1
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
3
|
Hajebi S, Chamanara M, Nasiri SS, Ghasri M, Mouraki A, Heidari R, Nourmohammadi A. Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems. Biomed Pharmacother 2024; 180:117493. [PMID: 39353321 DOI: 10.1016/j.biopha.2024.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In recent years, the use of gold nanorods (AuNRs) has garnered considerable attention in biomedical applications due to their unique optical and physicochemical properties. They have been considered as potential tools for the advanced treatment of diseases by various stimuli such as magnetic fields, pH, temperature and light in the fields of targeted therapy, imaging and drug delivery. Their biocompatibility and tunable plasmonic properties make them a versatile platform for a range of biomedical applications. While endogenous stimuli have limited cargo delivery control at specific sites, exogenous stimuli are a more favored approach despite their circumscribed penetration depth for releasing the cargo at the specific target. Dual/multi-stimuli responsive AuNTs can be triggered by multiple stimuli for enhanced control and specificity in biomedical applications. This review provides to provide a summary of the biomedical applications of stimuli-responsive AuNRs, including their endogenous and exogenous properties, as well as their dual/multi-functionality and potential for clinical delivery. This review provides a comprehensive review on the improvement of therapeutic efficacy and the effective control of drug release with AuNRs, highlights AuNRs design strategies in recent years, discusses the advantages or challenges so far in the field of AuNRs. Finally, we have addressed the clinical translation bio-integrated nanoassemblies (CTBNs) in this field.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Shadi Sadat Nasiri
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mahsa Ghasri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Alireza Mouraki
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran.
| | - Abbas Nourmohammadi
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center of Aerospace Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Tseng YH, Lin HP, Lin SY, Chen BM, Vo TNN, Yang SH, Lin YC, Prijovic Z, Czosseck A, Leu YL, Roffler SR. Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs. J Control Release 2024; 369:179-198. [PMID: 38368947 DOI: 10.1016/j.jconrel.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.
Collapse
Affiliation(s)
- Yi-Han Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Pei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sung-Yao Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | - Shih-Hung Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Zeljko Prijovic
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11001, Serbia
| | - Andreas Czosseck
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Raboni S, Faggiano S, Bettati S, Mozzarelli A. Methionine gamma lyase: Structure-activity relationships and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140991. [PMID: 38147934 DOI: 10.1016/j.bbapap.2023.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methionine gamma lyase (MGL) is a bacterial and plant enzyme that catalyzes the conversion of methionine in methanthiol, 2-oxobutanoate and ammonia. The enzyme belongs to fold type I of the pyridoxal 5'-dependent family. The catalytic mechanism and the structure of wild type MGL and variants were determined in the presence of the natural substrate as well as of many sulfur-containing derivatives. Structure-function relationship studies were pivotal for MGL exploitation in the treatment of cancer, bacterial infections, and other diseases. MGL administration to cancer cells leads to methionine starvation, thus decreasing cells viability and increasing their vulnerability towards other drugs. In antibiotic therapy, MGL acts by transforming prodrugs in powerful drugs. Numerous strategies have been pursued for the delivering of MGL in vivo to prolong its bioavailability and decrease its immunogenicity. These include conjugation with polyethylene glycol and encapsulation in synthetic or natural vesicles, eventually decorated with tumor targeting molecules, such as the natural phytoestrogens daidzein and genistein. The scientific achievements in studying MGL structure, function and perspective therapeutic applications came from the efforts of many talented scientists, among which late Tatyana Demidkina to whom we dedicate this review.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy; Department of Medicine, University of Parma, Parma, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| |
Collapse
|
6
|
Yu B, Wang W, Zhang Y, Sun Y, Li C, Liu Q, Zhen X, Jiang X, Wu W. Enhancing the tumor penetration of multiarm polymers by collagenase modification. Biomater Sci 2024; 12:2302-2311. [PMID: 38497169 DOI: 10.1039/d3bm02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tumor penetration is a critical determinant of the therapy efficacy of nanomedicines. However, the dense extracellular matrix (ECM) in tumors significantly hampers the deep penetration of nanomedicines, resulting in large drug-untouchable areas and unsatisfactory therapy efficacy. Herein, we synthesized a third-generation PAMAM-cored multiarm copolymer and modified the polymer with collagenase to enhance its tumor penetration. Each arm of the copolymer was a diblock copolymer of poly(glutamic acid)-b-poly(carboxybetaine), in which the polyglutamic acid block with abundant side groups was used to link the anticancer agent doxorubicin through the pH-sensitive acylhydrazone linkage, and the zwitterionic poly(carboxybetaine) block provided desired water solubility and anti-biofouling capability. The collagenase was conjugated to the ends of the arms via the thiol-maleimide reaction. We demonstrated that the polymer-bound collagenase could effectively catalyze the degradation of the collagen in the tumor ECM, and consequently augmented the tumor penetration and antitumor efficacy of the drug-loaded polymers.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Weijie Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Yongmin Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Ying Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| |
Collapse
|
7
|
Raboni S, Fumagalli F, Ceccone G, La Spina R, Ponti J, Mehn D, Guerrini G, Bettati S, Mozzarelli A, D'Acunto M, Presciuttini G, Cristallini C, Gabellieri E, Cioni P. Conjugation to gold nanoparticles of methionine gamma-lyase, a cancer-starving enzyme. Physicochemical characterization of the nanocomplex for prospective nanomedicine applications. Int J Pharm 2024; 653:123882. [PMID: 38342324 DOI: 10.1016/j.ijpharm.2024.123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
The pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs. Here, we explore the conjugation of MGL to gold nanoparticles capped with citrate (AuNPs) as a novel strategy to deliver MGL to cancer cells. Measurements of Transmission Electron Microscopy, Dynamic Light Scattering, Asymmetrical Flow Field-Flow Fractionation, X-ray Photoelectron Spectroscopy, and Circular Dichroism allowed to achieve an extensive biophysical and biochemical characterization of the MGL-AuNP complex including particle size, size distribution, MGL loading yield, enzymatic activity, and impact of gold surface on protein structure. Noticeably, we found that activity retention was improved over time for the enzyme adsorbed to AuNPs with respect to the enzyme free in solution. The acquired body of knowledge on the nanocomplex properties and this encouraging stabilizing effect upon conjugation are the necessary basis for further studies aimed at the evaluation of the therapeutic potential of MGL-AuNP complex in a biological milieu.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy; Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Giacomo Ceccone
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Giuditta Guerrini
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Stefano Bettati
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy; Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43126 Parma, Italy; Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma, Italy.
| | - Andrea Mozzarelli
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | - Mario D'Acunto
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | | | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF Pisa - CNR, Largo Lucio Lazzarino 2, 56122 Pisa, Italy.
| | - Edi Gabellieri
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | - Patrizia Cioni
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| |
Collapse
|
8
|
Nascimento NS, Torres-Obreque KM, Oliveira CA, Rabelo J, Baby AR, Long PF, Young AR, Rangel-Yagui CDO. Enzymes for dermatological use. Exp Dermatol 2024; 33:e15008. [PMID: 38284197 DOI: 10.1111/exd.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
Collapse
Affiliation(s)
- Natália Santos Nascimento
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Karin Mariana Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Camila Areias Oliveira
- Laboratory of Analytical Validation and Development, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
9
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
10
|
Bianchi M, Rossi L, Pierigè F, Biagiotti S, Bregalda A, Tasini F, Magnani M. Preclinical and clinical developments in enzyme-loaded red blood cells: an update. Expert Opin Drug Deliv 2023; 20:921-935. [PMID: 37249524 DOI: 10.1080/17425247.2023.2219890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION We have previously described the preclinical developments in enzyme-loaded red blood cells to be used in the treatment of several rare diseases, as well as in chronic conditions. AREA COVERED Since our previous publication we have seen further progress in the previously discussed approaches and, interestingly enough, in additional new studies that further strengthen the idea that red blood cell-based therapeutics may have unique advantages over conventional enzyme replacement therapies in terms of efficacy and safety. Here we highlight these investigations and compare, when possible, the reported results versus the current therapeutic approaches. EXPERT OPINION The continuous increase in the number of new potential applications and the progress from the encapsulation of a single enzyme to the engineering of an entire metabolic pathway open the field to unexpected developments and confirm the role of red blood cells as cellular bioreactors that can be conveniently manipulated to acquire useful therapeutic metabolic abilities. Positioning of these new approaches versus newly approved drugs is essential for the successful transition of this technology from the preclinical to the clinical stage and hopefully to final approval.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- EryDel SpA, Bresso, MI, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- EryDel SpA, Bresso, MI, Italy
| |
Collapse
|
11
|
Romei MG, Leonard B, Kim I, Kim HS, Lazar GA. Antibody-guided proteases enable selective and catalytic degradation of challenging therapeutic targets. J Biol Chem 2023; 299:104685. [PMID: 37031819 DOI: 10.1016/j.jbc.2023.104685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
The exquisite specificity, natural biological functions, and favorable development properties of antibodies make them highly effective agents as drugs. Monoclonal antibodies are particularly strong as inhibitors of systemically accessible targets where trough-level concentrations can sustain full target occupancy. Yet beyond this pharmacologic wheelhouse, antibodies perform suboptimally for targets of high abundance and those not easily accessible from circulation. Fundamentally, this restraint on broader application is due largely to the stoichiometric nature of their activity - one drug molecule is generally able to inhibit a maximum of two target molecules at a time. Enzymes in contrast are able to catalytically turnover multiple substrates, making them a natural sub-stoichiometric solution for targets of high abundance or in poorly accessible sites of action. However, enzymes have their own limitations as drugs, including, in particular the polypharmacology and broad specificity often seen with native enzymes. In this study, we introduce antibody-guided proteolytic enzymes to enable selective sub-stoichiometric turnover of therapeutic targets. We demonstrate that antibody-mediated substrate targeting can enhance enzyme activity and specificity, with proof of concept for two challenging target proteins, amyloid-β (Aβ) and immunoglobulin G (IgG). This work advances a new biotherapeutic platform that combines the favorable properties of antibodies and proteolytic enzymes to more effectively suppress high-bar therapeutic targets.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA.
| | - Brandon Leonard
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Hok Seon Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
12
|
Zhu B, Zhang M, Chen Q, Li Z, Chen S, Zhu J. Starvation-assisted and photothermal-thriving combined chemo/chemodynamic cancer therapy with PT/MR bimodal imaging. Biomater Sci 2023; 11:2129-2138. [PMID: 36723350 DOI: 10.1039/d2bm01944b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chemodynamic therapy (CDT) reflects a novel reactive oxygen species (ROS)-related cancer therapeutic approach. However, CDT monotherapy is often limited by weak efficacy and insufficient endogenous H2O2. Herein, a multifunctional combined bioreactor (MnFe-LDH/MTX@GOx@Ta, MMGT) relying on MnFe-layered double hydroxide (MnFe-LDH) loaded with methotrexate (MTX) and coated with glucose oxidase (GOx)/tannin acid (Ta) is established for applications in H2O2 self-supply and photothermal enhanced chemo/chemodynamic combined therapy along with photothermal (PT) /magnetic resonance (MR) dual-modality imaging ability for cancer treatment. Once internalized into tumor cells, MMGT achieves starvation therapy by catalyzing the oxidation of glucose with GOx, accompanied by the regeneration of H2O2, enabling a Fenton-like reaction to accomplish GOx catalytic amplified CDT. Moreover, MMGT manifests significant tumor-killing ability through improved CDT performance with outstanding photothermal conversion efficiency (η = 52.2%) under 808 nm laser irradiation. In addition, the release of Mn2+ from MnFe-LDH in a solid tumor can significantly enhance T1-contrast MR imaging signals. Combined with MnFe-LDH-induced PT imaging under 808 nm laser irradiation, a dual-modality imaging directed theranostic nanoplatform has been developed. The present study provides a new strategy to design H2O2 self-supply and ROS evolving NIR light-absorption theranostic nanoagent for highly efficient and combined chemo/chemodynamic cancer treatment.
Collapse
Affiliation(s)
- Bengao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR China.
| | - Mengmeng Zhang
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR China.
| | - Qiang Chen
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR China.
| | - Zeke Li
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR China.
| | - Senbin Chen
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR China.
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, Hubei, PR China.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To present new therapeutic modalities for inborn errors of metabolism that are in clinical trials or recently approved by the US Food and Drug Administration (FDA) and to improve pediatricians' understanding of therapies their patients with inborn errors of metabolism receive. RECENT FINDINGS New therapies that move beyond the old standard modalities of recombinant human enzyme therapies, diet and medications have been recently approved by the US FDA to include nonhuman enzyme therapies, gene therapy and chaperone therapies. SUMMARY These new therapies offer more therapeutic options for individuals with inborn errors of metabolism. These new therapies have the potential to improve patient compliance and outcomes. Many other novel modalities are in the development pipeline, and are likely to transform the management of inborn errors of metabolism over the coming decade.
Collapse
|
14
|
Vanderstocken G, Woolf NL, Trigiante G, Jackson J, McGoldrick R. Harnessing the Potential of Enzymes as Inhaled Therapeutics in Respiratory Tract Diseases: A Review of the Literature. Biomedicines 2022; 10:biomedicines10061440. [PMID: 35740461 PMCID: PMC9220205 DOI: 10.3390/biomedicines10061440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory tract diseases (RTDs) are a global cause of mortality and affect patient well-being and quality of life. Specifically, there is a high unmet need concerning respiratory tract infections (RTIs) due to limitations of vaccines and increased antibiotic resistance. Enzyme therapeutics, and in particular plant-based enzymes, represent an underutilised resource in drug development warranting further attention. This literature review aims to summarise the current state of enzyme therapeutics in medical applications, with a focus on their potential to improve outcomes in RTDs, including RTIs. We used a narrative review approach, searching PubMed and clinicaltrials.gov with search terms including: enzyme therapeutics, enzyme therapy, inhaled therapeutics, botanical enzyme therapeutics, plant enzymes, and herbal extracts. Here, we discuss the advantages and challenges of enzyme therapeutics in the setting of RTDs and identify and describe several enzyme therapeutics currently used in the respiratory field. In addition, the review includes recent developments concerning enzyme therapies and plant enzymes in (pre-)clinical stages. The global coronavirus disease 2019 (COVID-19) pandemic has sparked development of several promising new enzyme therapeutics for use in the respiratory setting, and therefore, it is timely to provide a summary of recent developments, particularly as these therapeutics may also prove beneficial in other RTDs.
Collapse
Affiliation(s)
| | - Nicholas L. Woolf
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
| | - Giuseppe Trigiante
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| | - Jessica Jackson
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
| | - Rory McGoldrick
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
- Correspondence:
| |
Collapse
|
15
|
Bruno S, Buehler PW, Mozzarelli A. Targeted Biologics: The New Frontier for Precision Therapy. Curr Med Chem 2022; 29:383-384. [DOI: 10.2174/092986732903220103161049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Stefano Bruno
- Department of Food and Drug
University of Parma
Parma
Italy
| | | | | |
Collapse
|
16
|
Raboni S, Montalbano S, Stransky S, Garcia BA, Buschini A, Bettati S, Sidoli S, Mozzarelli A. A Key Silencing Histone Mark on Chromatin Is Lost When Colorectal Adenocarcinoma Cells Are Depleted of Methionine by Methionine γ-Lyase. Front Mol Biosci 2021; 8:735303. [PMID: 34660696 PMCID: PMC8517235 DOI: 10.3389/fmolb.2021.735303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Methionine is an essential amino acid used, beyond protein synthesis, for polyamine formation and DNA/RNA/protein methylation. Cancer cells require particularly high methionine supply for their homeostasis. A successful approach for decreasing methionine concentration is based on the systemic delivery of methionine γ-lyase (MGL), with in vitro and in vivo studies demonstrating its efficacy in cancer therapy. However, the mechanisms explaining how cancer cells suffer from the absence of methionine more significantly than non-malignant cells are still unclear. We analyzed the outcome of the human colorectal adenocarcinoma cancer cell line HT29 to the exposure of MGL for up to 72 h by monitoring cell viability, proteome expression, histone post-translational modifications, and presence of spurious transcription. The rationale of this study was to verify whether reduced methionine supply would affect chromatin decondensation by changing the levels of histone methylation and therefore increasing genomic instability. MGL treatment showed a time-dependent cytotoxic effect on HT29 cancer cells, with an IC50 of 30 µg/ml, while Hs27 normal cells were less affected, with an IC50 of >460 µg/ml. Although the levels of total histone methylation were not altered, a loss of the silencing histone mark H3K9me2 was observed, as well as a decrease in H4K20me3. Since H3K9me2/3 decorate repetitive DNA elements, we proved by qRT-PCR that MGL treatment leads to an increased expression of major satellite units. Our data indicate that selected histone methylation marks may play major roles in the mechanism of methionine starvation in cancer cells, proving that MGL treatment directly impacts chromatin homeostasis.
Collapse
Affiliation(s)
- Samanta Raboni
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Center, Pisa, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, Parma, Italy
| | - Stefano Bettati
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Center, Pisa, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Center, Pisa, Italy.,Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|