1
|
Waseem T, Rajput TA, Mushtaq MS, Babar MM, Rajadas J. Computational biology approaches for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:91-109. [PMID: 38789189 DOI: 10.1016/bs.pmbts.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The drug discovery and development (DDD) process greatly relies on the data available in various forms to generate hypotheses for novel drug design. The complex and heterogeneous nature of biological data makes it difficult to utilize or gather meaningful information as such. Computational biology techniques have provided us with opportunities to better understand biological systems through refining and organizing large amounts of data into actionable and systematic purviews. The drug repurposing approach has been utilized to overcome the expansive time periods and costs associated with traditional drug development. It deals with discovering new uses of already approved drugs that have an established safety and efficacy profile, thereby, requiring them to go through fewer development phases. Thus, drug repurposing through computational biology provides a systematic approach to drug development and overcomes the constraints of traditional processes. The current chapter covers the basics, approaches and tools of computational biology that can be employed to effectively develop repurposing profile of already approved drug molecules.
Collapse
Affiliation(s)
- Tanya Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tausif Ahmed Rajput
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
2
|
Amin G, Booz GW, Zouein FA. Proteinopathy: Shared Feature Between the Heart and Brain in Alzheimer's Disease. J Cardiovasc Pharmacol 2024; 83:4-7. [PMID: 37890458 PMCID: PMC10842240 DOI: 10.1097/fjc.0000000000001501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Affiliation(s)
- Ghadir Amin
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, American University of Beirut Medical Center, Faculty of Medicine, Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| |
Collapse
|
3
|
Sánchez JD, Alcántara AR, González JF, Sánchez-Montero JM. Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease. Expert Opin Drug Discov 2023; 18:1413-1428. [PMID: 37800875 DOI: 10.1080/17460441.2023.2264766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's. AREAS COVERED This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases. EXPERT OPINION The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Juan D Sánchez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan F González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Hu E, Li TS, Wineinger NE, Su AI. Association study between drug prescriptions and Alzheimer's disease claims in a commercial insurance database. Alzheimers Res Ther 2023; 15:118. [PMID: 37355615 PMCID: PMC10290352 DOI: 10.1186/s13195-023-01255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
In the ongoing effort to discover treatments for Alzheimer's disease (AD), there has been considerable focus on investigating the use of repurposed drug candidates. Mining of electronic health record data has the potential to identify novel correlated effects between commonly used drugs and AD. In this study, claims from members with commercial health insurance coverage were analyzed to determine the correlation between the use of various drugs on AD incidence and claim frequency. We found that, within the insured population, several medications for psychotic and mental illnesses were associated with higher disease incidence and frequency, while, to a lesser extent, antibiotics and anti-inflammatory drugs were associated with lower AD incidence rates. The observations thus provide a general overview of the prescription and claim relationships between various drug types and Alzheimer's disease, with insights into which drugs have possible implications on resulting AD diagnosis.
Collapse
Affiliation(s)
- Eric Hu
- Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Tong Shu Li
- Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
| | | | - Andrew I. Su
- Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
- Present Address: Scripps Research Translational Institute, La Jolla, CA 92037 USA
| |
Collapse
|
5
|
Lespinasse J, Chêne G, Mangin J, Dubois B, Blanc F, Paquet C, Hanon O, Planche V, Gabelle A, Ceccaldi M, Annweiler C, Krolak‐Salmon P, Godefroy O, Wallon D, Sauvée M, Bergeret S, Chupin M, Proust‐Lima C, Dufouil C. Associations among hypertension, dementia biomarkers, and cognition: The MEMENTO cohort. Alzheimers Dement 2022. [PMID: 36464896 DOI: 10.1002/alz.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Approximately 40% of dementia cases could be delayed or prevented acting on modifiable risk factors including hypertension. However, the mechanisms underlying the hypertension-dementia association are still poorly understood. METHODS We conducted a cross-sectional analysis in 2048 patients from the MEMENTO cohort, a French multicenter clinic-based study of outpatients with either isolated cognitive complaints or mild cognitive impairment. Exposure to hypertension was defined as a combination of high blood pressure (BP) status and antihypertensive treatment intake. Pathway associations were examined through structural equation modeling integrating extensive collection of neuroimaging biomarkers and clinical data. RESULTS Participants treated with high BP had significantly lower cognition compared to the others. This association was mediated by higher neurodegeneration and higher white matter hyperintensities load but not by Alzheimer's disease (AD) biomarkers. DISCUSSION These results highlight the importance of controlling hypertension for prevention of cognitive decline and offer new insights on mechanisms underlying the hypertension-dementia association. HIGHLIGHTS Paths of hypertension-cognition association were assessed by structural equation models. The hypertension-cognition association is not mediated by Alzheimer's disease biomarkers. The hypertension-cognition association is mediated by neurodegeneration and leukoaraiosis. Lower cognition was limited to participants treated with uncontrolled blood pressure. Blood pressure control could contribute to promote healthier brain aging.
Collapse
Affiliation(s)
- Jérémie Lespinasse
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | - Geneviève Chêne
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | - Jean‐Francois Mangin
- CATI, US52‐UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP Paris France
- Université Paris‐Saclay, CEA, CNRS, Neurospin, UMR9027 Baobab Gif‐sur‐Yvette France
| | - Bruno Dubois
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale Paris France
- Sorbonne‐Université, Service des maladies cognitives et comportementales et Institut de la mémoire et de la maladie d'Alzheimer (IM2A) Hôpital de la Salpêtrière Paris AP‐PH France
| | - Frederic Blanc
- Univ. Strasbourg, CNRS, ICube laboratory, UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Centre Mémoire de Ressources et de Recherches Departement de Gériatrie Strasbourg France
| | - Claire Paquet
- Univ. Paris, Inserm U1144, GHU APHP Nord Lariboisière Fernand‐Widal Paris France
| | - Olivier Hanon
- Univ. de Paris, EA 4468, Service de Gériatrie, AP‐HP Hôpital Broca Paris France
| | - Vincent Planche
- Univ. Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France
| | - Audrey Gabelle
- Univ. Montpellier, i‐site MUSE, Inserm U1061, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Département de Neurologie, CHU de Montpellier Montpellier France
| | - Mathieu Ceccaldi
- Univ. Aix Marseille, Inserm UMR 1106, Institut de Neurosciences des Systèmes, Centre Mémoire de Ressources et de Recherches Département de Neurologie et de Neuropsychologie, AP‐HM Marseille France
| | - Cedric Annweiler
- Univ. Angers, UPRES EA 4638, Centre Mémoire de Ressources et de Recherches, Département de Gériatrie, CHU d'Angers Angers France
| | - Pierre Krolak‐Salmon
- Univ. Lyon, Inserm U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Centre Mémoire Ressource et Recherche de Lyon (CMRR), Hôpital des Charpennes Hospices Civils de Lyon Lyon France
| | - Olivier Godefroy
- Neurology Departement and Functional Neurosciences Lab. (UR UPJV 4559) Amiens University Hospital Amiens France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR‐MAJ, Normandy Center for Genomic and Personalized Medicine CIC‐CRB1404 Rouen France
| | - Mathilde Sauvée
- CMRR Grenoble Arc Alpin CHU Grenoble Grenoble France
- Laboratoire de Psychologie et NeuroCognition: LPNC CNRS 5105 Université Grenoble Alpes Grenoble France
| | - Sébastien Bergeret
- Département de Médecine NucléaireAP‐HP, Hôpital Pitié‐Salpêtrière ParisFrance
| | - Marie Chupin
- CATI, US52‐UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP Paris France
| | - Cécile Proust‐Lima
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
| | - Carole Dufouil
- Inserm Research Center « Bordeaux Population Health », Bordeaux School of Public Health, CIC 1401‐EC Bordeaux University Bordeaux France
- Pôle de santé publique Centre Hospitalier Universitaire (CHU) de Bordeaux Bordeaux France
| | | |
Collapse
|
6
|
Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathol 2020; 140:793-810. [PMID: 32865691 PMCID: PMC7666276 DOI: 10.1007/s00401-020-02215-w] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Therapies targeting late events in Alzheimer's disease (AD), including aggregation of amyloid beta (Aβ) and hyperphosphorylated tau, have largely failed, probably because they are given after significant neuronal damage has occurred. Biomarkers suggest that the earliest event in AD is a decrease of cerebral blood flow (CBF). This is caused by constriction of capillaries by contractile pericytes, probably evoked by oligomeric Aβ. CBF is also reduced by neutrophil trapping in capillaries and clot formation, perhaps secondary to the capillary constriction. The fall in CBF potentiates neurodegeneration by upregulating the BACE1 enzyme that makes Aβ and by promoting tau hyperphosphorylation. Surprisingly, therefore, CBF reduction may play a crucial role in driving cognitive decline by initiating the amyloid cascade itself, or being caused by and amplifying Aβ production. Here, we review developments in this area that are neglected in current approaches to AD, with the aim of promoting novel mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Fenoterol and dobutamine as SARS-CoV-2 main protease inhibitors: A virtual screening study. J Mol Struct 2020; 1228:129449. [PMID: 33071354 PMCID: PMC7550866 DOI: 10.1016/j.molstruc.2020.129449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Global health is under heavy threat by a worldwide pandemic caused by a new type of coronavirus (COVID-19) since its rapid spread in China in 2019 [1]. Currently, there are no approved specific drugs and effective treatment for COVID-19 infection, but several available drugs are known to facilitate tentative treatment. Since drug design, development and testing procedures are time-consuming [2], [1], [2], [3], virtual screening studies with the aid of available drug databases take the initiative at this point and save the time. Besides, drug repurposing strategies promises to identify new agents for the novel diseases in a time-critical fashion. In this study, we used structure based virtual screening method on FDA approved drugs and compounds in clinical trials. As a result of this study we choose three most prominent compounds for further studies. Here we show that these three compounds (dobutamine and its two derivatives) can be considered as promising inhibitors for SARS-CoV-2 main protease and results also demonstrate the possible interactions of dobutamine and its derivatives with SARS-CoV-2 main protease (6W63) [6]. Our efforts in this work directly address current urgency of a new drug discovery against COVID-19.
Collapse
|