1
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
3
|
Yu-Taeger L, El-Ayoubi A, Qi P, Danielyan L, Nguyen HHP. Intravenous MSC-Treatment Improves Impaired Brain Functions in the R6/2 Mouse Model of Huntington's Disease via Recovered Hepatic Pathological Changes. Cells 2024; 13:469. [PMID: 38534313 PMCID: PMC10969189 DOI: 10.3390/cells13060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Huntington's disease (HD), a congenital neurodegenerative disorder, extends its pathological damages beyond the nervous system. The systematic manifestation of HD has been extensively described in numerous studies, including dysfunction in peripheral organs and peripheral inflammation. Gut dysbiosis and the gut-liver-brain axis have garnered greater emphasis in neurodegenerative research, and increased plasma levels of pro-inflammatory cytokines have been identified in HD patients and various in vivo models, correlating with disease progression. In the present study, we investigated hepatic pathological markers in the liver of R6/2 mice which convey exon 1 of the human mutant huntingtin gene. Furthermore, we evaluated the impact of intravenously administered Mesenchymal Stromal Cells (MSCs) on the liver enzymes, changes in hepatic inflammatory markers, as well as brain pathology and behavioral deficits in R6/2 mice. Our results revealed altered enzyme expression and increased levels of inflammatory mediators in the liver of R6/2 mice, which were significantly attenuated in the MSC-treated R6/2 mice. Remarkably, neuronal pathology and altered motor activities in the MSC-treated R6/2 mice were significantly ameliorated, despite the absence of MSCs in the postmortem brain. Our data highlight the importance of hepatic pathological changes in HD, providing a potential therapeutic approach. Moreover, the data open new perspectives for the search in blood biomarkers correlating with liver pathology in HD.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Ali El-Ayoubi
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Pengfei Qi
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany
- Departments of Biochemistry and Clinical Pharmacology, and Neuroscience Laboratory, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Hoa Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany
- Department of Medical Chemistry, Yerevan State Medical University, Yerevan 0025, Armenia
| |
Collapse
|
4
|
Neueder A, Nitzschner P, Wagner R, Hummel J, Hoschek F, Wagner M, Abdelmoez A, von Einem B, Landwehrmeyer GB, Tabrizi SJ, Orth M. Huntington disease alters the actionable information in plasma extracellular vesicles. Clin Transl Med 2024; 14:e1525. [PMID: 38193625 PMCID: PMC10775183 DOI: 10.1002/ctm2.1525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
| | | | - Ronja Wagner
- Department of NeurologyUlm University HospitalUlmGermany
| | - Julia Hummel
- Department of NeurologyUlm University HospitalUlmGermany
| | | | | | - Alshaimaa Abdelmoez
- Department of NeurologyUlm University HospitalUlmGermany
- Department of Pharmaceutical Organic ChemistryAssiut UniversityAssiutEgypt
| | | | | | - Sarah J. Tabrizi
- UCL Huntington's disease CentreUCL Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryQueen SquareLondonUK
| | - Michael Orth
- Department of NeurologyUlm University HospitalUlmGermany
- Swiss Huntington CentreNeurozentrum, Siloah AGGumligenSwitzerland
- University Hospital of Old Age Psychiatry and PsychotherapyBern UniversityBernSwitzerland
| |
Collapse
|
5
|
Petry S, Keraudren R, Nateghi B, Loiselle A, Pircs K, Jakobsson J, Sephton C, Langlois M, St-Amour I, Hébert SS. Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen. Acta Neuropathol Commun 2022; 10:106. [PMID: 35869509 PMCID: PMC9308264 DOI: 10.1186/s40478-022-01407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.
Collapse
|
6
|
Irfan Z, Khanam S, Karmakar V, Firdous SM, El Khier BSIA, Khan I, Rehman MU, Khan A. Pathogenesis of Huntington's Disease: An Emphasis on Molecular Pathways and Prevention by Natural Remedies. Brain Sci 2022; 12:1389. [PMID: 36291322 PMCID: PMC9599635 DOI: 10.3390/brainsci12101389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata 700125, West Bengal, India
| | - Sofia Khanam
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat 700126, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | | | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Xue WJ, He CF, Zhou RY, Xu XD, Xiang LX, Wang JT, Wang XR, Zhou HG, Guo JC. High glucose and palmitic acid induces neuronal senescence by NRSF/REST elevation and the subsequent mTOR-related autophagy suppression. Mol Brain 2022; 15:61. [PMID: 35850767 PMCID: PMC9290252 DOI: 10.1186/s13041-022-00947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
Cell senescence is a basic aging mechanism. Previous studies have found that the cellular senescence in adipose tissue and other tissues, such as the pancreas, muscle and liver, is associated with the pathogenesis and progression of type 2 diabetes; however, strong evidence of whether diabetes directly causes neuronal senescence in the brain is still lacking. In this study, we constructed a high glucose and palmitic acid (HGP) environment on PC12 neuronal cells and primary mouse cortical neurons to simulate diabetes. Our results showed that after HGP exposure, neurons exhibited obvious senescence-like phenotypes, including increased NRSF/REST level, mTOR activation and cell autophagy suppression. Downregulation of NRSF/REST could remarkably alleviate p16, p21 and γH2A.X upregulations induced by HGP treatment, and enhance mTOR-autophagy of neurons. Our results suggested that the diabetic condition could directly induce neuronal senescence, which is mediated by the upregulation of NRSF/REST and subsequent reduction of mTOR-autophagy.
Collapse
Affiliation(s)
- Wen-Jiao Xue
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cheng-Feng He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ren-Yuan Zhou
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao-Die Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lv-Xuan Xiang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xin-Ru Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Hou-Guang Zhou
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Jing-Chun Guo
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant Huntingtin Impairs Pancreatic β-cells by Recruiting IRS-2 and Disturbing the PI3K/AKT/FoxO1 Signaling Pathway in Huntington's Disease. J Mol Neurosci 2021; 71:2646-2658. [PMID: 34331233 DOI: 10.1007/s12031-021-01869-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Patients with Huntington's disease (HD) have an increased incidence of diabetes. However, the molecular mechanisms of pancreatic β-cell dysfunction have not been entirely clarified. Revealing the pathogenesis of diabetes can provide a novel understanding of the onset and progression of HD, as well as potential clues for the development of new therapeutics. Here, we demonstrated that the mouse pancreatic insulinoma cell line NIT-1 expressing N-terminal mutant huntingtin (mHTT) containing 160 polyglutamine (160Q cells) displayed lower cell proliferative ability than the cells expressing N-terminal wild-type HTT containing 20 polyglutamine (20Q cells). In addition, 160Q cells were more prone to apoptosis and exhibited deficient glucose-stimulated insulin expression and secretion. Furthermore, insulin signaling molecule insulin receptor substrate 2 (IRS-2) expression decreased and was recruited into mHTT aggregates. Consequently, glucose stimulation failed to activate the downstream molecule phosphatidylinositol-3 kinase (PI3K) in 160Q cells, leading to reduced phosphorylation levels of serine-threonine protein kinase AKT and forkhead box protein O1 (FoxO1). These data indicate that activation of the glucose-stimulated PI3K/AKT/FoxO1 signaling pathway is significantly blocked in pancreatic β-cells in HD. Importantly, insulin treatment inhibited the aggregation of mHTT and significantly improved the activation of PI3K/AKT/FoxO1 signaling in 160Q cells. These results suggest that the inhibition of the PI3K/AKT/FoxO1 pathway might be due to the recruitment of IRS-2 into mHTT aggregates in HD β-cells, ultimately contributing to the impairment of pancreatic β-cells. In conclusion, our work provides new insight into the underlying mechanisms of the high incidence of diabetes and abnormal glucose homeostasis in HD.
Collapse
Affiliation(s)
- Li Li
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong S.A.R., P.R. of China
| | - Yun Sun
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Yinong Zhang
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Weixi Wang
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Cuifang Ye
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China.
| |
Collapse
|