1
|
Carozza G, Zerti D, Pulcini F, Lancia L, Delle Monache S, Mattei V, Maccarone R. Conditioned media from dental pulp stem cells to counteract age-related macular degeneration. Exp Eye Res 2025; 250:110167. [PMID: 39571776 DOI: 10.1016/j.exer.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. To date, there are no effective therapies to counteract AMD towards the most severe stages characterised by a progressive loss of photoreceptors triggered by retinal pigmented epithelium dysfunction. Given their easy source and their high proliferative potential, Dental Pulp Stem Cells (DPSCs) are considered promising for regenerative medicine. The main advantage of DPSCs is related to their paracrine immunosuppressive and immunoregulatory abilities, including the capability to promote regeneration of damaged tissues. Recent studies demonstrated the therapeutic potential of DPSCs-conditioned media (CM) in neurodegenerative diseases. In addition, we have already shown a differential expression of some growth factors and cytokines in CM derived from DPSCs cultured in hypoxia and normoxia conditions. AIM In this study we evaluated the capability of DPSCs-CM to counteract retinal degeneration in an animal model of AMD. DPSCs-CM were intravitreally injected the day before the exposure of albino rats to high intensity light (LD). RESULTS We evaluated the retinal function, and we performed morphological and molecular analysis a week after the LD, in accordance with the well-established protocol of our light damage model. DPSCs-CM obtained from hypoxia (HYPO-CM) or normoxia (NORM-CM), were able to preserve the retinal function, to reduce the damaged area and to counteract the upregulation of key factors involved in retinal degeneration, like FGF-2. Furthermore, we demonstrated that neither conditioned media modified inflammatory activation, as shown by both microglia activation and GFAP upregulation, but in vitro studies demonstrated a significant effect of both CM to counteract oxidative stress, one of the main causes of AMD. CONCLUSION Taken together, our study demonstrated that NORM-CM and HYPO-CM, albeit with a different chemical composition, could represent eligible candidates to counteract retinal degeneration in an animal model of AMD. Further studies are needed to obtain conditioned media with the best performance in term of retinal protection.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Department of Life Science, Health and Health Professions, Link Campus University, 00165, Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
2
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
3
|
Kim YH, Moon TK, Ji YS. Factors Affecting Disease Stability After Intravitreal Brolucizumab Injection for Refractory Neovascular Age-Related Macular Degeneration. Ophthalmol Ther 2024; 13:2679-2695. [PMID: 39133375 PMCID: PMC11408434 DOI: 10.1007/s40123-024-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION The purpose of this study is to identify the factors affecting neovascular age-related macular degeneration (nAMD) disease stability after brolucizumab treatment. METHODS We retrospectively analyzed the medical records of 31 patients (31 eyes) with recalcitrant nAMD who were switched to brolucizumab after conventional anti-vascular endothelial growth factor (VEGF) treatment. We divided patients into two groups by treatment extension (TE) period: group 1 with TE < 12 weeks (N = 16) and group 2 with TE ≥ 12 weeks (N = 15). We compared outcomes between the groups at 2, 4, 8, and 12 weeks, including morphological characteristics of choroidal neovascularization (CNV). Logistic regression analysis identified factors associated with TE ≥ 12 weeks. RESULTS Group 2 had a significantly greater proportion of patients with dry macula (subretinal and intraretinal fluids absent) than group 1 (60 vs. 12.5%) at 2 weeks (P < 0.05). Best-corrected visual acuity (BCVA) and subfoveal choroidal thickness (SFCT) did not differ significantly between groups at all timepoints. Central subfield retinal thickness (CST) was significantly lower in group 2 at 2 (237.1 vs. 280.8 μm; P < 0.05), 4 (224.0 vs. 262.9 μm; P < 0.05), and 8 weeks (216.8 vs. 331.1 μm; P < 0.05). Group 2 had less vessel area (0.63 vs. 1.27 mm2; P < 0.05) and total vessel length (0.22 vs. 0.42 mm; P < 0.05). Choriocapillaris flow deficit (CCFd) was significantly lower in group 2 (42.7 vs. 48.2%; P < 0.05). Dry macula at 2 weeks (odds ratio [OR] = 8.3; P < 0.05) and a lower CCFd (OR = 0.73; P < 0.05) were associated with TE ≥ 12 weeks. CONCLUSIONS Early fluid-free status after switching to brolucizumab and choriocapillary function around CNV were prognostic factors for disease stability in nAMD refractory to anti-VEGF treatment.
Collapse
Affiliation(s)
- Yung-Hwi Kim
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- MSC Research Institute, Parangsae Eye Clinic, Gwangju, Republic of Korea
| | - Tae Kyu Moon
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
| | - Yong-Sok Ji
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
4
|
Estarreja J, Mendes P, Silva C, Camacho P, Mateus V. Off-Label Use of Bevacizumab in Patients Diagnosed with Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2024; 17:1000. [PMID: 39204105 PMCID: PMC11357420 DOI: 10.3390/ph17081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of vision loss in elderly people. Current pharmacological treatment in vascular AMD includes anti-VEGF agents, such as ranibizumab and aflibercept. Additionally, the off-label use of bevacizumab has been shown to be effective and has a lower cost, making it an interesting pharmacological approach; however, there is no consensus about its use. Therefore, this systematic review and meta-analysis aims to evaluate the efficacy, safety, and efficiency of bevacizumab in AMD patients. METHODS This review only focused on randomized controlled clinical trials published in 2010 in the MEDLINE database that compared the effect of bevacizumab with ranibizumab. The risk of bias in each included study was assessed using the CASP Randomised Clinical Trials checklist. RESULTS Twelve studies were included for qualitative synthesis, and nine of them were considered for meta-analysis. Bevacizumab-treated patients showed a significantly reduced neovascularization in a longer spectrum of time; however, they had a higher incidence of endophthalmitis than those treated with ranibizumab. Regarding efficiency, the mean number of administrations was reduced in the treatment with bevacizumab in comparison to ranibizumab. CONCLUSIONS Clinical evidence demonstrates that bevacizumab has efficacy and safety profiles comparable with ranibizumab; however, it is relatively more efficient.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (P.M.); (C.S.); (P.C.)
| | - Priscila Mendes
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (P.M.); (C.S.); (P.C.)
| | - Carina Silva
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (P.M.); (C.S.); (P.C.)
- Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Pedro Camacho
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (P.M.); (C.S.); (P.C.)
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (P.M.); (C.S.); (P.C.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Hou Y, Liu Q, Xiao Z, Li Y, Tian X, Wang Z. Association between chronic kidney disease and age-related macular degeneration: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1399666. [PMID: 38872627 PMCID: PMC11169943 DOI: 10.3389/fnagi.2024.1399666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose Observational studies have reported inconsistent results on the relationship between chronic kidney disease (CKD) and age-related macular degeneration (AMD). The primary objective of this study was to investigate the causal relationships between estimated glomerular filtration rate (eGFR), CKD, its common causes, and AMD among participants of European descent. Methods Genetic variants associated with eGFR, CKD and its common causes, encompassing diabetic nephropathy (DN), immunoglobulin A nephropathy (IgAN), and membranous nephropathy (MN) were obtained from previously published genome-wide association studies (GWAS) and FinnGen database. Summary statistics for early AMD, AMD, dry AMD, and wet AMD were acquired from the GWAS and FinnGen database. Inverse-variance-weighted (IVW) method was the main MR analysis. Sensitivity analyses were performed with Cochran's Q, MR-Egger intercept, and leave-one-out analysis. In addition, RadialMR was utilized to identify and remove outliers. Results IVW results showed that CKD, eGFR were not associated with any type of AMD (p > 0.05). DN (OR: 1.042, 95% CI: 1.002-1.083, p = 0.037) and MN (OR: 1.023, 95% CI: 1.007-1.040, p = 0.005) were associated with an increased risk of earl AMD. DN (OR: 1.111, 95% CI: 1.07-1.154, p = 4.87 × 10-8), IgAN (OR: 1.373, 95% CI: 1.097-1.719, p = 0.006), and MN (OR: 1.036, 95% CI: 1.008-1.064, p = 0.012) were associated with an increased risk of AMD. DN (OR: 1.090, 95% CI: 1.042-1.140, p = 1.57 × 10-4) and IgAN (OR: 1.480, 95% CI: 1.178-1.858, p = 7.55 × 10-4) were associated with an increased risk of dry AMD. The risk of wet AMD was associated with DN (OR: 1.107, 95% CI: 1.043-1.174, p = 7.56 × 10-4) and MN (OR: 1.071, 95% CI: 1.040-1.103, p = 5.48 × 10-6). Conclusion This MR study found no evidence of causal relationship between CKD and AMD. DN, IgAN, and MN may increase risk of AMD. This findings underscore the importance of ocular examinations in patients with DN, MN, and IgAN. More studies are needed to support the findings of our current study.
Collapse
Affiliation(s)
- Yawei Hou
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qinglin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenwei Xiao
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yameng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyang Tian
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenguo Wang
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Chen X, Wei DD, Lin M, Wang XS, Kang HJ, Ni L, Qian DW, Guo S, Duan JA. Comparative evaluation of four Lycium barbarum cultivars on NaIO 3-induced retinal degeneration mice via multivariate statistical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117889. [PMID: 38336183 DOI: 10.1016/j.jep.2024.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan-Dan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Sen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Jie Kang
- Ningxia Innovation Center of Goji R & D, Yinchuan, 750002, China
| | - Liang Ni
- Guizhou Tongde Pharmaceutical Co., Ltd, Tongren, 554300, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/ National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhang L, Li Y, Wu Z, Shen Q, Zeng C, Liu H, Zhang X, Yang J, Liu Q, Tang D, Ou K, Fang Y. Metrnl inhibits choroidal neovascularization by attenuating the choroidal inflammation via inactivating the UCHL-1/NF-κB signaling pathway. Front Immunol 2024; 15:1379586. [PMID: 38745648 PMCID: PMC11091344 DOI: 10.3389/fimmu.2024.1379586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Choroidal neovascularization (CNV) represents the predominant form of advanced wet Age-related Macular Degeneration (wAMD). Macrophages play a pivotal role in the pathological progression of CNV. Meteorin-like (Metrnl), a novel cytokine known for its anti-inflammatory properties in macrophages, is the focus of our investigation into its mechanism of action and its potential to impede CNV progression. Methods Cell viability was evaluated through CCK-8 and EdU assays following Metrnl treatment. Expression levels of inflammatory cytokines and proteins were assessed using quantitative reverse-transcription polymerase chain reaction(qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot techniques. Protein-protein interactions were identified through protein mass spectrometry and co-immunoprecipitation (Co-IP). Additionally, in vivo and in vitro neovascularization models were employed to evaluate angiogenesis. Results Our results revealed downregulated Metrnl levels in the choroid-sclera complex of CNV mice, the aqueous humor of wAMD patients, and activated macrophages. Metrnl overexpression demonstrated a reduction in pro-inflammatory cytokine production, influenced endothelial cell function, and suppressed angiogenesis in choroid explants and CNV models. Through protein mass spectrometry and Co-IP, we confirmed Metrnl binds to UCHL-1 to modulate the NF-κB signaling pathway. This interaction inhibited the transcription and expression of pro-inflammatory cytokines, ultimately suppressing angiogenesis. Conclusion In summary, our findings indicate that Metrnl down-regulates macrophage pro-inflammatory cytokine secretion via the UCHL-1/NF-κB signaling pathway. This mechanism alleviates the inflammatory microenvironment and effectively inhibits choroidal neovascularization.
Collapse
Affiliation(s)
- Lanyue Zhang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyu Wu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiang Shen
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Chunqin Zeng
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Han Liu
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Xuedong Zhang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxing Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiaoling Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Dianyong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanhong Fang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
8
|
Chacin Ruiz EA, Swindle-Reilly KE, Ford Versypt AN. Experimental and mathematical approaches for drug delivery for the treatment of wet age-related macular degeneration. J Control Release 2023; 363:464-483. [PMID: 37774953 PMCID: PMC10842193 DOI: 10.1016/j.jconrel.2023.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Several chronic eye diseases affect the posterior segment of the eye. Among them age-related macular degeneration can cause vision loss if left untreated and is one of the leading causes of visual impairment in the world. Most treatments are based on intravitreally injected therapeutics that inhibit the action of vascular endothelial growth factor. However, due to the need for monthly injections, this method is associated with poor patient compliance. To address this problem, numerous drug delivery systems (DDSs) have been developed. This review covers a selection of particulate systems, non-stimuli responsive hydrogels, implants, and composite systems that have been developed in the last few decades. Depending on the type of DDS, polymer material, and preparation method, different mechanical properties and drug release profiles can be achieved. Furthermore, DDS development can be optimized by implementing mathematical modeling of both drug release and pharmacokinetic aspects. Several existing mathematical models for diffusion-controlled, swelling-controlled, and erosion-controlled drug delivery from polymeric systems are summarized. Compartmental and physiologically based models for ocular drug transport and pharmacokinetics that have studied drug concentration profiles after intravitreal delivery or release from a DDS are also reviewed. The coupling of drug release models with ocular pharmacokinetic models can lead to obtaining much more efficient DDSs for the treatment of age-related macular degeneration and other diseases of the posterior segment of the eye.
Collapse
Affiliation(s)
- Eduardo A Chacin Ruiz
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Katelyn E Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
9
|
García-Quintanilla L, Almuiña-Varela P, Maroñas O, Gil-Rodriguez A, Rodríguez-Cid MJ, Gil-Martinez M, Abraldes MJ, Gómez-Ulla de Irazazabal F, González-Barcia M, Mondelo-Garcia C, Cruz R, Estany-Gestal A, Fernández-Rodríguez M, Fernández-Ferreiro A. Influence of Genetic Polymorphisms on the Short-Term Response to Ranibizumab in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37862026 PMCID: PMC10599160 DOI: 10.1167/iovs.64.13.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose To determine whether genetic risk single nucleotide polymorphisms (SNPs) for age-related macular degeneration (AMD) influence short-term response to intravitreal ranibizumab treatment. Methods Forty-four treatment-naive AMD patients were included in a prospective observational study. They underwent three monthly injections of intravitreal ranibizumab for neovascular AMD. After an initial clinical examination (baseline measurement), a follow-up visit was performed to determine treatment response one month after the third injection (treatment evaluation). Patients were evaluated based on ophthalmoscopy, fluorescein angiography, optical coherence tomography (OCT), and OCT angiography. Peripheral venous blood was collected for DNA analysis at baseline visit. Patients were genotyped for single-nucleotide polymorphisms within AMD-relevant genes and classified on good or poor responders based on visual acuity, central retinal thickness, intraretinal fluid, and subretinal fluid. Results One hundred ten AMD-associated SNPs have been analyzed. Six were found to be relevant when associated to ranibizumab treatment response. The genetic variants rs890293 (CYP2J2), rs11200638 (HTRA1), rs405509 (APOE), rs9513070 (FLT1), and rs8135665 (SLC16A8) predisposed patients to a good response, whereas rs3093077 (CRP) was associated with a poor response. FTL1, SLC16A8, and APOE were the SNPs that showed significance (P < 0.05) but did not pass Bonferroni correction. Conclusions This is the first study that links novel polymorphisms in genes such as CRP, SCL16A8, or CYP2J2 to treatment response to ranibizumab therapy. On the other hand, HTRA1, FLT1, and APOE are linked to a good ranibizumab response. These SNPs may be good candidates for short-term treatment response biomarkers in AMD patients. However, further studies will be necessary to confirm our findings.
Collapse
Affiliation(s)
- Laura García-Quintanilla
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Pablo Almuiña-Varela
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
| | - Olalla Maroñas
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Galicia, Spain
| | - Almudena Gil-Rodriguez
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María José Rodríguez-Cid
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
| | - María Gil-Martinez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
| | - Maximino J. Abraldes
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
- Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain
- Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Estany-Gestal
- FIDIS-Unidad de Epidemiología e Investigación Clínica, Santiago de Compostela (A Coruña), Spain
| | - Maribel Fernández-Rodríguez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela, (SERGAS), Santiago de Compostela, Spain
- Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain
- Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
10
|
Mao D, Tao B, Sheng S, Jin H, Chen W, Gao H, Deng J, Li Z, Chen F, Chan S, Qian L. Causal Effects of Gut Microbiota on Age-Related Macular Degeneration: A Mendelian Randomization Study. Invest Ophthalmol Vis Sci 2023; 64:32. [PMID: 37725382 PMCID: PMC10513115 DOI: 10.1167/iovs.64.12.32] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/06/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose Recently, the association between gut microbiota and age-related macular degeneration (AMD) through the gut-retina axis has attracted great interest. However, the causal relationship between them has not been elucidated. Using publicly available genome-wide association study summary statistics, we conducted a two-sample Mendelian randomization (MR) analysis to examine the causal relationship between the gut microbiota and the occurrence of AMD. Methods The study used a variety of quality control techniques to select instrumental single nucleotide polymorphisms (SNPs) with strong exposure associations. We used a set of SNPs as instrumental variable that were below the genome-wide statistical significance threshold (5 × 10-8). Additionally, a separate group of SNPs below the locus-wide significance level (1 × 10-5) were selected as instrumental variables to ensure a comprehensive conclusion. Inverse variance-weighted (IVW) analysis was the primary technique we used to examine causality in order to confirm the validity of our findings. The MR-Egger intercept test, Cochran's Q test, and leave-one-out sensitivity analysis were used to evaluate the horizontal pleiotropy, heterogeneities, and stability of the genetic variants. Results IVW results showed that genus Anaerotruncus (P = 5.00 × 10-3), genus Candidatus Soleaferrea (P = 1.83 × 10-2), and genus unknown id.2071 (P = 3.12 × 10-2) were protective factors for AMD. The Eubacterium oxidoreducens group (P = 3.17 × 10-2), genus Faecalibacterium (P = 2.67 × 10-2), and genus Ruminococcaceae UCG-011 (P = 4.04 × 10-2) were risk factors of AMD. No gut microbiota (GM) taxa were found to be causally related to AMD at the phylum, class, order, and family levels (P > 0.05). The robustness of MR results were confirmed by heterogeneity and pleiotropy analysis. (P > 0.05). We also performed a bidirectional analysis, which showed that genus Anaerotruncus, genus Candidatus Soleaferrea, genus unknown id.2071 and the Eubacterium oxidoreducens group had an interaction with AMD, whereas genus Faecalibacterium showed only a unilateral unfavorable effect on AMD. Conclusions We confirmed a causal relationship between AMD and GM taxa, including the Eubacterium oxidoreducens group, Faecalibacterium, Ruminococcaceae UCG-011, Anaerotruncus, and Candidatus Soleaferrea. These strains have the potential to serve as new biomarkers, offering valuable insights into the treatment and prevention of AMD.
Collapse
Affiliation(s)
- Deshen Mao
- Department of Ophthalmology, Anqing Municipal Hospital, Anqing, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Borui Tao
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shuyan Sheng
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Hui Jin
- Department of Medical Imaging, Anqing First People's Hospital, Anqing, China
| | - Wenxuan Chen
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Huimin Gao
- Department of Pathology, Anqing Municipal Hospital, Anqing, China
| | - Jianyi Deng
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuo Li
- School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Fan Chen
- Department of Ophthalmology, Anqing Municipal Hospital, Anqing, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Longqi Qian
- Department of Ophthalmology, Anqing Municipal Hospital, Anqing, China
| |
Collapse
|
11
|
Chakraborty D, Thakkar M, Venkatesh R, Roy S, Bhavsar M, Karcher H. Short-Term Treatment Outcomes of Brolucizumab in Patients with Neovascular Age-Related Macular Degeneration: A Multicentre Indian Real-World Evidence Study. Clin Ophthalmol 2023; 17:2295-2307. [PMID: 37583576 PMCID: PMC10424695 DOI: 10.2147/opth.s415044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
Objective To evaluate the short-term effectiveness and safety outcomes following brolucizumab treatment in patients with neovascular age-related macular degeneration (nAMD) as a part of real-world clinical practice in India. Methods This was a retrospective, observational, multicentre study including patients (≥50 years old) diagnosed with nAMD. Anonymized data of the patients receiving the first dose of brolucizumab intravitreal injection (IVI) who were either treatment-naïve or previously treated with a single or a combination of other anti-VEGF IVIs were included. The present study reported the change in retinal fluid levels from baseline to month 3, best-corrected visual acuity (BCVA), central retinal thickness (CRT), and the number of injections received. The adverse events in the three months after brolucizumab treatment initiation were also monitored. Results The study included 63 patients (65 eyes) from four study centres across India (mean age: 69.1 ± 9.7 years). A total of 82 brolucizumab injections were administered during the 3 months of study duration, with 52/65 (80.0%) eyes receiving only 1 injection. Resolution of IRF, SRF, and PED was observed in 76.9%, 64.6%, and 67.7% of eyes, respectively. Further, a significant reduction in CRT was observed (baseline: 403.5 ± 118.7 μm; month 3: 308.3 ± 73.8 μm; p < 0.001), and BCVA also improved notably from 0.7 ± 0.5 logMAR at baseline to 0.5 ± 0.4 logMAR at month 3 (p < 0.001). Adverse events (AEs) were reported in 3 eyes from 3 patients; retinal pigment epithelial rip (1) and subretinal hemorrhage (2) after the first injection of brolucizumab, however, none discontinued the treatment. Conclusion The study reports on the short-term effectiveness and tolerability of brolucizumab therapy in the management of nAMD in both treatment-naïve and switch eyes. Brolucizumab was observed to have a favourable benefit-risk profile, and study results were within the known safety profile, with no instances of intraocular inflammation.
Collapse
Affiliation(s)
| | - Milan Thakkar
- Dr. Milan’s Retina Care Centre, Rajkot, Gujarat, India
| | | | - Sangeeta Roy
- Susrut Eye Foundation and Research Centre, Kolkata, West Bengal, India
| | - Maulik Bhavsar
- Novartis Healthcare Pvt. Ltd., Mumbai, Maharashtra, India
| | | |
Collapse
|
12
|
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants (Basel) 2023; 12:1251. [PMID: 37371981 DOI: 10.3390/antiox12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting the neuronal retinal cells in the eye. Expression disorders of these proteins may be responsible for the development of various age-related eye diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. In this review, we focused on the literature reports suggesting that these proteins may be a key component of the endogenous protection system of the retinal neurons, and, when the expression of MTs is disrupted, this system becomes inefficient. Moreover, we described the location of different MT isoforms in ocular tissues. Then we discussed the changes in MT subtypes' expression in the context of the common eye diseases. Finally, we highlighted the possibility of the use of MTs as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Daniel Jamrozik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Radosław Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Adrian Smędowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- GlaucoTech Co., Gen., Władysława Sikorskiego 45/177, 40-282 Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
13
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
14
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
15
|
Suppression of Age-Related Macular Degeneration-like Pathology by c-Jun N-Terminal Kinase Inhibitor IQ-1S. Biomedicines 2023; 11:biomedicines11020395. [PMID: 36830932 PMCID: PMC9953667 DOI: 10.3390/biomedicines11020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. The development of AMD is associated with inflammation, oxidative stress, and progressive proteostasis imbalance, in the regulation of which c-Jun N-terminal kinases (JNK) play a crucial role. JNK inhibition is discussed as an alternative way for prevention and treatment of AMD and other neurodegenerative diseases. Here we assess the retinoprotective potential of the recently synthesized JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S) using senescence-accelerated OXYS rats as a model of AMD. The treatment with IQ-1S (50 mg/kg body weight intragastric) during the period of active disease development (from 4.5 to 6 months of age) improved some (but not all) histological abnormalities associated with retinopathy. IQ-1S improved blood circulation, increased the functional activity of the retinal pigment epithelium, reduced the VEGF expression in the endothelial cells, and increased the expression of PEDF in the neuroretina. The result was a decrease in the degeneration of photoreceptors and neurons of the inner layers. IQ-1S significantly improved the retinal ultrastructure and increased the number of mitochondria, which were significantly reduced in the neuroretina of OXYS rats compared to Wistar rats. It seems probable that using IQ-1S can be a good prophylactic strategy to treat AMD.
Collapse
|
16
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
17
|
Lu L, Xiong Y, Lin Z, Chu X, Panayi AC, Hu Y, Zhou J, Mi B, Liu G. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front Pharmacol 2022; 13:1009550. [PMID: 36267286 PMCID: PMC9576948 DOI: 10.3389/fphar.2022.1009550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Extensive research has implicated inflammation and oxidative stress in the development of multiple diseases, such as diabetes, hepatitis, and arthritis. Kinsenoside (KD), a bioactive glycoside component extracted from the medicinal plant Anoectochilus roxburghii, has been shown to exhibit potent anti-inflammatory and anti-oxidative abilities. In this review, we summarize multiple effects of KD, including hepatoprotection, pro-osteogenesis, anti-hyperglycemia, vascular protection, immune regulation, vision protection, and infection inhibition, which are partly responsible for suppressing inflammation signaling and oxidative stress. The protective action of KD against dysfunctional lipid metabolism is also associated with limiting inflammatory signals, due to the crosstalk between inflammation and lipid metabolism. Ferroptosis, a process involved in both inflammation and oxidative damage, is potentially regulated by KD. In addition, we discuss the physicochemical properties and pharmacokinetic profiles of KD. Advances in cultivation and artificial synthesis techniques are promising evidence that the shortage in raw materials required for KD production can be overcome. In addition, novel drug delivery systems can improve the in vivo rapid clearance and poor bioavailability of KD. In this integrated review, we aim to offer novel insights into the molecular mechanisms underlying the therapeutic role of KD and lay solid foundations for the utilization of KD in clinical practice.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
18
|
Chen Q, Wang J, Xia Q, Wu L, Chen F, Li L, Zhu C, He M, Jiang Y, Huang Y, Ding H, Wu R, Zhang L, Song Y, Liu L. Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:976706. [PMID: 36213074 PMCID: PMC9533143 DOI: 10.3389/fbioe.2022.976706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common musculoskeletal disease and its treatment remains a clinical challenge. It is characterised by reduced cell numbers and degeneration of the extracellular matrix (ECM). Nucleus pulposus (NP) cells play a crucial role in this process. The purpose of this study is to explore the role of bevacizumab, a vascular endothelial growth factor (VEGF) inhibitor, in the treatment of IDD through local drug delivery. High expression of VEGF was observed in degenerating human and rat IVDs. We demonstrated that MMP3 expression was decreased and COL II synthesis was promoted, when VEGF expression was inhibited by bevacizumab, thereby improving the degree of disc degeneration. Thus, these findings provide strong evidence that inhibition of VEGF expression by local delivery of bevacizumab is safe and effective in ameliorating disc degeneration in rats. The injectable thermosensitive PLGA-PEG-PLGA hydrogels loaded with bevacizumab is a potential therapeutic option for disc degeneration.
Collapse
Affiliation(s)
- Qian Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Juehan Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Lei Wu
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- The Institute of Clinic Pathology, Sichuan University, Chengdu, China
| | - Li Li
- The Institute of Clinic Pathology, Sichuan University, Chengdu, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao He
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruibang Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liming Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Liming Liu,
| |
Collapse
|
19
|
Li Z, Zhou KW, Chen F, Shang F, Wu MX. Celastrol inhibits laser-induced choroidal neovascularization by decreasing VEGF induced proliferation and migration. Int J Ophthalmol 2022; 15:1221-1230. [PMID: 36017049 DOI: 10.18240/ijo.2022.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate celastrol's effect on choroidal neovascularization (CNV). METHODS In this study, neovascular formation in vitro (tube formation and aortic ring culture) and in vivo (laser induced neovascular in mice) was treated with celastrol to evaluate this natural compound's impact on CNV. Western blot was applied to explore the possible mechanism for it. For in vitro assay, triplicate for each group was repeated at least three times. For in vivo assay, each group contains 5 mice. RESULTS Celastrol supressed tube formation and aortic ring sprout neovascularization. In vitro assay exhibited that celastrol inhibiting vascular endothelial growth factor (VEGF)-induced proliferation and migration of human umbilical vein endothelial cells and human choroidal endothelial cells, and by blocking VEGF signaling. Furthermore, intraperitoneal administration of celastrol significantly reduced the area of laser-induced CNV in an in vivo mouse model. By day 14, the area of CNV had decreased by 49.15% and 80.26% in the 0.1 mg/kg celastrol-treated group (n=5) and in the 0.5 mg/kg celastrol treated group (n=5), respectively, compared to the vehicle-treated group (n=5). CONCLUSION Celastrol inhibits CNV by inhibiting VEGF-induced proliferation and migration of vascular endothelial cells, indicating that celastrol is a potent, natural therapeutic compound for the prevention of CNV.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Ke-Wen Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fang Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Fu Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Ming-Xing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
20
|
Kong H, Zhang R, Jing Q, Liang Y, Zhuo Q, Li B, Zhang S, Zhu W, Zhao C. Intravitreal injection of EV11, a novel aryl ketone amide, inhibits choroidal neovascularization via AKT/ERK1/2 pathway. Microvasc Res 2022; 143:104401. [PMID: 35750130 DOI: 10.1016/j.mvr.2022.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Choroidal neovascularization (CNV) is the major cause of irreversible vision loss associated with age-related macular disease (AMD). The currently clinical chemical therapeutic strategies are of high cost and facing supply chain shortage. In our study, we aim to investigate EV11, a novel derivative from Sorafenib, as a new approach to inhibit the formation of CNV. METHODS Cell viability assay, wound healing assay, transwell assay and tube formation assay were applied to explore the effects of EV11 on human vascular endothelial cells (HUVECs). Western blotting analysis was performed to investigate the pathways when EV11 acts on HUVECs. Laser-induced CNV in mice and intravitreal injection of EV11 were applied to find out the efficacy of the drug in vivo. Histological examination and electroretinogram (ERG) evaluated the retinal morphology and visual function after drug application. RESULTS EV11 influenced the HUVECs cell viability as the concentration increasing after 24 hour incubation. It influenced HUVECs through suppressing AKT and ERK1/2 pathway. EV11 reduced CNV area with the optimal concentration of 200uM in mice eyes and compared with Bevacizumab, it had the same effect. The retinal thickness around the optic in each group was not influenced. The amplitudes of the a- and b-waves on scotopic and photopic ERG were not reduced after intravitreal injection. CONCLUSION The present study indicated that EV11 affected the proliferation, migration and tube formation of HUVECs, inhibited the area of neovascular of laser induced choroidal neovascularization in mice eyes with no toxicity. EV11 could block the AKT/ERK1/2 signaling pathway in effects of HUVECs. This study unveiled a novel perspective drug EV11 to be a potential candidate for neovascularization.
Collapse
Affiliation(s)
- Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Rong Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Qinghe Jing
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Qiao Zhuo
- Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China.
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China.
| |
Collapse
|
21
|
Estarreja J, Valente C, Silva C, Camacho P, Mateus V. Efficacy, safety, and efficiency on the off-label use of bevacizumab in patients diagnosed with age-related macular degeneration: protocol for a systematic review and meta-analysis (Preprint). JMIR Res Protoc 2022. [DOI: 10.2196/38658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
22
|
Xi Y, Miao Y, Zhou R, Wang M, Zhang F, Li Y, Zhang Y, Yang H, Guo F. Exploration of the Specific Pathology of HXMM Tablet Against Retinal Injury Based on Drug Attack Model to Network Robustness. Front Pharmacol 2022; 13:826535. [PMID: 35401181 PMCID: PMC8990835 DOI: 10.3389/fphar.2022.826535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal degenerative diseases are related to retinal injury because of the activation of the complement cascade, oxidative stress-induced cell death mechanisms, dysfunctional mitochondria, chronic neuroinflammation, and production of the vascular endothelial growth factor. Anti-VEGF therapy demonstrates remarkable clinical effects and benefits in retinal degenerative disease patients. Hence, new drug development is necessary to treat patients with severe visual loss. He xue ming mu (HXMM) tablet is a CFDA-approved traditional Chinese medicine (TCM) for retinal degenerative diseases, which can alleviate the symptoms of age-related macular degeneration (AMD) and diabetic retinopathy (DR) alone or in combination with anti-VEGF agents. To elucidate the mechanisms of HXMM, a quantitative evaluation algorithm for the prediction of the effect of multi-target drugs on the disturbance of the disease network has been used for exploring the specific pathology of HXMM and TCM precision positioning. Compared with anti-VEGF agents, the drug disturbance of HXMM on the functional subnetwork shows that HXMM reduces the network robustness on the oxidative stress subnetwork and inflammatory subnetwork to exhibit the anti-oxidation and anti-inflammation activity. HXMM provides better protection to ARPE-19 cells against retinal injury after H2O2 treatment. HXMM can elevate GSH and reduce LDH levels to exhibit antioxidant activity and suppress the expression of IL-6 and TNF-α for anti-inflammatory activity, which is different from the anti-VEGF agent with strong anti-VEGF activity. The experimental result confirmed the accuracy of the computational prediction. The combination of bioinformatics prediction based on the drug attack on network robustness and experimental validation provides a new strategy for precision application of TCM.
Collapse
Affiliation(s)
- Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Miao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maolin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| |
Collapse
|
23
|
Caputo V, Strafella C, Termine A, Fabrizio C, Ruffo P, Cusumano A, Giardina E, Ricci F, Cascella R. Epigenomic signatures in age-related macular degeneration: Focus on their role as disease modifiers and therapeutic targets. Eur J Ophthalmol 2021; 31:2856-2867. [PMID: 34798695 DOI: 10.1177/11206721211028054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epigenetics is characterized by molecular modifications able to shape gene expression profiles in response to inner and external stimuli. Therefore, epigenetic elements are able to provide intriguing and useful information for the comprehension and management of different human conditions, including aging process, and diseases. On this subject, Age-related Macular Degeneration (AMD) represents one of the most frequent age-related disorders, dramatically affecting the quality of life of older adults worldwide. The etiopathogenesis is characterized by an interplay among multiple genetic and non-genetic factors, which have been extensively studied. Nevertheless, a deeper dissection of molecular machinery associated with risk, onset, progression and effectiveness of therapies is still missing. In this regard, epigenetic signals may be further explored to disentangle disease etiopathogenesis, the possible therapeutic avenues and the differential response to AMD treatment. This review will discuss the epigenomic signatures mostly investigated in AMD, which could be applied to improve the knowledge of disease mechanisms and to set-up novel or modified treatment options.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,UILDM Lazio ONLUS Foundation, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
24
|
Zhang J, Zhu J, Zhao L, Mao K, Gu Q, Li D, Zhao J, Wu X. RGD-modified multifunctional nanoparticles encapsulating salvianolic acid A for targeted treatment of choroidal neovascularization. J Nanobiotechnology 2021; 19:196. [PMID: 34215269 PMCID: PMC8254347 DOI: 10.1186/s12951-021-00939-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background The development of alternative anti-angiogenesis therapy for choroidal neovascularization (CNV) remains a great challenge. Nanoparticle systems have emerged as a new form of drug delivery in ocular diseases. Here, we report the construction and characterization of arginine-glycine-aspartic acid (RGD)-conjugated polyethyleneimine (PEI) as a vehicle to load antioxidant salvianolic acid A (SAA) for targeted anti-angiogenesis therapy of CNV. In this study, PEI was consecutively modified with polyethylene glycol (PEG) conjugated RGD segments, 3-(4′-hydroxyphenyl) propionic acid-Osu (HPAO), and fluorescein isothiocyanate (FI), followed by acetylation of the remaining PEI surface amines to generate the multifunctional PEI vehicle PEI.NHAc-FI-HPAO-(PEG-RGD) (for short, RGD-PEI). The formed RGD-PEI was utilized as an effective vehicle platform to load SAA. Results We showed that RGD-PEI/SAA complexes displayed desirable water dispersibility, low cytotoxicity, and sustainable release of SAA under different pH conditions. It could be specifically taken up by retinal pigment epithelium (RPE) cells which highly expressed ɑvβ5 integrin receptors in vitro and selectively accumulated in CNV lesions in vivo. Moreover, the complexes displayed specific therapeutic efficacy in a mouse model of laser induced CNV, and the slow elimination of the complexes in the vitreous cavity was verified by SPECT imaging after 131I radiolabeling. The histological examinations further confirmed the biocompatibility of RGD-PEI/SAA. Conclusions The results suggest that the designed RGD-PEI/SAA complexes may be a potential alternative anti-angiogenesis therapy for posterior ocular neovascular diseases. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00939-9.
Collapse
Affiliation(s)
- Junxiu Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, People's Republic of China
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, People's Republic of China
| | - Ke Mao
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, People's Republic of China
| | - Dongli Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, People's Republic of China.
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
25
|
Identification of Diagnostic Biomarkers and Their Correlation with Immune Infiltration in Age-Related Macular Degeneration. Diagnostics (Basel) 2021; 11:diagnostics11061079. [PMID: 34204836 PMCID: PMC8231534 DOI: 10.3390/diagnostics11061079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of the central retina, with no suitable biomarkers for early diagnosis and treatment. This study aimed to find potential diagnostic biomarker candidates for AMD and investigate their immune-related roles in this pathology. Weight gene correlation analysis was first performed based on data from the Gene Expression Omnibus database and 20 hub genes were identified. The functional enrichment analyses showed that the innate immune response, inflammatory response, and complement activation were key pathways associated with AMD. Complement C1s (C1S), adrenomedullin (ADM), and immediate early response 5 like (IER5L) were identified as the crucial genes with favorable diagnostic values for AMD by using LASSO analysis and multiple logistic regression. Furthermore, a 3-gene model was constructed and proved to be of good diagnostic and predictive performance for AMD (AUC = 0.785, 0.840, and 0.810 in training, test, and validation set, respectively). Finally, CIBERSORT was used to evaluate the infiltration of immune cells in AMD tissues. The results showed that the NK cells, CD4 memory T cell activation, and macrophage polarization may be involved in the AMD process. C1S, ADM, and IER5L were correlated with the infiltration of the above immune cells. In conclusion, our study suggests that C1S, ADM, and IER5L are promising diagnostic biomarker candidates for AMD and may regulate the infiltration of immune cells in the occurrence and progression of AMD.
Collapse
|
26
|
Telias M, Nawy S, Kramer RH. Degeneration-Dependent Retinal Remodeling: Looking for the Molecular Trigger. Front Neurosci 2021; 14:618019. [PMID: 33390897 PMCID: PMC7775662 DOI: 10.3389/fnins.2020.618019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
Vision impairment and blindness in humans are most frequently caused by the degeneration and loss of photoreceptor cells in the outer retina, as is the case for age-related macular degeneration, retinitis pigmentosa, retinal detachment and many other diseases. While inner retinal neurons survive degeneration, they undergo fundamental pathophysiological changes, collectively known as “remodeling.” Inner retinal remodeling downstream to photoreceptor death occurs across mammalian retinas from mice to humans, independently of the cause of degeneration. It results in pervasive spontaneous hyperactivity and membrane hyperpermeability in retinal ganglion cells, which funnel all retinal signals to the brain. Remodeling reduces light detection in vision-impaired patients and precludes meaningful vision restoration in blind individuals. In this review, we summarize current hypotheses proposed to explain remodeling and their potential medical significance highlighting the important role played by retinoic acid and its receptor.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Scott Nawy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
27
|
The Impact of Oxidative Stress on Blood-Retinal Barrier Physiology in Age-Related Macular Degeneration. Cells 2021; 10:cells10010064. [PMID: 33406612 PMCID: PMC7823525 DOI: 10.3390/cells10010064] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch's membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.
Collapse
|
28
|
Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm 2020; 153:130-149. [DOI: 10.1016/j.ejpb.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
|
29
|
Capasso C, Winum JY. Novel method of treating macular degeneration: a patent evaluation (WO2018/107005). Expert Opin Ther Pat 2019; 29:749-752. [DOI: 10.1080/13543776.2019.1661991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Clemente Capasso
- Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Napoli, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| |
Collapse
|