1
|
Wang Y, Lei L, Su Q, Qin S, Zhong J, Ni Y, Yang J. Resveratrol Inhibits Insulin-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Activating SIRT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8537881. [PMID: 36479179 PMCID: PMC9722291 DOI: 10.1155/2022/8537881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2023]
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are essential for the development of hypertension. Insulin has been identified to promote VSMC proliferation and migration; resveratrol has been shown to have protective effects against cardiovascular diseases. This study aimed to investigate the effect of resveratrol on insulin-induced VSMC proliferation and migration and its potential mechanism. VSMC proliferation was measured by Cell Counting Kit-8 (CCK-8), cell counting method, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Cell migration was detected by wound healing assay and transwell method. Expression of silent information regulator of transcription 1 (SIRT1) and phosphorylation levels of signaling molecules, such as phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt), in VSMCs were detected by Western blotting. Resveratrol (25-150 μM) was found to inhibit insulin-induced VSMC proliferation. Pretreatment with 100 μM resveratrol reduced insulin (100 nM)-mediated VSMC migration. LY294002, an inhibitor of PI3K, inhibited the stimulatory effect of insulin (100 nM) on the proliferation of VSMCs. Treatment with resveratrol also decreased insulin-induced stimulatory effect on PI3K and Akt phosphorylation levels. Moreover, resveratrol treatment increased SIRT1 protein expression in VSMCs. A SIRT1 inhibitor, EX527, reversed the inhibitory effect of resveratrol on insulin-induced VSMC proliferation and migration and activation of PI3K and Akt phosphorylation levels. In conclusion, our study revealed that treatment with resveratrol inhibited insulin-mediated VSMC proliferation and migration, possibly by activating SIRT1 and downregulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Lifu Lei
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Si Qin
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
2
|
Qian LL, Ji JJ, Guo JQ, Wu YP, Ma GS, Yao YY. Protective role of serpina3c as a novel thrombin inhibitor against atherosclerosis in mice. Clin Sci (Lond) 2021; 135:447-463. [PMID: 33458764 DOI: 10.1042/cs20201235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms. Serpina3c is down-regulated during high-fat diet (HFD)-induced atherosclerosis. An Apoe-/-/serpina3c-/--double-knockout mouse model was used to determine the role of serpina3c in atherosclerosis after HFD for 12 weeks. Compared with Apoe-/- mice, the Apoe-/-/serpina3c-/- mice developed more severe atherosclerosis, and the number of VSMCs and macrophages in aortic plaques was significantly increased. The present study revealed serpina3c as a novel thrombin inhibitor that suppressed thrombin activity. In circulating plasma, thrombin activity was high in the Apoe-/-/serpina3c-/- mice, compared with Apoe-/- mice. Immunofluorescence staining showed thrombin and serpina3c colocalization in the liver and aortic cusp. In addition, inhibition of thrombin by dabigatran in serpina3c-/- mice reduced neointima lesion formation due to partial carotid artery ligation. Moreover, an in vitro study confirmed that thrombin activity was also decreased by serpina3c protein, supernatant and cell lysate that overexpressed serpina3c. The results of experiments showed that serpina3c negatively regulated VSMC proliferation in culture. The possible mechanism may involve serpina3c inhibition of ERK1/2 and JNK signaling in thrombin/PAR-1 system-mediated VSMC proliferation. Our results highlight a protective role for serpina3c as a novel thrombin inhibitor in the development of atherosclerosis, with serpina3c conferring protection through the thrombin/PAR-1 system to negatively regulate VSMC proliferation through ERK1/2 and JNK signaling.
Collapse
Affiliation(s)
- Ling-Lin Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jing-Jing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yan-Ping Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
El Khoudary SR, Venugopal V, Manson JE, Brooks MM, Santoro N, Black DM, Harman M, Naftolin F, Hodis HN, Brinton EA, Miller VM, Taylor HS, Budoff MJ. Heart fat and carotid artery atherosclerosis progression in recently menopausal women: impact of menopausal hormone therapy: The KEEPS trial. ACTA ACUST UNITED AC 2021; 27:255-262. [PMID: 32015261 DOI: 10.1097/gme.0000000000001472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Heart fat deposition has been linked to atherosclerosis, and both accelerate after menopause. Hormone therapy (HT) may differentially slow heart fat deposition and progression of atherosclerosis, depending on the specific HT agent or its route of administration. Our objective was to evaluate the effects of different HT agents, oral and transdermal, on associations between heart fat accumulation and atherosclerosis progression, measured by carotid intima-media thickness (CIMT), in recently menopausal women from the Kronos Early Estrogen Prevention Study (KEEPS) trial. METHODS KEEPS was a randomized, placebo-controlled trial of the effects of 0.45 mg/d oral conjugated equine estrogens (o-CEE) or 50 mcg/d transdermal 17β-estradiol (t-E2), compared with placebo, on 48 months progression of CIMT. Epicardial adipose tissue (EAT) and paracardial adipose tissue (PAT) volumes were quantified by computed tomography. RESULTS In all, 467 women (mean age [SD] 52.7 [2.5]; 78.2% White; 30% on o-CEE, 30.8% t-E2, 39.2% placebo) with heart fat volumes and CIMT at baseline and 48 months were included. EAT and PAT changes were not associated with CIMT progression; however, the assigned treatment significantly modified the association between PAT (but not EAT) change and CIMT progression. In the o-CEE group, adjusted CIMT progression was 12.66 μm (95% confidence interval [CI] 1.80, 23.52) lower than in t-E2 group (P = 0.02), and 10.09 μm (95% CI 0.79, 19.39) lower than in placebo group (P = 0.03), as per 1-SD increase in PAT. CONCLUSION Compared with t-E2, o-CEE appears to slow down the adverse effect of increasing PAT on progression of atherosclerosis. Whether this beneficial association is specific to CEE or to the oral route of CEE administration is unclear and should be assessed further.
Collapse
Affiliation(s)
| | | | - JoAnn E Manson
- Harvard Medical School and Brigham and Women's Hospital, Boston, MA
| | | | | | - Dennis M Black
- University of California San Francisco, San Francisco, CA
| | | | - Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY
| | - Howard N Hodis
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA
| | | | | | | | | |
Collapse
|
4
|
Pan CH, Li PC, Chien YC, Yeh WT, Liaw CC, Sheu MJ, Wu CH. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia. Phytother Res 2017; 32:312-320. [PMID: 29250830 DOI: 10.1002/ptr.5979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 10/18/2017] [Indexed: 11/06/2022]
Abstract
Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G0 /G1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Pei-Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wan-Ting Yeh
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
5
|
Mahajan S, Fender A, Meyer-Kirchrath J, Kurt M, Barth M, Sagban T, Fischer J, Schrör K, Hohlfeld T, Rauch B. A novel function of FoxO transcription factors in thrombin-stimulated vascular smooth muscle cell proliferation. Thromb Haemost 2017; 108:148-58. [DOI: 10.1160/th11-11-0756] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
SummaryThrombin exerts coagulation-independent effects on the proliferation and migration of vascular smooth muscle cells (SMC). Forkhead box-O (FoxO) transcription factors regulate cell proliferation, apoptosis and cell cycle arrest, but a possible functional interaction between thrombin and FoxO factors has not been identified to date. In human cultured vascular SMC, thrombin induced a time-dependent phosphorylation of FoxO1 and FoxO3 but not FoxO4. This effect was mimicked by an activating-peptide (AP) for protease-activated receptor (PAR)-1, and abolished by a PAR-1 antagonist (SCH79797). APs for other PARs were without effect. FoxO1 and FoxO3 phosphorylation were prevented by the PI3 kinase (PI3K) inhibitor LY294002 while inhibitors of ERK1/2 (PD98059) or p38MAPK (SB203580) were ineffective. LY294002 moreover prevented thrombin-stimulated SMC mitogenesis and proliferation. FoxO1 and FoxO3 siRNA augmented basal DNA synthesis and proliferation of SMC. Nuclear content of FoxO proteins decreased time-dependently in response to thrombin, coincided with suppressed expression of the cell cycle regulating genes p21CIP1 and p27kip1 by thrombin. FoxO1 siRNA reduced basal p21CIP1 while FoxO3 siRNA attenuated p27kip1 expression; thrombin did not show additive effects. LY294002 restored p21CIP1 and p27kip1 protein expression. Immunohistochemistry revealed that human native and failed saphenous vein grafts were characterised by the cytosolic presence of p-FoxO factors in co-localisation of p21CIP1 and p27kip1 with SMC. In conclusion, thrombin and FoxO factors functionally interact through PI3K/Akt-dependent FoxO phosphorylation leading to expression of cell cycle regulating genes and ultimately SMC proliferation. This may contribute to remodelling and failure of saphenous vein bypass grafts.
Collapse
|
6
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Santos IS, Bittencourt MS, Goulart AC, Schmidt MI, Diniz MDFH, Lotufo PA, Benseñor IM. Insulin resistance is associated with carotid intima-media thickness in non-diabetic subjects. A cross-sectional analysis of the ELSA-Brasil cohort baseline. Atherosclerosis 2017; 260:34-40. [DOI: 10.1016/j.atherosclerosis.2017.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
|
8
|
Harith HH, Di Bartolo BA, Cartland SP, Genner S, Kavurma MM. Insulin promotes vascular smooth muscle cell proliferation and apoptosis via differential regulation of tumor necrosis factor-related apoptosis-inducing ligand. J Diabetes 2016; 8:568-78. [PMID: 26333348 DOI: 10.1111/1753-0407.12339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/12/2015] [Accepted: 08/29/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insulin regulates glucose homeostasis but can also promote vascular smooth muscle (VSMC) proliferation, important in atherogenesis. Recently, we showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stimulates intimal thickening via accelerated growth of VSMCs. The aim of the present study was to determine whether insulin-induced effects on VSMCs occur via TRAIL. METHODS Expression of TRAIL and TRAIL receptor in response to insulin and glucose was determined by polymerase chain reaction. Transcriptional activity was assessed using wild-type and site-specific mutations of the TRAIL promoter. Chromatin immunoprecipitation studies were performed. VSMC proliferation and apoptosis was measured. RESULTS Insulin and glucose exposure to VSMC for 24 h stimulated TRAIL mRNA expression. This was also evident at the transcriptional level. Both insulin- and glucose-inducible TRAIL transcriptional activity was blocked by dominant-negative specificity protein-1 (Sp1) overexpression. There are five functional Sp1-binding elements (Sp1-1, Sp1-2, Sp-5/6 and Sp1-7) on the TRAIL promoter. Insulin required the Sp1-1 and Sp1-2 sites, but glucose needed all Sp1-binding sites to induce transcription. Furthermore, insulin (but not glucose) was able to promote VSMC proliferation over time, associated with increased decoy receptor-2 (DcR2) expression. In contrast, chronic 5-day exposure of VSMC to 1 µg/mL insulin repressed TRAIL and DcR2 expression, and reduced Sp1 enrichment on the TRAIL promoter. This was associated with increased cell death. CONCLUSIONS The findings of the present study provide a new mechanistic insight into how TRAIL is regulated by insulin. This may have significant implications at different stages of diabetes-associated cardiovascular disease. Thus, TRAIL may offer a novel therapeutic solution to combat insulin-induced vascular pathologies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Glucose/pharmacology
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats, Inbred WKY
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- TNF-Related Apoptosis-Inducing Ligand/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
Collapse
Affiliation(s)
- Hanis H Harith
- Centre for Vascular Research
- School of Medical Sciences UNSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Belinda A Di Bartolo
- The Heart Research Institute
- The University of Sydney, Sydney, New South Wales, Australia
| | - Siân P Cartland
- The Heart Research Institute
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Mary M Kavurma
- The Heart Research Institute
- The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury. Sci Rep 2016; 6:25374. [PMID: 27146795 PMCID: PMC4857180 DOI: 10.1038/srep25374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling.
Collapse
|
10
|
Amato B, Compagna R, Amato M, Grande R, Butrico L, Rossi A, Naso A, Ruggiero M, de Franciscis S, Serra R. Adult vascular wall resident multipotent vascular stem cells, matrix metalloproteinases, and arterial aneurysms. Stem Cells Int 2015; 2015:434962. [PMID: 25866513 PMCID: PMC4381852 DOI: 10.1155/2015/434962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Alessio Rossi
- Department of Medicine and Health Sciences, University of Molise, 88100 Campobasso, Italy
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Shi L, Ji Y, Jiang X, Zhou L, Xu Y, Li Y, Jiang W, Meng P, Liu X. Liraglutide attenuates high glucose-induced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and PI3K/Akt signaling pathways. Cardiovasc Diabetol 2015; 14:18. [PMID: 25855361 PMCID: PMC4327797 DOI: 10.1186/s12933-015-0177-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background As a new anti-diabetic medicine, Liraglutide (LIRA), one of GLP-1 analogues, has been found to have an anti-atherosclerotic effect. Since vascular smooth muscle cells (VSMCs) play pivotal roles in the occurrence of diabetic atherosclerosis, it is important to investigate the role of LIRA in reducing the harmful effects of high-glucose (HG) treatment in cultured VSMCs, and identifying associated molecular mechanisms. Methods Primary rat VSMCs were exposed to low or high glucose-containing medium with or without LIRA. They were challenged with HG in the presence of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2, or glucagon-like peptide receptor (GLP-1R) inhibitors. Cell proliferation and viability was evaluated using a Cell Counting Kit-8. Cell migration was determined by Transwell migration and scratch wound assays. Flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively. Results Under the HG treatment, VSMCs exhibited increased migration, proliferation, and phosphorylation of protein kinase B (Akt) and ERK1/2, along with reduced apoptosis (all p < 0.01 vs. control). These effects were significantly attenuated with LIRA co-treatment (all p < 0.05 vs. HG alone). Inhibition of PI3K kinase and ERK1/2 similarly attenuated the HG-induced effects (all p < 0.01 vs. HG alone). GLP-1R inhibitors effectively reversed the beneficial effects of LIRA on HG treatment (all p < 0.05). Conclusions HG treatment may induce abnormal phenotypes in VSMCs via PI3K and ERK1/2 signaling pathways activated by GLP-1R, and LIRA may protect cells from HG damage by acting on these same pathways.
Collapse
|
12
|
Smiljanic K, Obradovic M, Jovanovic A, Djordjevic J, Dobutovic B, Jevremovic D, Marche P, Isenovic ER. Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2. Mol Cell Biochem 2014; 396:147-60. [PMID: 25047892 DOI: 10.1007/s11010-014-2151-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/23/2023]
Abstract
In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant (p < 0.001) increase of ERK1/2 phosphorylation by 8.7 ± 0.9-fold, EGFR phosphorylation by 8.5 ± 1.3-fold (p < 0.001) and DNA synthesis by 3.6 ± 0.4-fold (p < 0.001). Separate 30-min pretreatments with EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.
Collapse
Affiliation(s)
- Katarina Smiljanic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chien PTY, Hsieh HL, Chi PL, Yang CM. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol 2014; 171:4504-19. [PMID: 24902855 PMCID: PMC4209155 DOI: 10.1111/bph.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Different protease-activated receptors (PARs) activated by thrombin are involved in cardiovascular disease, via up-regulation of inflammatory proteins including COX-2. However, the mechanisms underlying thrombin-regulated COX-2 expression in human cardiomyocytes remain unclear. EXPERIMENTAL APPROACH Human cardiomyocytes were used in the study. Thrombin-induced COX-2 protein and mRNA expression, and signalling pathways were determined by Western blot, real-time PCR and COX-2 promoter luciferase reporter assays, and pharmacological inhibitors or siRNAs. PGE2 generation and cell proliferation were also determined. KEY RESULTS Thrombin-induced COX-2 protein and mRNA expression, promoter activity and PGE2 release was attenuated by the PAR1 antagonist (SCH79797) or the inhibitors of proteinase activity (PPACK), MEK1/2 (U0126), p38 MAPK (SB202190) or JNK1/2 (SP600125), and transfection with small interfering RNA (siRNA) of PAR1, p38, p42 or JNK2. These results suggested that PAR1-dependent MAPKs participate in thrombin-induced COX-2 expression in human cardiomyocytes. Moreover, thrombin stimulated phosphorylation of MAPKs, which was attenuated by PPACK and SCH79797. Furthermore, thrombin-induced COX-2 expression was blocked by the inhibitors of AP-1 (tanshinone IIA) and NF-κB (helenalin). Moreover, thrombin-stimulated phosphorylation of c-Jun/AP-1 and p65/NF-κB was attenuated by tanshinone IIA and helenalin, respectively, suggesting that thrombin induces COX-2 expression via PAR1/MAPKs/AP-1 or the NF-κB pathway. Functionally, thrombin increased human cardiomyocyte proliferation through the COX-2/PGE2 system linking to EP2 receptors, as determined by proliferating cell nuclear antigen and cyclin D1 expression. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that MAPKs-mediated activation of AP-1/NF-κB pathways is, at least in part, required for COX-2/PGE2 /EP2 -triggered cell proliferation in human cardiomyocytes.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| |
Collapse
|
14
|
Gómez-Hernández A, Escribano Ó, Perdomo L, Otero YF, García-Gómez G, Fernández S, Beneit N, Benito M. Implication of insulin receptor A isoform and IRA/IGF-IR hybrid receptors in the aortic vascular smooth muscle cell proliferation: role of TNF-α and IGF-II. Endocrinology 2013; 154:2352-64. [PMID: 23677929 DOI: 10.1210/en.2012-2161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To assess the role of insulin receptor (IR) isoforms (IRA and IRB) in the proliferation of vascular smooth muscle cells (VSMCs) involved in the atherosclerotic process, we generated new VSMC lines bearing IR (wild-type VSMCs; IRLoxP(+/+) VSMCs), lacking IR (IR(-/-) VSMCs) or expressing IRA (IRA VSMCs) or IRB (IRB VSMCs). Insulin and different proatherogenic stimuli induced a significant increase of IRA expression in IRLoxP(+/+) VSMCs. Moreover, insulin, through ERK signaling, and the proatherogenic stimuli, through ERK and p38 signaling, induced a higher proliferation in IRA than IRB VSMCs. The latter effect might be due to IRA cells showing a higher expression of angiotensin II, endothelin 1, and thromboxane 2 receptors and basal association between IRA and these receptors. Furthermore, TNF-α induced in a ligand-dependent manner a higher association between IRA and TNF-α receptor 1 (TNF-R1). On the other hand, IRA overexpression might favor the atherogenic actions of IGF-II. Thereby, IGF-II or TNF-α induced IRA and IGF-I receptor (IGF-IR) overexpression as well as an increase of IRA/IGF-IR hybrid receptors in VSMCs. More importantly, we observed a significant increase of IRA, TNF-R1, and IGF-IR expression as well as higher association of IRA with TNF-R1 or IGF-IR in the aorta from ApoE(-/-) and BATIRKO mice, 2 models showing vascular damage. In addition, anti-TNF-α treatment prevented those effects in BATIRKO mice. Finally, our data suggest that the IRA isoform and its association with TNF-R1 or IGF-IR confers proliferative advantage to VSMCs, mainly in response to TNF-α or IGF-II, which might be of significance in the early atherosclerotic process.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Immunoprecipitation
- Insulin-Like Growth Factor II/pharmacology
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Instituto de Investigaciones Sanitarias Hospital Clínico San Carlos, Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid 28040, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lv L, Zhang J, Zhang L, Xue G, Wang P, Meng Q, Liang W. Essential role of Pin1 via STAT3 signalling and mitochondria-dependent pathways in restenosis in type 2 diabetes. J Cell Mol Med 2013; 17:989-1005. [PMID: 23750710 PMCID: PMC3780535 DOI: 10.1111/jcmm.12082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high-fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up-regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1-forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria-dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.
Collapse
Affiliation(s)
- Lei Lv
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiaotong University, College of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Aguado A, Galán M, Zhenyukh O, Wiggers GA, Roque FR, Redondo S, Peçanha F, Martín A, Fortuño A, Cachofeiro V, Tejerina T, Salaices M, Briones AM. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharmacol 2013; 268:188-200. [PMID: 23415682 DOI: 10.1016/j.taap.2013.01.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 12/20/2022]
Abstract
Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl2 affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl2 (first dose 4.6mgkg(-1), subsequent doses 0.07mgkg(-1)day(-1), 30days) and cultured aortic VSMC stimulated with HgCl2 (0.05-5μg/ml) were used. Treatment of rats with HgCl2 decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl2: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl2. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl2-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Andrea Aguado
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bojic T, Sudar E, Mikhailidis D, Alavantic D, Isenovic E. The role of G protein coupled receptor kinases in neurocardiovascular pathophysiology. Arch Med Sci 2012; 8:970-7. [PMID: 23319968 PMCID: PMC3542506 DOI: 10.5114/aoms.2012.29996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 12/15/2022] Open
Abstract
In coronary artery disease the G protein related kinases (GRKs) play a role in desensitization of β-adrenoreceptors (AR) after coronary occlusion. Targeted deletion and lowering of cardiac myocyte GRK-2 decreases the risk of post-ischemic heart failure (HF). Studies carried out in humans confirm the role of GRK-2 as a marker for the progression of HF after myocardial infarction (MI). The level of GRK-2 could be an indicator of β-AR blocker efficacy in patients with acute coronary syndrome. Elevated levels of GRK-2 are an early ubiquitous consequence of myocardial injury. In hypertension an increased level of GRK-2 was reported in both animal models and human studies. The role of GRKs in vagally mediated disorders such as vasovagal syncope and atrial fibrillation remains controversial. The role of GRKs in the pathogenesis of neurocardiological diseases provides an insight into the molecular pathogenesis process, opens potential therapeutic options and suggests new directins for scientific research.
Collapse
Affiliation(s)
- Tijana Bojic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Dimitri Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital Campus, University College London Medical School, UK
| | - Dragan Alavantic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Esma Isenovic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
18
|
Abstract
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.
Collapse
|