1
|
Eberli NS, Colas L, Gimalac A. Chrononutrition in traditional European medicine-Ideal meal timing for cardiometabolic health promotion. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:115-125. [PMID: 38472010 DOI: 10.1016/j.joim.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Meal timing plays a crucial role for cardiometabolic health, given the circadian regulation of cardiometabolic function. However, to the best of our knowledge, no concept of meal timing exists in traditional European medicine (TEM). Therefore, in this narrative review, we aim to define the optimal time slot for energy intake and optimal energy distribution throughout the day in a context of TEM and explore further implications. By reviewing literature published between 2002 and 2022, we found that optimal timing for energy intake may be between 06:00 and 09:00, 12:00 and 14:00, and between 15:00 and 18:00, with high energy breakfast, medium energy lunch and low energy dinner and possibly further adjustments according to one's chronotype and genetics. Also, timing and distribution of energy intake may serve as a novel therapeutic strategy to optimize coction, a concept describing digestion and metabolism in TEM. Please cite this article as: Eberli NS, Colas L, Gimalac A. Chrononutrition in traditional European medicine-Ideal meal timing for cardiometabolic health promotion. J Integr Med. 2024; 22(2);115-125.
Collapse
Affiliation(s)
- Nora Selena Eberli
- Department of Traditional European Medicine, Navi Institute of Research in Integrative Health, Ecole Professionnelle Supérieure de Naturopathie, Centre André Henzelin, 1066 Epalinges, Switzerland.
| | - Ludivine Colas
- Department of Traditional European Medicine, Navi Institute of Research in Integrative Health, Ecole Professionnelle Supérieure de Naturopathie, Centre André Henzelin, 1066 Epalinges, Switzerland
| | - Anne Gimalac
- Department of Traditional European Medicine, Navi Institute of Research in Integrative Health, Ecole Professionnelle Supérieure de Naturopathie, Centre André Henzelin, 1066 Epalinges, Switzerland
| |
Collapse
|
2
|
Sajjadpour Z, Hoseini Tavassol Z, Aghaei Meybodi HR, Eskandarynasab M, Pejman Sani M, Hasani-Ranjbar S, Larijani B. Evaluating the effectiveness of melatonin in reducing the risk of foot ulcers in diabetic patients. J Diabetes Metab Disord 2023; 22:1073-1082. [PMID: 37975123 PMCID: PMC10638255 DOI: 10.1007/s40200-023-01289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes and its complications, as a major health concern, are associated with morbidity and mortality around the world. One of these complications is diabetic foot ulcer. Factors such as hyperglycemia, neuropathy, vascular damage and impaired immune system can cause foot ulcers. The present review aims to study the potential effects of melatonin, the main product of pineal glands, on diabetic foot ulcers. Methods A narrative review was performed using present literature in an attempt to identify the different aspects of melatonin's impact on diabetic foot ulcers by searching related keywords in electronic databases without any restriction. Results This review shows that, melatonin has anti-diabetic effects. It is effective in reducing the risk of hyperglycemia, neuropathy, vascular damage and immune system impairment in diabetic patients. By reducing these complications with melatonin, correspondingly, the incidence of diabetic foot ulcers may also decrease in these patients. Conclusions The results of this study indicate promising properties of melatonin while dealing with diabetic foot ulcers and their common underlying conditions, but still, it needs to be investigated more in future studies.
Collapse
Affiliation(s)
- Zahra Sajjadpour
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Eskandarynasab
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Pejman Sani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Elmahallawy EK, Alsharif KF, Alblihd MA, Hamad AA, Nasreldin N, Alsanie W, Aljoudi AM, Oyouni AAA, Al-Amer OM, Albarakati AJA, Lokman MS, Albrakati A, Ali FAZ. Melatonin ameliorates serobiochemical alterations and restores the cardio-nephro diabetic vascular and cellular alterations in streptozotocin-induced diabetic rats. Front Vet Sci 2023; 10:1089733. [PMID: 37065258 PMCID: PMC10102477 DOI: 10.3389/fvets.2023.1089733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
Melatonin possesses a wide range of pharmacological activities, including antidiabetic properties. Diabetes mellitus (DM) induces several physiopathological changes in body organs, which could be observed lately after systemic failure. In the current study, we aimed to investigate the serobiochemical changes and the histopathological picture in the diabetic heart and the kidney early before chronic complications and highlight the association between hyperglycemia, glomerular alterations, and cardiovascular changes. In addition, the role of melatonin in the treatment of cardio-nephro diabetic vascular and cellular adverse changes in streptozotocin-induced diabetic rats was also studied. A total of 40 mature Wistar albino rats were distributed into five groups; (1) control untreated rats, (2) diabetic mellitus untreated (DM) rats, in which DM was induced by the injection of streptozotocin (STZ), (3) control melatonin-treated (MLT), (4) melatonin-treated diabetic (DM + MLT) rats, in which melatonin was injected (10 mg/kg/day, i.p.) for 4 weeks, and (5) insulin-treated diabetic (DM + INS) rats. The serum biochemical analysis of diabetic STZ rats showed a significant (P < 0.05) increase in the concentrations of blood glucose, total oxidative capacity (TOC), CK-MB, endothelin-1, myoglobin, H-FABP, ALT, AST, urea, and creatinine as compared to control rats. In contrast, there was a significant (P < 0.05) decrease in serum concentration of insulin, total antioxidative capacity (TAC), total nitric oxide (TNO), and total protein level in DM rats vs. the control rats. Significant improvement in the serobiochemical parameters was noticed in both (DM + MLT) and (DM + INS) groups as compared with (DM) rats. The histological examination of the DM group revealed a disorder of myofibers, cardiomyocyte nuclei, and an increase in connective tissue deposits in between cardiac tissues. Severe congestion and dilation of blood capillaries between cardiac muscle fibers were also observed. The nephropathic changes in DM rats revealed various deteriorations in glomeruli and renal tubular cells of the same group. In addition, vascular alterations in the arcuate artery at the corticomedullary junction and interstitial congestion take place. Melatonin administration repaired all these histopathological alterations to near-control levels. The study concluded that melatonin could be an effective therapeutic molecule for restoring serobiochemical and tissue histopathological alterations during diabetes mellitus.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Khalaf F. Alsharif
| | - Mohamed A. Alblihd
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
4
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Ocak Ö, Silan F, Şahin EM. Melatonin receptor gene polymorphisms as a risk factor in patients with diabetic peripheral neuropathy. Diabetes Metab Res Rev 2022; 38:e3573. [PMID: 36018079 DOI: 10.1002/dmrr.3573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/24/2022] [Indexed: 11/08/2022]
Abstract
AIMS Oxidative stress plays an important role in the pathogenesis of diabetic peripheral neuropathy (DPN). Melatonin is one of the most powerful endogenous antioxidants and has anti-inflammatory properties. We investigated how the gene polymorphism of melatonin differs in patients with DPN compared to an healthy control group. MATERIALS AND METHODS A total of 54 diabetic peripheral neuropathy patients who applied to the Neurology outpatient clinic between 2020 and 2021, and 53 healthy controls comparable with the patient group in terms of age and gender were included in the study. Electromyography was performed and the melatonin gene polymorphism was analysed using the pyrosequencing method. RESULTS Melatonin gene variants rs2119882, rs13140012, and rs10830963 were analysed in patients and controls. The rs2119882 (G allele) has a protective role, and rs13140012 polymorphism has a related 5-fold higher risk of DPN in the recessive model. CONCLUSIONS Melatonin gene polymorphisms have been shown to be associated with DPN. This is the first and only study investigating the relationship between melatonin gene polymorphisms and DPN. Ethnicity is very important in genetic studies, and it will give us more information on the role of melatonin gene variants in larger study groups of diabetic patients of other ethnic origin.
Collapse
Affiliation(s)
- Özgül Ocak
- Department of Neurology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Erkan Melih Şahin
- Department of Family Medicine, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
6
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
7
|
Melatonin Type 2 Receptor Activation Regulates Blue Light Exposure-Induced Mouse Corneal Epithelial Damage by Modulating Impaired Autophagy and Apoptosis. Int J Mol Sci 2022; 23:ijms231911341. [PMID: 36232639 PMCID: PMC9569495 DOI: 10.3390/ijms231911341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The MT1/2 receptors, members of the melatonin receptor, belong to G protein-coupled receptors and mainly regulate circadian rhythms and sleep in the brain. Previous studies have shown that in many other cells and tissues, such as HEK293T cells and the retina, MT1/2 receptors can be involved in mitochondrial homeostasis, antioxidant, and anti-inflammatory responses. In our study, we aimed to investigate the effects of blue light (BL) exposure on the expression of melatonin and its receptors in the mouse cornea and to evaluate their functional role in corneal epithelial damage. After exposing 8-week-old C57BL/6 mice to BL at 25 and 100 J/cm2 twice a day for 14 days, a significant increase in the expression of 4-HNE and MT2 was observed in the cornea. MT2 antagonist-treated mice exposed to BL showed an increased expression of p62 and decreased expression of BAX and cleaved caspase 3 compared with mice exposed only to BL. In addition, MT2 antagonist-treated mice showed more enhanced MDA and corneal damage. In conclusion, BL exposure can induce MT2 expression in the mouse cornea. MT2 activation can modulate impaired autophagy and apoptosis by increasing the expression of BAX, an apoptosis activator, thereby regulating the progression of corneal epithelial damage induced by BL exposure.
Collapse
|
8
|
Cui L, Zhao X, Jin Z, Wang H, Yang SF, Hu S. Melatonin modulates metabolic remodeling in HNSCC by suppressing MTHFD1L-formate axis. J Pineal Res 2021; 71:e12767. [PMID: 34533844 DOI: 10.1111/jpi.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Metabolic remodeling is now widely recognized as a hallmark of cancer, yet its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. In this study, metabolomic analysis of melatonin-treated HNSCC cell lines revealed that exogenous melatonin inhibited many important metabolic pathways including folate cycle in HNSCC cells. Methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L), a metabolic enzyme of the folate cycle regulating the production of formate, was identified as a downstream target of melatonin. MTHFD1L was found to be markedly upregulated in HNSCC, and MTHFD1L overexpression was significantly associated with unfavorable clinical outcome of HNSCC patients. In addition, MTHFD1L promoted HNSCC progression in vitro and in vivo and reversed the oncostatic effects of exogenous melatonin. More importantly, the malignant phenotypes suppressed by knockdown of MTHFD1L or exogenous melatonin could be partially rescued by formate. Furthermore, we found that melatonin inhibited the expression of MTHFD1L in HNSCC cells through the downregulation of cyclic AMP-responsive element-binding protein 1 (CREB1) phosphorylation. Lastly, this novel regulatory axis of melatonin-p-CREB1-MTHFD1L-formate was also verified in HNSCC tissues. Collectively, our findings have demonstrated that MTHFD1L-formate axis promotes HNSCC progression and melatonin inhibits HNSCC progression through CREB1-mediated downregulation of MTHFD1L and formate. These findings have revealed new metabolic mechanisms in HNSCC and may provide novel insights on the therapeutic intervention of HNSCC.
Collapse
Affiliation(s)
- Li Cui
- School of Dentistry, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhenning Jin
- School of Dentistry, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shen Hu
- School of Dentistry, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Özşimşek A, Nazıroğlu M. The involvement of TRPV4 on the hypoxia-induced oxidative neurotoxicity and apoptosis in a neuronal cell line: Protective role of melatonin. Neurotoxicology 2021; 87:136-148. [PMID: 34562506 DOI: 10.1016/j.neuro.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 01/30/2023]
Abstract
The hypoxia (HYPX)-mediated excessive generation of mitochondrial free reactive oxygen species (mROS) and the overload Ca2+ influx via the inhibition of TRPV4 are controlled by the treatment of antioxidants. However, the molecular mechanisms underlying melatonin (MLT)'s neuroprotection remains elusive. We investigated the role of MLT via modulation of TRPV4 on oxidative neurodegeneration and death in SH-SY5Y neuronal cells. The SH-SY5Y cells were divided into five groups as follows: control, MLT (1 mM for 2 h), HYPX (200 μM CoCl2 for 24 h), HYPX + MLT, and HYPX + TRPV4 blockers (ruthenium red-1 μM for 30 min). The HYPX caused to the increase of TRPV4 current density and overload Ca2+ influx with an increase of mitochondrial membrane potential and mROS generation. The changes were not observed in the absence of TRPV4. When HYPX exposure and TRPV4 agonist (GSK1016790A)-induced TRPV4 activity were inhibited by the treatment of ruthenium red or MLT, the increase of mROS, lipid peroxidation, apoptosis, Zn2+ concentrations, TRPV4, caspase -3, caspase -9, Bax, and Bcl-2 expressions were restored via upregulation of reduced glutathione, glutathione peroxidase, and total antioxidant status. The levels of apoptosis and cell death in the cells were enriched with increases of caspase -3 and -9 activations, although they were decreased by MLT treatment. In conclusion, the treatment of MLT modulates HYPX-mediated mROS, apoptosis, and TRPV4-mediated overload Ca2+ influx and may provide an avenue for protecting HYPX-mediated neurological diseases associated with the increase of mROS, Ca2+, and Zn2+ concentration.
Collapse
Affiliation(s)
- Ahmet Özşimşek
- Department of Neurology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey; Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry and Trade LTD, Isparta, Turkey.
| |
Collapse
|
10
|
Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME. Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon 2021; 7:e06474. [PMID: 33748504 PMCID: PMC7970364 DOI: 10.1016/j.heliyon.2021.e06474] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathy and pancreatic injury are health issues associated with type 2 diabetes mellitus (T2DM) and are characterized by elevated oxidative stress, inflammation and apoptosis. Melatonin (MLT) is a hormone with multifunctional antioxidant activity. The protective effects of MLT on the heart and pancreas during the early development of diabetic cardiomyopathy and pancreatic injury were investigated in male Wistar rats with T2DM. MLT (10 mg/kg) was administered daily by gavage for 15 days after diabetic induction. Treatment of diabetic rats with MLT significantly normalized the levels of serum glucose, HbA1-c, and the lipid profile and improved the insulin levels and insulin resistance compared with diabetic rats, affirming its antidiabetic effect. MLT significantly prevented the development of oxidative stress and sustained the levels of glutathione and glutathione peroxidase activity in the heart and pancreas of diabetic animals, indicating its antioxidant capacity. Additionally, MLT prevented the increase in proinflammatory cytokines and expression of Bax, caspase-3 and P53. Furthermore, MLT enhanced the anti-inflammatory cytokine IL-10 and antiapoptotic protein Bcl-2. MLT controlled the levels of troponin T and creatine kinase-MB and lactate dehydrogenase activity, indicating its anti-inflammatory and antiapoptotic effects. Histological examinations confirmed the protective effects of MLT on T2DM-induced injury in the myocardium, pancreas and islets of Langerhans. In conclusion, the protective effects of melatonin on the heart and pancreas during the early development of T2DM are attributed to its antihyperglycemic, antilipidemic and antioxidant influences as well as its remarkable anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
| | | | - Sameh Shabana
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I. Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E. Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Ramirez AVG, Filho DR, de Sá LBPC. Melatonin and its Relationships with Diabetes and Obesity: A Literature Review. Curr Diabetes Rev 2021; 17:e072620184137. [PMID: 32718296 DOI: 10.2174/1573399816666200727102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is an important clinical entity, causing many public health issues. Around two billion people in the world are overweight and obese. Almost 40% of American adults are obese and Brazil has about 18 million obese people. Nowadays, 415 million people have diabetes, around 1 in every 11 adults. These numbers will rise to 650 million people within 20 years. Melatonin shows a positive profile on the regulation of the metabolism of the human body. OBJECTIVE This study aimed to carry out a broad narrative review of the metabolic profile and associations between melatonin, diabetes and obesity. METHODS Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, and placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the content part of the paper, and 153 studies composed the narrative review. RESULTS Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding the possible benefit of it. There is so far no consensus about the possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Ana V G Ramirez
- Clinic Ana Valeria (CAV)- Clinic of Nutrition and Health Science, Street Antônio José Martins Filho, 300, Sao Jose do Rio Preto SP, 15092-230, Brazil
| | - Durval R Filho
- Associacao Brasileira de Nutrologia (ABRAN)/Brazilian Association of Nutrology, Catanduva/SP, Rua Belo Horizonte, 909 - Centro, Catanduva SP, Brazil
| | | |
Collapse
|
12
|
Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12:30. [PMID: 32280378 PMCID: PMC7140344 DOI: 10.1186/s13098-020-00537-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes and diabetic complications are considered as leading causes of both morbidity and mortality in the world. Unfortunately, routine medical treatments used for affected patients possess undesirable side effects, including kidney and liver damages as well as gastrointestinal adverse reactions. Therefore, exploring the novel therapeutic strategies for diabetic patients is a crucial issue. It has been recently shown that melatonin, as main product of the pineal gland, despite its various pharmacological features including anticancer, anti-aging, antioxidant and anti-inflammatory effects, exerts anti-diabetic properties through regulating various cellular mechanisms. The aim of the present review is to describe potential roles of melatonin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Rosado JA, Redondo Liberal PC. Special Issue on New Cellular, Genetic and Proteomic Tools in the Prevention and Management of Diabetes Mellitus. Curr Med Chem 2019; 26:4100-4101. [PMID: 31612806 DOI: 10.2174/092986732622190920091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Juan A Rosado
- Department of Physiology University of Extremadura, Spain
| | | |
Collapse
|
14
|
Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Biosci Rep 2019; 39:BSR20181614. [PMID: 30578379 PMCID: PMC6331666 DOI: 10.1042/bsr20181614] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022] Open
Abstract
Background and aims: Diabetic kidney is more sensitive to ischemia/reperfusion (I/R) injury, which is associated with increased oxidative stress and impaired nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Melatonin, a hormone that is secreted with the rhythm of the light/dark cycle, has antioxidative effects in reducing acute kidney injury (AKI). However, the molecular mechanism of melatonin protection against kidney I/R injury in the state of diabetes is still unknown. In the present study, we hypothesized that melatonin attenuates renal I/R injury in diabetes by activating silent information regulator 2 associated protein 1 (SIRT1) expression and Nrf2/HO-1 signaling. Methods: Control or streptozotocin (STZ)-induced Type 1 diabetic rats were treated with or without melatonin for 4 weeks. Renal I/R injury was achieved by clamping both left and right renal pedicles for 30 min followed by reperfusion for 48 h. Results: Diabetic rats that were treated with melatonin undergoing I/R injury prevented renal injury from I/R, in aspects of the histopathological score, cell apoptosis, and oxidative stress in kidney, accompanied with decreased expressions of SIRT1, Nrf2, and HO-1 as compared with those in control rats. All these alterations were attenuated or prevented by melatonin treatment; but these beneficial effects of melatonin were abolished by selective inhibition of SIRT1 with EX527. Conclusion: These findings suggest melatonin could attenuate renal I/R injury in diabetes, possibly through improving SIRT1/Nrf2/HO-1 signaling.
Collapse
|
15
|
Rodríguez-Nogales C, Noguera R, Couvreur P, Blanco-Prieto MJ. Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. J Pharmacol Exp Ther 2019; 370:625-635. [DOI: 10.1124/jpet.118.255067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
|
16
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
17
|
Protective Effect of Melatonin against Oxidative Stress-Induced Apoptosis and Enhanced Autophagy in Human Retinal Pigment Epithelium Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9015765. [PMID: 30174783 PMCID: PMC6098907 DOI: 10.1155/2018/9015765] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) affects the retinal macula and results in loss of vision, and AMD is the primary cause of blindness and severe visual impairment among elderly people worldwide. AMD is characterized by the accumulation of drusen in the Bruch's membrane and dysfunction of retinal pigment epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD remains unclear, and no effective treatment exists. Accumulating evidence indicates that oxidative stress plays a critical role in RPE cell degeneration and AMD. Melatonin is an antioxidant that scavenges free radicals, and it has anti-inflammatory, antitumor, and antiangiogenic effects. This study investigated the antioxidative, antiapoptotic, and autophagic effects of melatonin on oxidative damage to RPE cells. We used hydrogen peroxide (H2O2) to stimulate reactive oxygen species production to cause cell apoptosis in ARPE-19 cell lines. Our findings revealed that treatment with melatonin significantly inhibited H2O2-induced RPE cell damage, decreased the apoptotic rate, increased the mitochondrial membrane potential, and increased the autophagy effect. Furthermore, melatonin reduced the Bax/Bcl-2 ratio and the expression levels of the apoptosis-associated proteins cytochrome c and caspase 7. Additionally, melatonin upregulated the expression of the autophagy-related proteins LC3-II and Beclin-1 and downregulated the expression of p62. Thus, melatonin's effects on autophagy and apoptosis can protect against H2O2-induced oxidative damage in human RPE cells. Melatonin may have multiple protective effects on human RPE cells against H2O2-induced oxidative damage.
Collapse
|