Au(I)/Au(III)-NHC and Ag(I)-NHC anti-tumour and anti-proliferative properties have been quite recently demonstrated. In addition to these and as for Group 11, copper is a much less investigated metal centre, but a few papers underline its pharmacological potential. This review wants to focus on the different biological targets for these metal-based compounds. It is divided into chapters which are respectively devoted on: i) mitochondria and thiol oxidoreductase systems; ii) other relevant enzymes; iii) nucleic acids. Examples of representative coinage NHCs for each of the targets are provided together with significant references on recent advances on the topic. Moreover, a final comment summarises the aspects enlightened by each chapter and provides some hints to better understand the metal-NHCs mechanistic behaviour based on structure-activity relationships.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
17
|
Nayak S, Gaonkar SL. Coinage Metal N-Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem 2021; 16:1360-1390. [PMID: 33277791 DOI: 10.1002/cmdc.202000836] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/15/2022]
Abstract
New weapons are constantly needed in the fight against cancer. The discovery of cisplatin as an anticancer drug prompted the search for new metal complexes. The successful history of cisplatin motivated chemists to develop a plethora of metal-based molecules. Among them, metal-N-heterocyclic carbene (NHC) complexes have gained significant attention because of their suitable qualities for efficient drug design. The enhanced applications of coinage metal-NHC complexes have encouraged a gradually increasing number of studies in the fields of medicinal chemistry that benefit from the fascinating chemical properties of these complexes. This review aims to present recent developments in synthetic strategies and medicinal applications of copper, silver and gold complexes supported by NHC ligands.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
18
|
Affiliation(s)
- Sarah K. Pilz
- Anorganische Chemie Fakultät für Mathematik und Naturwissenschaften Bergische Universität Wuppertal 42119 Wuppertal Germany
| | - Fabian Mohr
- Anorganische Chemie Fakultät für Mathematik und Naturwissenschaften Bergische Universität Wuppertal 42119 Wuppertal Germany
| |
Collapse
|
19
|
Singh A, Goswami A, Nain S. Enhanced antibacterial activity and photo-remediation of toxic dyes using Ag/SWCNT/PPy based nanocomposite with core–shell structure. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01394-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Andrejević TP, Milivojevic D, Glišić BĐ, Kljun J, Stevanović NL, Vojnovic S, Medic S, Nikodinovic-Runic J, Turel I, Djuran MI. Silver(i) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens. Dalton Trans 2020; 49:6084-6096. [PMID: 32319493 DOI: 10.1039/d0dt00518e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infections of the cow udder leading to mastitis and lower milk quality are one of the biggest problems in the dairy industry worldwide. Unfortunately, therapeutic options for the treatment of cow mastitis are limited as a consequence of the development of pathogens that are resistant to conventionally used antibiotics. In the search for agents that will be active against cow mastitis associated pathogens, in the present study, five new silver(i) complexes with different chelating pyridine-4,5-dicarboxylate types of ligands, [Ag(NO3)(py-2py)]n (1), [Ag(NO3)(py-2metz)]n (2), [Ag(CH3CN)(py-2py)]BF4 (3), [Ag(py-2tz)2]BF4 (4) and [Ag(py-2metz)2]BF4 (5), py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, were synthesized, structurally characterized and assessed for in vitro antimicrobial activity using both standard bioassay and clinical isolates from a contaminated milk sample obtained from a cow with mastitis. These complexes showed remarkable activity against the standard panel of microorganisms and a selection of clinical isolates from the milk of the cow diagnosed with mastitis. With the aim of determining the therapeutic potential of silver(i) complexes, their toxicity in vivo against the model organism, Caenorhabditis elegans (C. elegans), was investigated. The complexes that had the best therapeutic profile, 2 and 5, induced bacterial membrane depolarization and the production of reactive oxygen species (ROS) in Candida albicans cells and inhibited the hyphae as well as the biofilm formation. Taken together, the presented data suggest that the silver(i) complexes with pyridine ligands could be considered for the treatment of microbial pathogens, which are causative agents of cow mastitis.
Collapse
Affiliation(s)
- Tina P Andrejević
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Budzisz E. Role of Metal Ions Complexes and their Ligands in Medicine, Pharmacy and Cosmetology. Curr Med Chem 2019; 26:578-579. [PMID: 30968767 DOI: 10.2174/092986732604190401100950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elzbieta Budzisz
- Cosmetic Raw Materials Chemistry Faculty of Pharmacy Medical University of Lodz, Poland
| |
Collapse
|
22
|
Kiss T, Enyedy ÉA, Jakusch T, Dömötör O. Speciation of Metal Complexes of Medicinal Interest: Relationship between Solution Equilibria and Pharmaceutical Properties. Curr Med Chem 2019. [DOI: 10.2174/0929867325666180307113435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biospeciation of essential and toxic metal ions, metal complexes with biological or
medicinal activity are discussed in the paper in order to emphasize the importance of the distribution
of metal ions in biological milieu. The exact knowledge of the chemical species present
in the different organs/compartments/fluids/cells may provide essential information about
the pharmacokinetic properties and the biological effect of the metal ion or the drug candidate
metal complex. The transport of essential and toxic metal ions in the blood serum is discussed
first, which is followed by the description of biodistribution of several important metal complexes
with medicinal interest such as (i) anticancer, (ii) insulin-enhancing and (iii) MRI contrast
agents in biological fluids.
Collapse
Affiliation(s)
- Tamás Kiss
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Éva A. Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Tamás Jakusch
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| |
Collapse
|