1
|
Zhou T, Zhang DD, Jin J, Xie J, Yu J, Zhu C, Wan R. Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC. Sci Rep 2025; 15:657. [PMID: 39753728 PMCID: PMC11698864 DOI: 10.1038/s41598-024-84553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken. Bioinformatics methods were employed to systematically investigate the potential carcinogenic impact of SMAD3. We extensively harnessed data from authoritative sources, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), cBioPortal, Human Protein Atlas (HPA), UALCAN, and various other databases. Our study encompassed a comprehensive analysis of the following aspects: differential SMAD3 expression and its association with prognosis across diverse cancer types, gene mutations, immune cell infiltration, single-cell sequencing analysis, DNA methylation patterns, and drug sensitivity profiles. In vitro experiments were conducted with the primary objective of appraising both the expression profile and the precise functional attributes of SMAD3 within the milieu of Liver Hepatocellular Carcinoma (LIHC). Our findings revealed significant variations in SMAD3 expression between cancerous and adjacent normal tissues. High levels of SMAD3 expression were consistently associated with unfavorable prognoses across multiple cancer types,. Additionally, our analysis of SMAD3 methylation patterns in human cancers unveiled a favorable prognosis linked to elevated DNA methylation levels in pan-cancer. Furthermore, we identified positive associations between SMAD3 expression and RNAm6A methylation-related genes in the majority of cancers. Moreover, SMAD3 expression displayed substantial correlations with immune cell infiltration. Notably, immune checkpoint genes exhibited significant associations with SMAD3 expression across diverse cancers. Single-cell sequencing results elucidated the pan-cancer single-cell expression landscape of SMAD3. Within specific cancer subtypes, SMAD3 expression exhibited a noteworthy positive association with distinctive facets of malignancy. Finally, in our comprehensive analysis of drug sensitivity, we discerned a catalog of prospective therapeutic agents. In our comprehensive analysis across multiple cancer types, we observed a significant disparity in SMAD3 expression compared to normal tissues, and this findings suggest that SMAD3 holds promise as both a prognostic biomarker and a therapeutic target against various cancers. Difference displayed a noteworthy association with patient prognosis.
Collapse
Affiliation(s)
- Tao Zhou
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Dan Dan Zhang
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Jinyang Xie
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Hu L, Su L, Wang Z, Yang J, Wang Y, Wang J, Gu X, Wang H. Application of acid-activated near-infrared viscosity fluorescent probe targeting lysosomes in cancer visualization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124918. [PMID: 39096675 DOI: 10.1016/j.saa.2024.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The higher viscosity and lower pH in lysosomes of cancer cells highlight their potential as biomarkers for cancer. Therefore, the development of acid-activated viscosity fluorescent probes is significant for the early diagnosis and treatment of cancer. Based on this, we have designed and synthesized a near-infrared fluorescent probe based on the 2-(2-hydroxyphenyl)benzothiazole (HBT) group, namely HBTH, to monitor the viscosity changes within lysosomes. It has been demonstrated that HBTH was extremely sensitive to viscosity, with a strong linear relationship between fluorescence intensity and log(viscosity) within the range of (logη) = 0-3.06 (a correlation coefficient of 0.98), proving its capability for quantitative viscosity measurement. In particular, the most obvious fluorescence enhancement of HBTH was only efficiently triggered by the combined effect of low pH and high viscosity. Furthermore, HBTH can rapidly localize to lysosomes by wash-free procedure at a low concentration (100 nM) and achieve high-fidelity imaging within 20 s. It can also monitor the dynamic processes of lysosomes in cells, viscosity changes under drug stimuli, and lysosomal behavior during mitophagy. Importantly, HBTH is capable of identifying tumors in tumor-bearing nude mice through in vivo imaging. These features make HBTH a powerful tool for the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Liping Su
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Zhiyu Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jing Yang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yuqing Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jie Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xiaoxia Gu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
3
|
Fang Z, Fu J, Chen X. A combined immune and exosome-related risk signature as prognostic biomakers in acute myeloid leukemia. Hematology 2024; 29:2300855. [PMID: 38186215 DOI: 10.1080/16078454.2023.2300855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is one of the common hematological diseases with low survival rates. Studies have highlighted the dysregulated expression of immune-related and exosome-related genes (ERGs) in cancers. Nevertheless, it remains to be determined whether combining these genes have a prognostic significance in AML. METHODS Immune-ERG profiles for 151 AML patients from TCGA were analyzed. A risk model was constructed and optimized through the combination of univariate Cox regression and LASSO regression analysis. GEO datasets were utilized as the external validation for the robustness of the risk model. In addition, we performed KEGG and GO enrichment analyses to investigate the role played by these genes in AML. The variations in immune cell infiltrations among risk groups were assessed through four algorithms. Expression of hub gene in specific cell was analyzed by single-cell RNA seq. RESULTS A total of 85 immune-ERGs associated with prognosis were identified, enabling the construction of a risk model for AML. The risk model based on five immune-ERGs (CD37, NUCB2, LSP1, MGST1, and PLXNB1) demonstrated a correlation with the clinical outcomes. Additionally, age, FAB classification, cytogenetics risk, and risk score were identified as independent prognostic factors. The five immune-ERGs exhibited correlations with cytokine-cytokine receptor interaction, and antigen processing and presentation. Notably, the risk model demonstrated significant associations with immune responses and the expression of immune checkpoints. CONCLUSIONS An immune-ERG-based risk model was developed to effectively predict prognostic outcomes for AML patients. There is potential for immune therapy in AML targeting the five hub genes.
Collapse
Affiliation(s)
- Zenghui Fang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Jiali Fu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Xin Chen
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| |
Collapse
|
4
|
Shi K, Wang XY, Huang LD, Guo Q, Yuan W, Lv Y, Li D. Biological functions and molecular mechanisms of LINC01116 in cancer. Heliyon 2024; 10:e38490. [PMID: 39512466 PMCID: PMC11539247 DOI: 10.1016/j.heliyon.2024.e38490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
LINC01116, a long non-coding RNA (lncRNA), serves as an important regulator in the progression of cancer cells and has attracted increased attention in biological fields. It is overexpressed in various cancer cells and is significantly correlated with cancer development and poor prognosis in cancer patients. Moreover, LINC01116 regulates the gene expression of various cancers through intricate pathways, such as sponging the microRNAs or other non-genic manners. These signaling pathways greatly affect the cancer's biological functions, including cell growth, migration, invasion, and chemoresistance. Hence, LINC01116 may serve as a prognostic biomarker and therapeutic target for human cancer. This paper summarizes the current evidence regarding the biological functions and molecular mechanisms of LINC01116 in the progression of cancer, providing theoretical references for LINC01116-related cancer treatment in the future.
Collapse
Affiliation(s)
- Ke Shi
- Department of Thoracic Surgery, Beilun District People's Hospital of Ningbo, Ningbo City, China
| | - Xue-Ying Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Li-De Huang
- Department of Pain management, People's Hospital of Shiyan City, Hubei Medical University, Shiyan City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wei Yuan
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Yan Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
5
|
Lim CH, Um SW, Kim HK, Choi YS, Pyo HR, Ahn MJ, Choi JY. 18F-Fluorodeoxyglucose Positron Emission Tomography-Based Risk Score Model for Prediction of Five-Year Survival Outcome after Curative Resection of Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:2525. [PMID: 39061165 PMCID: PMC11274931 DOI: 10.3390/cancers16142525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of our retrospective study is to develop and assess an imaging-based model utilizing 18F-FDG PET parameters for predicting the five-year survival in non-small-cell lung cancer (NSCLC) patients after curative surgery. A total of 361 NSCLC patients who underwent curative surgery were assigned to the training set (n = 253) and the test set (n = 108). The LASSO regression model was used to construct a PET-based risk score for predicting five-year survival. A hybrid model that combined the PET-based risk score and clinical variables was developed using multivariate logistic regression analysis. The predictive performance was determined by the area under the curve (AUC). The individual features with the best predictive performances were co-occurrence_contrast (AUC = 0.675) and SUL peak (AUC = 0.671). The PET-based risk score was identified as an independent predictor after adjusting for clinical variables (OR 5.231, 95% CI 1.987-6.932; p = 0.009). The hybrid model, which integrated clinical variables, significantly outperformed the PET-based risk score alone in predictive accuracy (AUC = 0.771 vs. 0.696, p = 0.022), a finding that was consistent in the test set. The PET-based risk score, especially when integrated with clinical variables, demonstrates good predictive ability for five-year survival in NSCLC patients following curative surgery.
Collapse
Affiliation(s)
- Chae Hong Lim
- Department of Nuclear Medicine, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Hong Ryul Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
6
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Qin W, Fei G, Zhou Q, Li Z, Li W, Wei P. Nuclear protein NOP2 serves as a poor-prognosis predictor of LUAD and aggravates the malignancy of lung adenocarcinoma cells. Funct Integr Genomics 2024; 24:58. [PMID: 38489049 DOI: 10.1007/s10142-024-01337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Recent studies have shown that NOP2, a nucleolar protein, is up-regulated in various cancers, suggesting a potential link to tumor aggressiveness and unfavorable outcomes. This study examines NOP2's role in lung adenocarcinoma (LUAD), a context where its implications remain unclear. Utilizing bioinformatics, we assessed 513 LUAD and 59 normal tissue samples from The Cancer Genome Atlas (TCGA) to explore NOP2's diagnostic and prognostic significance in LUAD. Additionally, in vitro experiments compared NOP2 expression between Beas-2b and A549 cells. Advanced databases and analytical tools, including LINKEDOMICS, STRING, and TISIDB, were employed to further elucidate NOP2's association with LUAD. Our findings indicate a significantly higher expression of NOP2 mRNA and protein in A549 cells compared to Beas-2b cells (P < 0.001). In LUAD, elevated NOP2 levels were linked to decreased Overall Survival (OS) and advanced clinical stages. Univariate Cox analysis revealed that high NOP2 expression correlated with poorer OS in LUAD (P < 0.01), a finding independently supported by multivariate Cox analysis (P < 0.05). The relationship between NOP2 expression and LUAD risk was presented via a Nomogram. Additionally, Gene Set Enrichment Analysis (GSEA) identified seven NOP2-related signaling pathways. A focal point of our research was the interplay between NOP2 and tumor-immune interactions. Notably, a negative correlation was observed between NOP2 expression and the immune infiltration levels of macrophages, neutrophils, mast cells, Natural Killer (NK) cells, and CD8 + T cells in LUAD. Moreover, the expression of NOP2 was related to the sensitivity of various chemotherapeutic drugs. In vitro, we found that downregulating NOP2 can decrease the proliferation, migration and invasion of A549 cells. Furthermore, NOP2 can regulate Caspase3-mediated apoptosis. Collectively, particularly regarding prognosis, immune infiltration and vitro experiments, these findings suggest NOP2's potential of serving as a poor-prognostic biomarker for LUAD and aggravating the malignancy of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Weizhuo Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Gaoqiang Fei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Qian Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Zhijie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China
| | - Wei Li
- Department of Quality Management, Children's Hospital of Nanjing Medical University, No. 8 Jiangdong South Road, Jianye District, Nanjing City, 210008, Jiangsu Province, China.
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing City, 210009, Jiangsu Province, China.
| |
Collapse
|
8
|
Wang Z, Zhang Y, Yang X, Zhang T, Li Z, Zhong Y, Fang Y, Chong W, Chen H, Lu M. Genetic and molecular characterization of metabolic pathway-based clusters in esophageal squamous cell carcinoma. Sci Rep 2024; 14:6200. [PMID: 38486026 PMCID: PMC10940668 DOI: 10.1038/s41598-024-56391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive types of squamous cell carcinoma and represents a significant proportion of esophageal cancer. Metabolic reprogramming plays a key role in the occurrence and development of ESCC. Unsupervised clustering analysis was employed to stratify ESCC samples into three clusters: MPC1-lipid type, MPC2-amino acid type, and MPC3-energy type, based on the enrichment scores of metabolic pathways extracted from the Reactome database. The MPC3 cluster exhibited characteristics of energy metabolism, with heightened glycolysis, cofactors, and nucleotide metabolism, showing a trend toward increased aggressiveness and poorer survival rates. On the other hand, MPC1 and MPC2 primarily involved lipid and amino acid metabolism, respectively. In addition, liquid chromatography‒mass spectrometry-based metabolite profiles and potential therapeutic agents were explored and compared among ESCC cell lines with different MPCs. MPC3 amplified energy metabolism markers, especially carnitines. In contrast, MPC1 and MPC2 predominantly had elevated levels of lipids (primarily triacylglycerol) and amino acids, respectively. Furthermore, MPC3 demonstrated a suboptimal clinical response to PD-L1 immunotherapy but showed increased sensitivity to the doramapimod chemotherapy regimen, as evident from drug sensitivity evaluations. These insights pave the way for a more personalized therapeutic approach, potentially enhancing treatment precision for ESCC patients.
Collapse
Affiliation(s)
- Ze Wang
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Zhang
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhen Li
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yang Zhong
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Fang
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Chen
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Ming Lu
- Clinical Epidemiology Unit, Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Qiao Y, Shi Y, Ji M, Wang Z, Bai X, Zhang K, Yin K, Zhang Y, Chen X, Zhang Y, Lu J, Zhao J, Liu K, Yuan B. Selection and identification of a prohibitin 2-binding DNA aptamer for tumor tissue imaging and targeted chemotherapy. Int J Biol Macromol 2024; 259:129002. [PMID: 38176501 DOI: 10.1016/j.ijbiomac.2023.129002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Tumor cell-targeting molecules play a vital role in cancer diagnosis, targeted therapy, and biomarker discovery. Aptamers are emerging as novel targeting molecules with unique advantages in cancer research. In this work, we have developed several DNA aptamers through cell-based systematic evolution of ligands by exponential enrichment (Cell-SELEX). The selected SYL-6 aptamer can bind to a variety of cancer cells with high signal. Tumor tissue imaging demonstrated that SYL-6-Cy5 fluorescent probe was able to recognize multiple clinical tumor tissues but not the normal tissues, which indicates great potential of SYL-6 for clinical tumor diagnosis. Meanwhile, we identified prohibitin 2 (PHB2) as the molecular target of SYL-6 using mass spectrometry, pull-down and RNA interference assays. Moreover, SYL-6 can be used as a delivery vehicle to carry with doxorubicin (Dox) chemotherapeutic agents for antitumor targeted chemotherapy. The constructed SYL-6-Dox can not only selectively kill tumor cells in vitro, but also inhibit tumor growth with reduced side effects in vivo. This work may provide a general tumor cell-targeting molecule and a potential biomarker for cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanli Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Pathology, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| | - Mengmeng Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhaoting Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue Bai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kai Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yangyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yueteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, Henan, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China.
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
10
|
Zhang Y, Yang Y, Kuang S, Zhang Y, Qin H, Xie J. GPX3-Mediated Oxidative Stress Affects Pyrimidine Metabolism Levels in Stomach Adenocarcinoma via the AMPK/mTOR Pathway. Int J Clin Pract 2024; 2024:6875417. [PMID: 38322113 PMCID: PMC10846926 DOI: 10.1155/2024/6875417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Background Amino acid metabolism, including ATP production, nucleotide synthesis, and redox homeostatic processes, are associated with proliferation and differentiation of tumor cells. This study aimed to identify novel prognostic biomarkers and potential therapeutic targets of amino acid metabolism-related genes for stomach adenocarcinoma (STAD). Methods RNA sequencing transcriptome data in the TCGA-STAD (training set) and GTEx datasets (validation set) were used. The LIMMA R program enabled the differentially expressed amino acid metabolism-related genes (AAMRGs) to be found. A prognostic risk score model based on clinical phenotypic features was built using LASSO regression and step multi-Cox analyses. Gene set enrichment analysis (GSEA) was used to find potential molecular pathways associated with STAD. Hierarchical cluster analysis was used to evaluate pyrimidine metabolism. Cultured STAD cells assessed the proliferation of STAD and upregulation of GPX3 expression by CCK8 and flow cytometry. Transwell and wound healing assays assessed the impact of GPX3 on invasion and migration of STAD cells. Western blot and qRT-PCR were used to measure changes in pyrimidine metabolism-related markers and active molecules involved in the AMPK/mTOR signaling pathway. Results Three AAMRGs, DNMT1, F2R, and GPX3, could independently predict the course of STAD. Pyrimidine metabolism appeared to be significantly associated with these by GSEA and clustering analyses. Pyrimidine metabolism was negatively correlated with GPX3. Functional studies using an overexpressed GPX3 plasmid showed an enhanced migration and invasion of STAD cells as well as the expression of genes associated with pyrimidine metabolism and the AMPK/mTOR signaling pathway. By using a CAD siRNA, it was found that that GPX3 affected 5-fluorouracil resistance during de novo synthesis of pyrimidine through the CAD-UMPS signaling axis. Conclusions GPX3 which regulates the level of pyrimidine metabolism through the AMPK/mTOR pathway was found to be closely associated with STAD. Our findings demonstrate GPX3 is a reliable biomarker for the prognosis of amino acid metabolism and a probable target for STAD therapy.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Yixin Yang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Shanshan Kuang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Yang Zhang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Hancheng Qin
- Department of Pathophysiology, Youjiang Medical University for Nationalities, Baise, China
| | - Jisheng Xie
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
11
|
Zhang Z, Tian C, Liu Y, Zhang L, Sun H, He S, Liu Y, Fan H, Zhang Y, Gao M, Wu S. Tumor abnormal protein as a promising biomarker for screening solid malignancies and monitoring recurrence and metastasis. Front Oncol 2023; 13:1290791. [PMID: 38115905 PMCID: PMC10728811 DOI: 10.3389/fonc.2023.1290791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Background Tumor abnormal protein (TAP), the sugar chain protein released by tumor cells during metabolism, allows the development of a technique that exploits aggregated tumor-associated abnormal sugar chain signals in diagnosing malignancies. Clinically, we have found that TAP detection can well predict some malignancies, but several physicians have not paid attention, and related studies have been minimal. Methods We evaluated TAP's ability to distinguish between malignancies and benign diseases by receiver operating characteristic (ROC) curve analysis and studied the possibility of monitoring malignancy progression by evaluating TAP levels in follow-up. We used Kaplan-Meier survival curves and Cox proportional hazard regression models to investigate the relationship between TAP and prognosis. Results TAP levels were higher in whole solid malignancies and every type of solid malignancy than in benign patients. ROC curve analysis showed that TAP levels aid in distinguishing between malignancies and benign diseases. TAP levels decreased in patients with complete remission (CR) after treatment and increased in patients with relapse from CR. Patients with metastases had higher TAP levels than non-CR patients without metastases. There was no difference in overall survival among patients with different TAP levels, and multivariate analysis suggested that TAP was not an independent risk factor for solid malignancies. Conclusion TAP is an effective screening biomarker for many solid malignancies that can be used to monitor the progression of malignancies but not to prognosticate.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Changjun Tian
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuexuan Liu
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Han Sun
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Siqi He
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yujia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Fan
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingxin Gao
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shuhua Wu
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Li X, Xu C, Min Y, Zhai Z, Zhu Y. A prognostic signature for lung adenocarcinoma by five genes associated with chemotherapy in lung adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1349-1360. [PMID: 38071755 PMCID: PMC10730453 DOI: 10.1111/crj.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common subtypes of lung cancer. Finding prognostic biomarkers is helpful in stratifying LUAD patients with different prognosis. METHODS We explored the correlation of LUAD prognosis and genes associated with chemotherapy in LUAD and obtained data of LUAD patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Drug sensitivity data were acquired from the Genomics of Drug Sensitivity in Cancer (GDSC) database. Differential and enrichment analyses were used to screen the target genes utilizing limma and "clusterProfiler" packages. Then univariate and LASSO Cox analyses were used to select the prognosis-related genes. Survival analysis was used to estimate the overall survival (OS) of different groups. RESULTS Twenty-three differentially expressed genes (DEGs) were screened between LUAD samples and healthy samples, and BTK, FGFR2, PIM2, CHEK1, and CDK1 were selected to construct a prognostic signature. The OS of patients in the high-risk group (risk score higher than 0.69) was worse than that in the low-risk group (risk score lower than 0.69). CONCLUSION The risk score model constructed by five genes is a potential prognostic biomarker for LUAD patients.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Thoracic Disease Diagnosis and Treatment CenterZhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Chunwei Xu
- Department of Thoracic Disease Diagnosis and Treatment CenterZhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Yonghua Min
- Department of Thoracic Disease Diagnosis and Treatment CenterZhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment CenterZhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment CenterZhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
13
|
Du J, Song CF, Wang S, Tan YC, Wang J. Establishment and validation of a novel risk model based on CD8T cell marker genes to predict prognosis in thyroid cancer by integrated analysis of single-cell and bulk RNA-sequencing. Medicine (Baltimore) 2023; 102:e35192. [PMID: 37861558 PMCID: PMC10589543 DOI: 10.1097/md.0000000000035192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Papillary thyroid cancer (PTC) is a histological type of thyroid cancer, and CD8T is important for the immune response. The single-cell RNA data were acquired from Gene Expression Omnibus. SingleR package was used for cluster identification, and CellChat was exploited to evaluate the interaction among several cell types. Bulk RNA data obtained from the cancer genome atlas were used for determination of prognosis using Kaplan-Meier and Receiver Operating Characteristic curve. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were applied for assessment of function enrichment. The drug sensitivity was calculated in Gene Set Cancer Analysis. The regulatory network was constructed by STRING and Cytoscape. We identified 23 cell clusters and 10 cell types. Cell communication results showed CD8T cell was vital among all immune cell types. Enrichment analysis found the marker genes of CD8T cell was enriched in some signal pathways related to tumor development. Overall, FAM107B and TUBA4A were considered as hub genes and used to construct a risk model. Most immune checkpoint expressions were upregulated in tumor group. Tumor mutation burden results indicated that prognosis of PTC was not related to the mutation of hub genes. Drug sensitivity analysis showed some drugs could be effectively used for the treatment of PTC, and regulatory network identified some targets for the immunotherapy. A 2-gene model of PTC was developed based on the single-cell RNA and bulk RNA data. Besides, we found CD8T was essential for the immune response in PTC.
Collapse
Affiliation(s)
- Jian Du
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Cheng-Fei Song
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Shu Wang
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Yu-Cheng Tan
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Jiang Wang
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| |
Collapse
|
14
|
Stoks M, Vieco-Martí I, Noguera I, Sánchez-Sánchez M, Burgos-Panadero R, Navarro S, Noguera R. Digital image analysis workflows for evaluation of cell behavior and tumor microenvironment to aid therapeutic assessment in high-risk neuroblastoma. Comput Biol Med 2023; 164:107364. [PMID: 37598482 DOI: 10.1016/j.compbiomed.2023.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Digital pathology and artificial intelligence are promising emerging tools in precision oncology as they provide more robust and reproducible analysis of histologic, morphologic and topologic characteristics of tumor cells and the surrounding microenvironment. This study aims to develop digital image analysis workflows for therapeutic assessment in preclinical in vivo models. For this purpose, we generated pipelines that enable automatic detection and quantification of vitronectin and αvβ3 in heterotopic high-risk neuroblastoma xenografts, demonstrating that digital analysis workflows can be used to provide robust detection of vitronectin secretion and αvβ3 expression by malignant neuroblasts and to evaluate the possibility of combining traditional chemotherapy (etoposide) with extracellular matrix-targeted therapies (cilengitide). Digital image analysis added evidence for the relevance of territorial vitronectin as a therapeutic target in neuroblastoma, since its expression is modified after treatment, with a mean percentage of 60.44% in combined therapy tumors vs 45.08% in control ones. In addition, the present study revealed the efficacy of cilengitide for reducing αvβ3 expression, with a mean αvβ3 positivity of 34.17% in cilengitide treated material vs 66.14% in control and with less tumor growth when combined with etoposide, with a final mean volume of 0.04 cm3 in combined therapy vs 1.45 cm3 in control. The results of this work highlight the importance of extracellular matrix-focused therapies in preclinical studies to improve therapeutic assessment for high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- M Stoks
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain
| | - I Vieco-Martí
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - I Noguera
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain
| | - M Sánchez-Sánchez
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - R Burgos-Panadero
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - S Navarro
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain
| | - R Noguera
- CIBERONC, Carlos III Health Institute (Ministry of Economy and Competitiveness), 28029, Madrid, Spain; Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010, Valencia, Spain.
| |
Collapse
|
15
|
Zhang Q, Zhao M, Lin S, Han Q, Ye H, Peng F, Li L. Prediction of prognosis and immunotherapy response in lung adenocarcinoma based on CD79A, DKK1 and VEGFC. Heliyon 2023; 9:e18503. [PMID: 37534013 PMCID: PMC10392102 DOI: 10.1016/j.heliyon.2023.e18503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Background Tumor immune microenvironment (TIME) is crucial for tumor initiation, progression, and metastasis; however, its relationship with lung adenocarcinoma (LUAD) is unknown. Traditional predictive models screen for biomarkers that are too general and infrequently associated with immune genes. Methods RNA sequencing data of LUAD patients and immune-related gene sets were retrieved from public databases. Using the common genes shared by The Cancer Genome Atlas (TCGA) and Immunology Database and Analysis Portal (ImmPort), differential gene expression analysis, survival analysis, Lasso regression analysis, and univariate and multivariate Cox regression analyses were performed to generate a novel risk score model. LUAD cohort in International Cancer Genome Consortium (ICGC), GSE68465 cohort in Gene Expression Omnibus (GEO) and an immunohistochemical assay were used to validate the key genes constructed risk score. The LUAD-related prognosis, clinical indicators, immune infiltrate characteristics, response to immunotherapy, and response to chemotherapeutic agents in different risk groups were evaluated by CIBERSORT, ImmuCellAI, pRRophetic and other tools. Results The risk score model was constructed using CD79a molecule (CD79A), Dickkopf WNT signaling pathway inhibitor 1 (DKK1), and vascular endothelial growth factor C (VEGFC). High risk score was identified as a negative predictor for overall survival (OS) in subgroup analyses with tumor stage, TNM classification, therapy outcome, and ESTIMATE scores (P < 0.05). Low risk score was positively associated with plasma cells, memory B cells, CD8 T cells, regulatory T cells and γδT cells (P < 0.05). In low-risk group, programmed cell death 1 receptor (PD1), cytotoxic T-lymphocyte associated protein 4 (CTLA4), and lymphocyte activating 3 (LAG3) and indoleamine 2,3-dioxygenase (IDO) were more robustly expressed (P < 0.05). The treatment responses of immune checkpoint blockade (ICB) therapy and chemotherapy were likewise superior in low-risk group (P < 0.05). In immunohistochemical analysis, the tumor group had significantly higher levels of CD79A, DKK1, and VEGFC than the adjacent normal group (P < 0.01). Conclusions CD79A, DKK1 and VEGFC are important differential genes related to LUAD, risk score could reliably predict prognosis, composition of TIME and immunotherapy responses in LUAD patients. The excellent performance of the risk model shows its strong and broad application potential.
Collapse
Affiliation(s)
- Qilong Zhang
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| | - Mingyuan Zhao
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| | - Shuangyan Lin
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| | - Qi Han
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| | - He Ye
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| | - Fang Peng
- Department of Pathology, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang 310007, China
| |
Collapse
|
16
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
17
|
Li L, Liu C, Qin Y, Gao F, Wang Q, Zhu Y. Identification of cancer protein biomarker based on cell specific peptide and its potential role in predicting tumor metastasis. J Proteomics 2023; 275:104826. [PMID: 36708809 DOI: 10.1016/j.jprot.2023.104826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 11/19/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
The identification of tumor related membrane protein is important for both cancer diagnosis and targeted therapy. Currently, the number of ideal clinical biomarkers is still limited partially because of lacking efficient methods in biomarker discovery. Targeting peptides are generated by library screening and can recognize their cognate targets with high specificity and affinity. In addition, these functional peptides have been considered to be a valuable molecule for both imaging detection and targeting therapy in oncology. The selected peptides can be used to identify cell-surface protein biomarkers of cancer cells. In our study, the peptide (VECYLIRDNLCIY) derived from the bacteria displaying library worked as a bait to capture its binding partner and aldolase A was identified as the candidate. The results indicated that aldolase A' expression level on the cell membrane was regulated by PI3K and aldolase A located on the membrane could inhibit the aggression of tumors through mediating cell metabolic pathway. Aldolase A could work as the joint for the metabolic and signal pathways related to tumor progression. In our work, we demonstrated a promising technology for selecting and identifying binding partners for cell-specific peptides that enables discovery of new tumor biomarkers, showing great scientific study values and clinical translation potencies. SIGNIFICANCE: MS-based cancer biomarker discovery provides promising target candidates for cancer diagnosis and therapy. However, the inevitable limits make it inconvenient in the process of sample preparation and data analysis. In this way, the small molecular probes show some advantages due to their readily availability and specific binding affinity such as the aptamers screened with SELEX technology and peptides derived from displaying libraries. In the present study, aldolase A was proved to be the membrane binding partner of a specific peptidic ligand towards ZR-75-1 tumor cell. It was discovered that membrane aldolase A was more sensitive and observable than other subcellular fractions in response to cellular metabolic state alteration or glucose availability. In addition, the reduced membrane-localized aldolase A expression indicated a more aggressive tumor phenotype and was accompanied by the upregulation of MMP-2/MMP-9. The non-glycolysis activity endowed it with potential utility as a tumor diagnostic marker and therapeutic target. This work demonstrates the practicability of screened peptide in cancer biomarker discovery, facilitating the development of diagnostic tools and therapeutic approaches to cancer, and markedly improves our understanding of cancer biology.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cuijuan Liu
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yingzhou Qin
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Fan Gao
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Qianqian Wang
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yimin Zhu
- Key Laboratory of Nano-Bio Interface Research, Division of Nano biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
18
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Deng G, Zha H, Luo H, Zhou Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front Bioeng Biotechnol 2023; 11:1118546. [PMID: 36741760 PMCID: PMC9892635 DOI: 10.3389/fbioe.2023.1118546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of incidence rate and mortality of cancer is increasing rapidly, and the development of precise intervention measures for cancer detection and treatment will help reduce the burden and pain of cancer. At present, the sensitivity and specificity of tumor markers such as CEA and CA-125 used clinically are low, while PET, SPECT, and other imaging diagnoses with high sensitivity possess shortcomings, including long durations to obtain formal reports and the inability to identify the molecular pathological type of cancer. Cancer surgery is limited by stage and easy to recur. Radiotherapy and chemotherapy often cause damage to normal tissues, leading to evident side effects. Aptamers can selectively and exclusively bind to biomarkers and have, therefore, gained attention as ligands to be targeted for cancer detection and treatment. Gold nanoparticles (AuNPs) are considered as promising nano carriers for cancer diagnosis and treatment due to their strong light scattering characteristics, effective biocompatibility, and easy surface modification with targeted agents. The aptamer-gold nanoparticles targeting delivery system developed herein can combine the advantages of aptamers and gold nanoparticles, and shows excellent targeting, high specificity, low immunogenicity, minor side effects, etc., which builds a bridge for cancer markers to be used in early and efficient diagnosis and precise treatment. In this review, we summarize the latest progress in the application of aptamer-modified gold nanoparticles in cancer targeted diagnosis and delivery of therapeutic agents to cancer cells and emphasize the prospects and challenges of transforming these studies into clinical applications.
Collapse
Affiliation(s)
- Guozhen Deng
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - He Zha
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yi Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, JianYang, Sichuan, China
| |
Collapse
|
20
|
Wang X, Zhao B, Ren D, Hu X, Qiao J, Zhang D, Zhang Y, Pan Y, Fan Y, Liu L, Wang X, Ma H, Jia X, Song S, Zhao C, Liu J, Wang L. Pyrimidinergic receptor P2Y6 expression is elevated in lung adenocarcinoma and is associated with poor prognosis. Cancer Biomark 2023; 38:191-201. [PMID: 37545227 DOI: 10.3233/cbm-230137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUD Previous in vitro studies have indicated that pyrimidinergic receptor P2Y6 (P2RY6, P2Y6 receptor) may function as a cancer-promoting factor in lung adenocarcinoma (LUAD). However, the prognostic significance of P2RY6 expression in LUAD has not been investigated. OBJECTIVE This study aimed to assess the impact of P2RY6 expression on the survival of patients with LUAD. METHODS First, we assessed P2RY6 mRNA and protein expression in LUAD and non-cancerous lung tissues using the online bioinformatics analysis tool GEPIA, fresh LUAD tissues, and LUAD tissue microarrays (TMAs). Second, we investigated the correlation between P2RY6 expression and clinicopathological parameters of LUAD patients based on data from The Cancer Genome Atlas (TCGA) database and TMAs. Finally, we analyzed the prognostic significance of P2RY6 expression in LUAD using the online survival analysis tool Kaplan-Meier Plotter and data from TMAs. RESULTS We demonstrated that P2RY6 mRNA and protein expression levels in LUAD tissues were significantly higher than those in non-cancerous lung tissues. The expression of P2RY6 in LUAD was positively correlated with poor differentiation, more lymph node metastasis, and more advanced clinical stage. Higher P2RY6 expression level was correlated with shorter survival of the LUAD patients. Univariate and multivariate Cox regression analyses indicated that higher P2RY6 tumor expression was an independent unfavorable prognostic factor for LUAD patients. CONCLUSIONS P2RY6 expression was elevated in LUAD and correlated with poor prognosis.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Dan Ren
- Department of Pathology, Daqing Longnan Hospital, Daqing, Heilongjiang, China
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Xiaolei Hu
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Juanjuan Qiao
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Dongmei Zhang
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yanzhi Zhang
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yu Pan
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yuhua Fan
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Lili Liu
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Xiaoxue Wang
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Huanhuan Ma
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Xueling Jia
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Sihang Song
- Department of Histology and Embryology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Chong Zhao
- Library of Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Jingbo Liu
- Department of Pathology, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Lin Wang
- Department of Pathology and Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| |
Collapse
|
21
|
Qian C, Jiang Z, Zhou T, Wu T, Zhang Y, Huang J, Ouyang J, Dong Z, Wu G, Cao J. Vesicle-mediated transport-related genes are prognostic predictors and are associated with tumor immunity in lung adenocarcinoma. Front Immunol 2022; 13:1034992. [PMID: 36524130 PMCID: PMC9745133 DOI: 10.3389/fimmu.2022.1034992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Globally, lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths. It is a progressive disorder that arises from multiple genetic and environmental factors. Dysregulated expression of vesicle-mediated transport-related genes (VMTRGs) have been reported in several cancers. However, the prognostic significance of VMTRGs in LUAD has yet to be established. Methods The VMTRG profiling data for 482 LUAD patients and 59 normal controls were downloaded from The Cancer Genome Altas (TCGA). Univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to construct and optimize the risk model. Several GEO datasets were used to validate the risk model. The roles of these genes were investigated via the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses. Differences in immune cell infiltrations between risk groups were evaluated using five algorithms. "pRRophetic" was used to investigate anti-cancer drug sensitivities in two groups. Expression of these five genes in LUAD samples and adjacent normal tissues were evaluated by qRT-PCR. Colony formation and wound healing assays were performed to assess the significance of CNIH1 and AP3S1 in LUAD cells. Results We identified 85 prognosis-associated VMTRGs that could be constructed a risk model for LUAD patients, indicating their potential importance in LUAD development. The risk model including the five VMTRGs (CNIH1, KIF20A, GALNT2, GRIA1, and AP3S1) was associated with clinical outcomes. Tumor stage and risk score were found to be independent prognostic factors for LUAD patients. The five VMTRGs were also correlated with activation of the Notch and p53 signaling pathways. The risk model was significantly associated with immune responses and with high-level expression of immune checkpoints. High-risk group patients were more sensitive to several chemotherapeutic drugs and Lapatinib. Furthermore, CNIH1 and AP3S1 promoted LUAD cell growth and migration in vitro. Conclusion We constructed a VMTRG-based risk model for effective prediction of prognostic outcomes for LUAD patients. The risk model was associated with immune infiltration levels. These five hub genes are potential targets for immune therapy combined with chemotherapy in LUAD.
Collapse
Affiliation(s)
- Changrui Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zewei Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ju Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinglin Ouyang
- Department of Ultrasound Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhixiong Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhixiong Dong, ; Guang Wu, ; Jiawei Cao,
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhixiong Dong, ; Guang Wu, ; Jiawei Cao,
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhixiong Dong, ; Guang Wu, ; Jiawei Cao,
| |
Collapse
|
22
|
Zhai J, Han J, Li C, Guo F, Ma F, Xu B. High SURF4 expression is associated with poor prognosis of breast cancer. Aging (Albany NY) 2022; 14:9317-9337. [PMID: 36446386 PMCID: PMC9740377 DOI: 10.18632/aging.204409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
SURF4 has been suggested as an oncogene in cancer. However, the role of SURF4 in breast cancer has not been demonstrated yet. The data were obtained from TCGA database and 1104 patients were analyzed using bioinformatics analysis. SURF4 is significantly (P < 0.001) highly expressed in tumor. High expression of SURF4 was observed in T4, infiltrating ductal carcinoma, ER negative, PR negative, and HER2 positive, female, patients without lymph node metastasis, HER2 overexpression type, and deceased patients. As for characteristics correlated with high expression of SURF4, gender, histological type, molecular subtype, ER, PR, HER2, and vital status exhibited significant differences. The age (HR: 2.317, P < 0.001), stage (HR: 2.090, P < 0.001), and SURF4 expression (HR: 1.958, P = 0.005) exhibited independent prognostic value for overall survival (OS). Patients with high SURF4 expression, higher age, equivocal HER2, higher stages, or positive margin status had shorter OS. The stage (HR: 1.579, P < 0.001), and margin status (HR: 1.463, P = 0.006) exhibited independent prognostic value for relapse-free survival of breast cancer. High expression of SURF4 was first found in breast cancer. High SURF4 expression was observed in breast cancer tissue and cell. SURF4 promoted the proliferation and migration of 4T1 cells. SURF4 may be a biomarker in diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fengzhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
23
|
Zhang YR, Zhang L, Li F, He JS, Xuan JF, Chen CC, Gong C, Pan YL. PADI1 and Its Co-Expressed Gene Signature Unveil Colorectal Cancer Prognosis and Immunotherapy Efficacy. JOURNAL OF ONCOLOGY 2022; 2022:8394816. [PMID: 36471887 PMCID: PMC9719422 DOI: 10.1155/2022/8394816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 10/03/2023]
Abstract
Peptidyl arginine deiminase 1 (PADI1) catalyzes protein citrullination and has a role in regulating immune responses. The tumor immune microenvironment has been reported to be important in colorectal cancer (CRC), which was correlated with the ability of CRC patients to benefit from immunotherapy. However, there is a lack of molecular markers for matching CRC immunotherapy. Previously, single-gene risk models have only considered the effect of individual genes on intrinsic tumor properties, ignoring the role of genes and their co-expressed genes as a whole. In this study, we analyzed the differential expression of PADI1 in colorectal cancer (CRC). We found that PADI1 was highly expressed in CRC. Subgroup survival analysis revealed a prognostic survival difference for PADI1 in CRC patients aged less than 65 years, male, T stage, N0, M0, and stage I-II (p < 0.05). In addition, we analyzed the functions and signaling pathways associated with PADI1 in CRC and found that it was highly enriched in several immune-related functions and pathways. Then, a set of PADI1 co-expressed genes (PCGs) risk-prognosis scores was developed with PADI1 as the core, which could accurately predict the prognosis of CRC (p < 0.05). PCGs risk score can be an independent prognostic factor for CRC. A new set of Norman plot models were developed for clinical characteristics with age, sex, and TNM stage, which can accurately predict CRC 1, 3, and 5 years survival, and calibration curves and decision curve analysis (DCA) validated the accuracy of the models. The risk score assessed the immune microenvironment of CRC and found that the immune score was higher in the low-risk group, and CD4+ T cells, helper T cells, and eosinophils were more infiltrated in the low-risk group (p < 0.05). Immunotherapy efficacy was better in the low-risk group (p < 0.05). The underlying mechanism may be that the high-risk group of PCGs was enriched in some pathways that promote immune escape and immune dysfunction. In conclusion, PCGs may better predict CRC prognosis and immunotherapeutic response.
Collapse
Affiliation(s)
- Yi-ran Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Feng Li
- Department of General Surgery, Wuzhou Red Cross Hospital, Wuzhou, Guangxi 543000, China
| | - Jia-shuai He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jin-feng Xuan
- Department of General Surgery, Wuzhou Red Cross Hospital, Wuzhou, Guangxi 543000, China
| | - Cong-cong Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chao Gong
- Department of General Surgery, Wuzhou Red Cross Hospital, Wuzhou, Guangxi 543000, China
| | - Yun-long Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Mkrtchyan GV, Veviorskiy A, Izumchenko E, Shneyderman A, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A, Scheibye-Knudsen M. High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders. Cell Death Dis 2022; 13:999. [PMID: 36435816 PMCID: PMC9701218 DOI: 10.1038/s41419-022-05437-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform ( https://pandaomics.com/ ) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.
Collapse
Affiliation(s)
- Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. DISEASE MARKERS 2022; 2022:2090560. [PMID: 36411825 PMCID: PMC9674975 DOI: 10.1155/2022/2090560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Methods Three Gene Expression Omnibus (GEO) microarray datasets (GSE19491, GSE98461, and GSE152532) were downloaded, with GSE19491 and GSE98461 then being merged to form a training dataset. Hub genes capable of differentiating between ATB and LTBI were then identified through differential expression analyses and a WGCNA analysis of this training dataset. Receiver operating characteristic (ROC) curves were then used to gauge to the diagnostic accuracy of these hub genes in the test dataset (GSE152532). Gene expression-based immune cell infiltration and the relationship between such infiltration and hub gene expression were further assessed via a single-sample gene set enrichment analysis (ssGSEA). Results In total, 485 differentially expressed genes were analyzed, with the WGCNA approach yielding 8 coexpression models. Of these, the black module was the most closely correlated with ATB. In total, five hub genes (FBXO6, ATF3, GBP1, GBP4, and GBP5) were identified as potential biomarkers associated with LTBI progression to ATB based on a combination of differential expression and LASSO analyses. The area under the ROC curve values for these five genes ranged from 0.8 to 0.9 in the test dataset, and ssGSEA revealed the expression of these genes to be negatively correlated with lymphocyte activity but positively correlated with myeloid and inflammatory cell activity. Conclusion The five hub genes identified in this study may play a novel role in tuberculosis-related immunopathology and offer value as novel biomarkers differentiating LTBI from ATB.
Collapse
|
26
|
Yang XB, Zhang LH, Xue JN, Wang YC, Yang X, Zhang N, Liu D, Wang YY, Xun ZY, Li YR, Sun HS, Zhao LJ, Zhao HT. High incidence combination of multiple primary malignant tumors of the digestive system. World J Gastroenterol 2022; 28:5982-5992. [PMID: 36405110 PMCID: PMC9669828 DOI: 10.3748/wjg.v28.i41.5982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clinical reports of multiple primary malignant tumors (MPMTs) in the digestive system are increasing. In China, although the survival rate of patients with MPMTs is increasing, the quality of life is very low. Many patients have reached the advanced stage when the second primary tumor is found, resulting in no early intervention and treatment. This is due to the misunderstanding of MPMTs by clinicians, who treat such tumors as metastases. Therefore, before a patient has a second primary tumor, doctors should understand some common combinations of digestive system MPMTs to provide clinical guidance to the patient.
AIM To explore the high incidence combination of digestive system MPMTs under heterochronism and synchronization.
METHODS A total of 1902 patients with MPMTs at Peking Union Medical College Hospital were analyzed retrospectively. They were divided into metachronous MPMT and synchronous MPMT groups, and then the high incidence combinations of the first primary cancer and the second primary cancer in metachronous cancer and synchronous cancer were sorted. Sex and age differences between metachronous and synchronous tumors were tested by the chi square test and t test, respectively. A P value < 0.05 was considered as statistically significant, and SPSS version 26.0 (SPSS Inc., Chicago, Illinois, United States) was used for statistical analysis.
RESULTS Among the 1902 patients with MPMTs confirmed by pathology, 1811 (95.2%) cases were secondary primary cancers, 89 (4.7%) cases were tertiary primary cancers, and 2 (0.1%) cases were quaternary primary cancers. Most (88.2%) of the secondary primary cancers were identified as metachronous multiple primary cancers six months after diagnosis of the first primary cancer. The top ten most common MPMTs in the first primary cancer group ranged from high to low as follows: Breast cancer, thyroid cancer, nonuterine cancer, lung cancer, colon cancer, kidney cancer, uterine cancer, bladder cancer, rectal cancer, and gastric cancer. The highest incidence rate of the first primary cancer in male metachronous cancer was lung cancer (11.6%), the highest incidence rate of the second primary cancer was still lung cancer (24.9%), the highest incidence rate of the first primary cancer in female metachronous cancer was breast cancer (32.7%), and the highest incidence rate of the second primary cancer was lung cancer (20.8%). Among them, breast cancer, nonuterine cancer and uterine cancer were female-specific malignant tumor types, and thyroid cancer also accounted for 79.6% of female patients. The top five metachronous cancer combinations, independent of female-specific malignant tumor types and thyroid cancer, were colon cancer and lung cancer (26 cases), kidney cancer and lung cancer (25 cases), rectal cancer and lung cancer (20 cases), gastric cancer and lung cancer (17 cases), and bladder cancer and lung cancer (17 cases). The most common synchronous cancer combination was colon cancer and rectal cancer (15 cases).
CONCLUSION Screening for lung cancer should be performed six months after the detection of colon cancer while rectal cancer screening should be performed within six months.
Collapse
Affiliation(s)
- Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Long-Hao Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
- Digestive Disease Hospital Affiliated to Zunyi Medical University, Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Jing-Nan Xue
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
- Digestive Disease Hospital Affiliated to Zunyi Medical University, Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Yun-Chao Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Nan Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Dan Liu
- Digestive Disease Hospital Affiliated to Zunyi Medical University, Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Yan-Yu Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Zi-Yu Xun
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Yi-Ran Li
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Hui-Shan Sun
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Li-Jin Zhao
- Digestive Disease Hospital Affiliated to Zunyi Medical University, Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| |
Collapse
|
27
|
Chen L, Hua J, He X. Co-expression network analysis identifies potential candidate hub genes in severe influenza patients needing invasive mechanical ventilation. BMC Genomics 2022; 23:703. [PMID: 36243706 PMCID: PMC9569050 DOI: 10.1186/s12864-022-08915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidating aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analysis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic curve (ROC) was also used to evaluate the hub genes from the test set's diagnostic accuracy. Different immune cells' infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-sample gene set enrichment analysis (ssGSEA). RESULTS In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indicators for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator (LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influenza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil activation and positively associated with adaptive cellular immune response. CONCLUSION We evaluated three novel hub genes that could be linked to the immunopathological mechanism of severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza prevention and treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital With Nanjing Medical University, No.300 Guangzhou Road, Nanjing city, 210029, Jiangsu Province, China.
| |
Collapse
|
28
|
Hu B, Qian X, Qian P, Xu G, Jin X, Chen D, Xu L, Tang J, Wu W, Li W, Zhang J. Advances in the functions of CTRP6 in the development and progression of the malignancy. Front Genet 2022; 13:985077. [PMID: 36313428 PMCID: PMC9596804 DOI: 10.3389/fgene.2022.985077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
CTRP6, a member of the C1q/TNF-related protein (CTRP) family, has gained increasing scientific interest because of its regulatory role in tumor progression. Previous studies have shown that CTRP6 is closely involved in regulating various pathophysiological processes, including glucose and lipid metabolism, cell proliferation, apoptosis, and inflammation. To date, CTRP6 has been identified as related to eight different malignancies, including lung cancer, oral cancer, gastric cancer, colon cancer, liver cancer, bladder cancer, renal cancer, and ovarian cancer. CTRP6 is reported to be associated with tumor progression by activating a series of related signal networks. This review article mainly discusses the biochemistry and pleiotropic pathophysiological functions of CTRP6 as a new molecular mediator in carcinogenesis, hoping that the information summarized herein could make a modest contribution to the development of novel cancer treatments in the future.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xiaolan Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Ping Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Jie Tang
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wanlu Li
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| |
Collapse
|
29
|
Xie L, Wang L, Zhu W, Zhao J, Guo X. Editorial: Bioinformatics tools (and web server) for cancer biomarker development, volume II. Front Genet 2022; 13:959159. [PMID: 36299589 PMCID: PMC9589408 DOI: 10.3389/fgene.2022.959159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, United States
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Xiangqian Guo,
| |
Collapse
|
30
|
Yuan Z, Wang L, Chen C. Analysis of the prognostic, diagnostic and immunological role of HSP90α in malignant tumors. Front Oncol 2022; 12:963719. [PMID: 36158677 PMCID: PMC9499179 DOI: 10.3389/fonc.2022.963719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 90α (HSP90α) encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone HSP90, and was demonstrated as a promising hallmark to diagnose, prognosis in malignant tumors. This study is to evaluate the value of HSP90α in diagnosis, prognosis and immunotherapy of malignant tumors by investigating the expression of HSP90α in plasma of various tumors and analyzing the expression of HSP90α at gene and protein levels via pan-cancer database. We founded that levels of HSP90α in malignant tumors groups were significantly higher than healthy controls in serum. Pan-cancer analysis showed that HSP90AA1 was highly expressed in 27 of 33 tumors, but low in individual cancers (such as renal malignancies). The plasma HSP90α level was positively correlated with the stage of malignant tumor, but there was no significant difference between HSP90AA1 and the stage of most tumors. Cox regression analysis showed that HSP90AA1 expression was significantly correlated with OS in only 6 of the 32 cancers, including LIHC, KIRC, HNSC, LUAD, BRCA and MESO. Up-regulation of HSP90AA1 in most tumors was positively correlated with PDCD1LG2 and CD274 immune checkpoint genes. T cell CD8+ was positively correlated with HSP90AA1 in COAD, DLBC and UVM, and negatively correlated with HSP90AA1 in ESCA, GBM, HNSC, KIRC, KIRP, UCEC and STAD. The AUC of HSP90α are generally high in different tumor groups, which indicated its diagnostic value in malignant tumors. In conclusion, serum HSP90α in patients with malignant tumor is generally elevated, which is of positive significance as an independent diagnosis and combined diagnosis. However, we found that the expression level of HSP90AA1 gene in most tumors was not completely consistent with the serum level, and even down-regulated in some tumors. Plasma levels can be used as biomarkers of poor prognosis in some tumors, but it cannot be used as a biomarker for poor prognosis of all tumors, and more in-depth studies are needed.
Collapse
Affiliation(s)
- Zhimin Yuan
- Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Longhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cheng Chen
- Department of General Dentistry/Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Cheng Chen,
| |
Collapse
|
31
|
Pan-Cancer Analysis of PDIA3: Identifying It as a Potential Biomarker for Tumor Prognosis and Immunotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9614819. [PMID: 36046686 PMCID: PMC9423987 DOI: 10.1155/2022/9614819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Protein disulfide isomerase A3 (PDIA3) is a kind of thiol oxidoreductase with a wide range of functions, and its expression is elevated in a variety of tumors, which is closely related to the invasion and metastasis of tumor cells, and has a significant impact on the immunogenicity of tumor cells. Although more and more studies have shown that PDIA3 plays an important role in the occurrence and development of many tumors, there is no systematic pan-cancer study on PDIA3. Therefore, in this study, the differential expression of PDIA3 in 33 kinds of tumors was analyzed to explore its ability to regulate tumor immunity as a biomarker and evaluate its role in different cancer onset stages or clinical prognosis. In this paper, by analyzing the multilevel data including 33 kinds of cancers in the databases of Cancer Genome Atlas (TCGA), UCSC Xena, Cancer Cell Encyclopedia (CCLE), Genotypic Tissue Expression (GTEx), Human Protein Atlas (HPA), cBioPortal, and GDC; the differential expression level of PDIA3 in different types of malignant tumors and its relationship with prognosis and the potential correlation between PDIA3 expression and microsatellite instability (MSI), tumor mutation load (TMB), mismatch repair gene (MMR), DNA methylation level, and immune infiltration level were analyzed with bioinformatics. The results showed that PDIA3 was highly expressed in 19 types of cancers, but downregulated only in THCA. Next, PDIA3 in different tumors was positively or negatively correlated with patient outcome, Kaplan-Meier survival analysis showed that PDIA3 plays an important role in the prognosis of patients with KIRP, KICH, and CESC and may be used as a prognostic biomarker, and the methylation level of PDIA3 promoter region was closely related to patient outcome in eight tumors. The expression level of PDIA3 was correlated with TMB in 13 tumors and MSI in 9 tumors. Among them, the expression level of PDIA3 in THYM has the strongest correlation with TMB, and the expression level of PDIA3 in READ has the strongest correlation with MSI. In addition, the expression of PDIA3 in eight kinds of tumors, including BRCA, HNSC, THYM, LGG, LUAD, LUSC, PRAD, and THCA, had the highest correlation with the infiltration degree of immune cells, and the expression of PDIA3 had the highest correlation with the infiltration degree of 11 kinds of immune cells, including regulatory T cell and macrophages. And LGG is the tumor most likely to be affected by the tumor microenvironment to affect its development and prognosis. To sum up, this study suggests that PDIA3 plays an important role in the occurrence and development of KIRP, KICH, and CESC and in the immunotherapeutic response of THYM, READ, and LGG and can be used as a prognostic biomarker for these tumors.
Collapse
|
32
|
Wang X, Zhao C, Huang D, Liu Z, Liu M, Lin F, Lu Y, Jia J, Lin L, Lin X, Li H, Chen Z. A Novel M6A-Related Genes Signature Can Impact the Immune Status and Predict the Prognosis and Drug Sensitivity of Lung Adenocarcinoma. Front Immunol 2022; 13:923533. [PMID: 35860262 PMCID: PMC9289247 DOI: 10.3389/fimmu.2022.923533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 01/22/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a primary cause of cancer-related death around the world and has a poor outcome and high incidence. Treatment options are, however, restricted. One of the most critical factors in cancer and metastasis is the N6-methyladenine (m6A) alteration on RNA. This modification could alter gene expression and even function at numerous levels, such as the stability, translocation and translation of RNA splicing. This study aimed to construct an m6A-related genes signature to accurately predict the prognosis of LUAD patients. From TCGA datasets, the LUAD patient data and m6A-related genes were retrieved. LUAD patients’ mutational features and differentially expressed genes (DEGs) were investigated. An univariate and LASSO model with m6A-related genes were constructed for the prediction of outcomes in LUAD. It was possible to develop a prognostic nomogram that could quantitatively predict LUAD patients’ overall survival chances at 1, 3, and 5 years. Research into biological processes and cell pathways was carried out using GSEA. This study found six m6A-related DEGs in LUAD patients, and three of these DEGs(HNRNPC, IGFBP3 and IGF2BP1) were linked to the clinical outcomes of LUAD patients. We found that the overall survival rate for all LUAD patients with high-risk subgroup was considerably lower. According to ROC curves, the prognostic signature demonstrated a high degree of accuracy in predicting future outcomes. In addition, we created a novel nomogram achieved great accuracy with this one as well. The researchers also found that the novel signature might favorably modulate the immune response, and high-risk scores samples were more susceptible to numerous chemotherapeutic medicines. Overall, we developed a m6A-related gene prognostic signature that effectively predicted outcomes of LUAD patients and gave an immunological perspective for creating customized therapeutics.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chengfei Zhao
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, China
| | - Dandan Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhoujie Liu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Mengmeng Liu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fei Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yingyu Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jing Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhiwei Chen, ; Huangyuan Li, ; Xinhua Lin,
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhiwei Chen, ; Huangyuan Li, ; Xinhua Lin,
| | - Zhiwei Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
- Fuzhou Center for Disease Control and Prevention, Fuzhou, China
- *Correspondence: Zhiwei Chen, ; Huangyuan Li, ; Xinhua Lin,
| |
Collapse
|
33
|
The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl) 2022; 100:997-1015. [PMID: 35680690 DOI: 10.1007/s00109-022-02219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.
Collapse
|
34
|
Zhang Z, He Y, Lin R, Lan J, Fan Y, Wang P, Jia C. Identification of Important Modules and Biomarkers That Are Related to Immune Infiltration Cells in Severe Burns Based on Weighted Gene Co-Expression Network Analysis. Front Genet 2022; 13:908510. [PMID: 35754830 PMCID: PMC9218676 DOI: 10.3389/fgene.2022.908510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immunosuppression is an important trigger for infection and a significant cause of death in patients with severe burns. Nevertheless, the prognostic value of immune-related genes remains unclear. This study aimed to identify the biomarkers related to immunosuppression in severe burns. Methods: The gene expression profile and clinical data of 185 burn and 75 healthy samples were obtained from the GEO database. Immune infiltration analysis and gene set variation analysis were utilized to identify the disorder of circulating immune cells. A weighted gene co-expression network analysis (WGCNA) was carried out to select immune-related gene modules. Enrichment analysis and protein-protein interaction (PPI) network were performed to select hub genes. Next, LASSO and logistic regression were utilized to construct the hazard regression model with a survival state. Finally, we investigated the correlation between high- and low-risk patients in total burn surface area (TBSA), age, and inhalation injury. Results: Gene set variation analysis (GSVA) and immune infiltration analysis showed that neutrophils increased and T cells decreased in severe burns. In WGCNA, four modular differently expressed in burns and controls were related to immune cells. Based on PPI and enrichment analysis, 210 immune-related genes were identified, mainly involved in T-cell inhibition and neutrophil activation. In LASSO and logistic regression, we screened out key genes, including LCK, SKAP1 and GZMB, and LY9. In the ROC analysis, the area under the curve (AUC) of key genes was 0.945, indicating that the key genes had excellent diagnostic value. Finally, we discovered that the key genes were related to T cells, and the regression model performed well when accompanied by TBSA and age. Conclusion: We identified LCK, SKAP1, GZMB, and LY9 as good prognostic biomarkers that may play a role in post-burn immunosuppression against T-cell dysfunction and as potential immunotherapeutic targets for transformed T-cell dysfunction.
Collapse
Affiliation(s)
- Zexin Zhang
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan He
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongjie Lin
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Junhong Lan
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yueying Fan
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Peng Wang
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Department of Burns and Plastic and Cosmetic Surgery, The Ninth Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chiyu Jia
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Integrated Bioinformatics Analysis for Identifying the Significant Genes as Poor Prognostic Markers in Gastric Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9080460. [PMID: 35726219 PMCID: PMC9206555 DOI: 10.1155/2022/9080460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023]
Abstract
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer and imposes a considerable health burden globally. The purpose of this study was to identify significant genes and key pathways participated in the initiation and progression of GAC. Four datasets (GSE13911, GSE19826, GSE54129, and GSE79973) including 171 GAC and 77 normal tissues from Gene Expression Omnibus (GEO) database were collected and analyzed. Through integrated bioinformatics analysis, we obtained 69 commonly differentially expressed genes (DEGs) among the four datasets, including 20 upregulated and 49 downregulated genes. The prime module in protein-protein interaction network of DEGs, including ADAMTS2, COL10A1, COL1A1, COL1A2, COL8A1, BGN, and SPP1, was enriched in protein digestion and absorption, ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and amoebiasis. Furthermore, expression and survival analysis found that all seven hub genes were highly expressed in GAC tissues and 6 of them (except for SPP1) were able to predict poor prognosis of GAC. Finally, we verified the 6 high-expressed hub genes in GAC tissues via immunohistochemistry, Western blot, and RNA quantification analysis. Altogether, we identified six significantly upregulated DEGs as poor prognostic markers in GAC based on integrated bioinformatical methods, which could be potential molecular markers and therapeutic targets for GAC patients.
Collapse
|
36
|
A Novel Mitochondrial-Related Gene Signature for the Tumor Immune Microenvironment Evaluation and Prognosis Prediction in Lung Adenocarcinoma. J Immunol Res 2022; 2022:5366185. [PMID: 35664356 PMCID: PMC9159837 DOI: 10.1155/2022/5366185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) remains the most common deadly disease and has a poor prognosis. More and more studies have reported that mitochondrial-related genes (MTRGs) were associated with the clinical outcomes of multiple tumors solely. In this study, we aimed to develop a novel prognostic model based on MTRGs. Differentially expressed MTRGs were identified from TCGA-LUAD and GSE31210 cohorts. Univariate Cox regression analysis was utilized to screen differentially expressed MTRGs that were related to prognosis of LUAD. Then, LASSO Cox regression analysis was used to develop a prognostic signature. ESTIMATE was used for estimating the fractions of immune cell types. In this study, we identified 44 overlapping differentially expressed MTRGs in TCGA-LUAD and GSE31210 cohorts. Among 44 overlapping differentially expressed MTRGs, nine genes were associated with prognosis of LUAD. When the penalty parameter lambda was the minimum, there were six genes meeting the conditions of constructing the signature, including SERPINB5, CCNB1, FGR MAOB, SH3BP5, and CYP24A1. The survival analysis suggested that prognosis of patients in the high-risk group was significantly worse than that in the low-risk group. Cox regression analyses showed that the risk score was an independent predictor of LUAD prognosis. As with the results of ESTIMATE score, the degree of immune cell infiltration in the low-risk group was higher than that in the high-risk group, such as TIL, Treg, and B cells. In addition, TMB and cancer stem cell infiltration were higher in the low-risk group than the high-risk group. In conclusion, we developed a novel MTRG signature acting as a negative independent prognostic factor. In the future, individualized treatments and medical decision-making may benefit from using the predicted model.
Collapse
|
37
|
Jia R, Wang Y, Ma W, Huang J, Sun H, Chen B, Cheng H, He X, Wang K. Activatable Dual Cancer-Related RNA Imaging and Combined Gene-Chemotherapy through the Target-Induced Intracellular Disassembly of Functionalized DNA Tetrahedron. Anal Chem 2022; 94:5937-5945. [PMID: 35380798 DOI: 10.1021/acs.analchem.2c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The desire for a cancer theranostic system with simultaneously accurate diagnosis and efficient therapy is undeniably interminable. Heretofore, theranostic systems with simple components were designed for cancer theranostics but with confined accuracy of diagnosis and side effects of administered drugs. Here, we report an activatable theranostic system for simultaneously imaging dual cancer-related RNAs, mRNA Bcl-2 and piRNA-36026, and combined gene-chemotherapy through the target-induced intracellular disassembly of DNA tetrahedron. Briefly, five customized oligonucleotides are used to assemble the functionalized DNA tetrahedron. The relevant functional nucleic acids, including the antisequence of mRNA Bcl-2, the antisequence of piRNA-36026, and aptamer AS1411, are designed in the customized oligonucleotides with the signal reporters Cy3 and Cy5. Doxorubicin (DOX) is loaded in the functionalized DNA tetrahedron by inlaying between cytosine and guanine to form the activatable cancer theranostic system. The activatable cancer theranostic system is able to recognize MCF-7 cells by aptamer AS1411 and then enter the cells. In the presence of targets, the antisequences in the activatable cancer theranostic system hybridize with intracellular mRNA Bcl-2 and piRNA-36026, leading to the fluorescence signal recovery of Cy3 and Cy5 and the downregulation of two targets in the cytoplasm as well as the consequent apoptosis of MCF-7 cells in the form of gene therapy. Interestingly, as the antisequences are designed in the assembly strands, the hybridization between targets and the antisequences results in the disassembly of the activatable cancer theranostic system and the release of DOX as well as sequential chemotherapy. Advantageously, the activatable cancer theranostic system can achieve imaging of dual cancer-related RNAs with an imaging time window as long as 15 h and exhibit an obvious therapeutic effect in vivo. Therefore, this work is in furtherance of exploration for activatable cancer theranostic systems with high accuracy and efficiency and sheds new light on the development of precision medicine.
Collapse
Affiliation(s)
- Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yitan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
38
|
Hu Y, Chen L, Tang Q, Wei W, Cao Y, Xie J, Ji J. Pan-cancer analysis revealed the significance of the GTPBP family in cancer. Aging (Albany NY) 2022; 14:2558-2573. [PMID: 35320117 PMCID: PMC9004551 DOI: 10.18632/aging.203952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Background: At present, cancer is still one of the principal diseases to represent a serious danger to human health. Although research on the pathogenesis and treatment of cancer is progressing rapidly, the current knowledge on this topic is far from sufficient. Some tumors with poor prognoses lack effective prognostic biomarkers. Methods: Firstly, the Wilcoxon test was used to analyse the expression of GTPBP1-GTPBP10 in cancerous and normal tissues. Subsequently, we explored the expression of GTPBP1-10 in cancer by way of a paired t-test and plotted the survival curve using KM and univariate Cox regression analysis to explore the relationship between GTPBP1-10 and the prognosis of cancer. We then explored the significance of the GTPBP family in the tumor microenvironment. Results: The results showed that many members of the GTPBP family are differentially expressed in a variety of cancers and alter the prognosis of a number of cancers. Members of the GTPBP family may serve as novel prognostic markers for these tumors. Moreover, members of the GTPBP family are correlated with the immune microenvironment of tumors, which is valuable in terms of adding to our understanding of the mechanisms of tumor genesis. Finally, we identified drugs showing a high correlation with GTPBP family members, which are therefore conducive to the development of GTPBP family member-based treatment regimens. Conclusions: The 10 members of the GTPBP family have prognostic value in multiple tumor types and are associated with the immune microenvironment. Our study may provide a reference for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| |
Collapse
|
39
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
40
|
HMGA1 Has Predictive Value in Response to Chemotherapy in Gastric Cancer. Curr Oncol 2021; 29:56-67. [PMID: 35049679 PMCID: PMC8774981 DOI: 10.3390/curroncol29010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is a serious health problem worldwide. Although its incidence is decreasing, the five-year survival rate remains low. Thus, it is essential to identify new biomarkers that could promote better diagnosis and treatment of patients with gastric cancer. High-mobility group AT-hook 1 (HMGA1) is a non-histone, chromatin-binding protein that has been found overexpressed in several tumor types. It has been correlated with invasion, metastasis, and drug resistance, leading to worse patient survival. The aim of this work was to evaluate the clinical value of HMGA1 in gastric cancer. HMGA1 expression was analyzed by immunohistochemistry in a single hospital series (n = 323) of gastric adenocarcinoma cases (stages I to IV) with clinicopathological and treatment data. In this series, HMGA1 expression showed no significant relevance as a prognostic biomarker. Nevertheless, a significantly better overall survival was observed in cases with high levels of HMGA1 when they were treated with chemotherapy, compared to the nontreated ones, implying that they can benefit more from treatment than patients with low expression of HMGA1. We thereby show for the first time that HMGA1 expression has a substantial value as a biomarker of response to chemotherapy in gastric cancer.
Collapse
|
41
|
Liu S, Zhao Y, Liu H, Zhao X, Shen X. miR-301-3p directly regulates Cx43 to mediate the development of gastric cancer. J Int Med Res 2021; 49:3000605211033185. [PMID: 34590921 PMCID: PMC8489753 DOI: 10.1177/03000605211033185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Identifying novel biomarkers involved in the development of gastric cancer (GC) can provide potential therapeutic strategies and improve clinical prognosis. miR-301-3p and Cx43 are reportedly dysregulated in GC. miR-301-3p and Cx43 interaction, and their functions in GC progression, are still poorly understood. METHODS The expression levels of miR-301-3p and Cx43 in GC tissues and cell lines with various differentiation degrees were evaluated by RT-qPCR. The interaction between miR-301-3p and Cx43 was assessed by dual-luciferase reporter assays. CCK8 and Transwell assays were employed to assess the effects of the miR-301-3p-Cx43 axis on GC cell proliferation, migration, and invasion. RESULTS Cx43 was significantly downregulated in GC tissues and cell lines, while miR-301-3p expression was negatively correlated with Cx43 mRNA levels. The expression levels of Cx43 and miR-301-3p were closely associated with the differentiation, TNM stage, vascular invasion, and lymph node metastasis status of GC patients. Cx43 overexpression could suppress the proliferation, migration, and invasion of GC cells. Cx43 mRNA is a direct target of miR-301-3p, and transfection of an miR-301-3p mimic could reverse the inhibitory effects of Cx43. CONCLUSION The miR-301-3p-Cx43 axis is involved in the development and progression of GC by affecting the proliferation, migration, and invasion of GC cells.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Hebei, 067000, China
| | - Yang Zhao
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Hebei, 067000, China
| | - Huan Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Hebei, 067000, China
| | - Xing Zhao
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Hebei, 067000, China
| | - Xingbin Shen
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Hebei, 067000, China
| |
Collapse
|
42
|
Zhang M, Gao F, Yu X, Zhang Q, Sun Z, He Y, Guo W. LINC00261: a burgeoning long noncoding RNA related to cancer. Cancer Cell Int 2021; 21:274. [PMID: 34022894 PMCID: PMC8141177 DOI: 10.1186/s12935-021-01988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), are transcripts longer than 200 nucleotides that are considered to be vital regulators of many cellular processes, particularly in tumorigenesis and cancer progression. long intergenic non-protein coding RNA 261 (LINC00261), a recently discovered lncRNA, is abnormally expressed in a variety of human malignancies, including pancreatic cancer, gastric cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, breast cancer, laryngeal carcinoma, endometrial carcinoma, esophageal cancer, prostate cancer, choriocarcinoma, and cholangiocarcinoma. LINC00261 mainly functions as a tumor suppressor that regulates a variety of biological processes in the above-mentioned cancers, such as cell proliferation, apoptosis, motility, chemoresistance, and tumorigenesis. In addition, the up-regulation of LINC00261 is closely correlated with both favorable prognoses and many clinical characteristics. In the present review, we summarize recent research documenting the expression and biological mechanisms of LINC00261 in tumor development. These findings suggest that LINC00261, as a tumor suppressor, has bright prospects both as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
43
|
Improving Model Performance on the Stratification of Breast Cancer Patients by Integrating Multiscale Genomic Features. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1475368. [PMID: 32908867 PMCID: PMC7471833 DOI: 10.1155/2020/1475368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/26/2020] [Accepted: 07/18/2020] [Indexed: 11/17/2022]
Abstract
In clinical cancer research, it is a hot topic on how to accurately stratify patients based on genomic data. With the development of next-generation sequencing technology, more and more types of genomic features, such as mRNA expression level, can be used to distinguish cancer patients. Previous studies commonly stratified patients by using a single type of genomic features, which can only reflect one aspect of the cancer. In fact, multiscale genomic features will provide more information and may be helpful for clinical prediction. In addition, most of the conventional machine learning algorithms use a handcrafted gene set as features to construct models, which is generally selected by a statistical method with an arbitrary cut-off, e.g., p value < 0.05. The genes in the gene set are not necessarily related to the cancer and will make the model unreliable. Therefore, in our study, we thoroughly investigated the performance of different machine learning methods on stratifying breast cancer patients with a single type of genomic features. Then, we proposed a strategy, which can take into account the degree of correlation between genes and cancer patients, to identify the features from mRNAs and microRNAs, and evaluated the performance of the models with the new combined features of the multiscale genomic features. The results showed that, compared with the models constructed with a single type of features, the models with the multiscale genomic features generated by our proposed method achieved better performance on stratifying the ER status of breast cancer patients. Moreover, we found that the identified multiscale genomic features were closely related to the cancer by gene set enrichment analysis, indicating that our proposed strategy can well reflect the biological relevance of the genes to breast cancer. In conclusion, modelling with multiscale genomic features closely related to the cancer not only can guarantee the prediction performance of the models but also can effectively provide candidate genes for interpreting the mechanisms of cancer.
Collapse
|
44
|
Kim Y, Kim D, Cao B, Carvajal R, Kim M. PDXGEM: patient-derived tumor xenograft-based gene expression model for predicting clinical response to anticancer therapy in cancer patients. BMC Bioinformatics 2020; 21:288. [PMID: 32631229 PMCID: PMC7336455 DOI: 10.1186/s12859-020-03633-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cancer is a highly heterogeneous disease with varying responses to anti-cancer drugs. Although several attempts have been made to predict the anti-cancer therapeutic responses, there remains a great need to develop highly accurate prediction models of response to the anti-cancer drugs for clinical applications toward a personalized medicine. Patient derived xenografts (PDXs) are preclinical cancer models in which the tissue or cells from a patient’s tumor are implanted into an immunodeficient or humanized mouse. In the present study, we develop a bioinformatics analysis pipeline to build a predictive gene expression model (GEM) for cancer patients’ drug responses based on gene expression and drug activity data from PDX models. Results Drug sensitivity biomarkers were identified by performing an association analysis between gene expression levels and post-treatment tumor volume changes in PDX models. We built a drug response prediction model (called PDXGEM) in a random-forest algorithm by using a subset of the drug sensitvity biomarkers with concordant co-expression patterns between the PDXs and pretreatment cancer patient tumors. We applied the PDXGEM to several cytotoxic chemotherapies as well as targeted therapy agents that are used to treat breast cancer, pancreatic cancer, colorectal cancer, or non-small cell lung cancer. Significantly accurate predictions of PDXGEM for pathological response or survival outcomes were observed in extensive independent validations on multiple cancer patient datasets obtained from retrospective observational studies and prospective clinical trials. Conclusion Our results demonstrated the strong potential of using molecular profiles and drug activity data of PDX tumors in developing a clinically translatable predictive cancer biomarkers for cancer patients. The PDXGEM web application is publicly available at http://pdxgem.moffitt.org.
Collapse
Affiliation(s)
- Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, 33612-9416, USA.
| | - Daewon Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| | - Biwei Cao
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, 33612-9416, USA
| | - Rodrigo Carvajal
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida, 33612-9416, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
45
|
Huang Z, Gu RX. Development and Application of Computational Methods in Biology and Medicine. Curr Med Chem 2020; 26:7534-7536. [PMID: 31942848 DOI: 10.2174/092986732642200108101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zunnan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Dongguan Scientific Research Center Guangdong Medical University Dongguan, Guangdong 523808, China
| | - Ruo-Xu Gu
- Department of Biological Sciences University of Calgary 2500 University Dr., N. W., Calgary T2N1N4, Canada
| |
Collapse
|