1
|
Li M, Xia Z, Wang R, Xi M, Hou M. Unveiling DNA methylation: early diagnosis, risk assessment, and therapy for endometrial cancer. Front Oncol 2025; 14:1455255. [PMID: 39902129 PMCID: PMC11788147 DOI: 10.3389/fonc.2024.1455255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Endometrial cancer (EC), one of the most common gynecologic malignancies worldwide, poses a significant burden particularly among young women, with poor treatment outcomes and prognosis for advanced and recurrent patients. Epigenetic changes, encompassing DNA methylation, are involved in the occurrence and progression of tumors and hold promise as effective tools for screening, early diagnosis, treatment strategy, efficacy evaluation, and prognosis analysis. This review provides a comprehensive summary of DNA methylation-based early diagnostic biomarkers in EC, with a focus on recent valuable research findings published in the past two years. The discussion is organized according to sample sources, including cervical scraping, vaginal fluid, urine, blood, and tissue. Additionally, we outline the role of DNA methylation in EC risk assessment, such as carcinogenesis risk, feasibility of fertility preservation approaches, and overall prognosis, aiming to provide personalized treatment decisions for patients. Finally, we review researches on DNA methylation in resistance to first-line treatment of EC and the development of new drugs, and envision the future applications of DNA methylation in EC.
Collapse
Affiliation(s)
- Minzhen Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhili Xia
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ruiyu Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Minmin Hou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Fan W, Li W, Li L, Qin M, Mao C, Yuan Z, Wang P, Chu B, Jiang Y. Bifunctional HDAC and DNMT inhibitor induces viral mimicry activates the innate immune response in triple-negative breast cancer. Eur J Pharm Sci 2024; 197:106767. [PMID: 38636781 DOI: 10.1016/j.ejps.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Weiwen Fan
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenkai Li
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Chengzhou Mao
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
| | - Bizhu Chu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Fang X, Poulsen R, Zhao L, Wang J, Rivkees SA, Wendler CC. Knockdown of DNA methyltransferase 1 reduces DNA methylation and alters expression patterns of cardiac genes in embryonic cardiomyocytes. FEBS Open Bio 2021. [PMID: 34235895 PMCID: PMC8329956 DOI: 10.1002/2211-5463.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
We previously found that DNA methyltransferase 3a (DNMT3a) plays an important role in regulating embryonic cardiomyocyte gene expression, morphology, and function. In this study, we investigated the role of the most abundant DNMT in mammalian cells, DNMT1, in these processes. It is known that DNMT1 is essential for embryonic development, during which it is involved in regulating cardiomyocyte DNA methylation and gene expression. We used siRNA to knock down DNMT1 expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining and multielectrode array were, respectively, utilized to evaluate cardiomyocyte growth and electrophysiology. RNA sequencing (RNA‐Seq) and multiplex bisulfite sequencing were, respectively, performed to examine gene expression and promoter methylation. At 72 h post‐transfection, reduction of DNMT1 expression decreased the number and increased the size of embryonic cardiomyocytes. Beat frequency and the amplitude of field action potentials were decreased by DNMT1 siRNA. RNA‐Seq analysis identified 801 up‐regulated genes and 494 down‐regulated genes in the DNMT1 knockdown cells when compared to controls. Pathway analysis of the differentially expressed genes revealed pathways that were associated with cell death and survival, cell morphology, cardiac function, and cardiac disease. Alternative splicing analysis identified 929 differentially expressed exons, including 583 up‐regulated exons and 308 down‐regulated exons. Moreover, decreased methylation levels were found in the promoters of cardiac genes Myh6, Myh7, Myh7b, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb, mef2c, mef2d, Camta2, Cdkn1A, and Cdkn1C. Of these 13 genes, 6 (Myh6, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb) and 1 (Cdkn1C) had increased or decreased gene expression, respectively. Altogether, these data show that DNMT1 is important in embryonic cardiomyocytes by regulating DNA methylation, gene expression, gene splicing, and cell function.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA.,Charles River Laboratories, Inc., Reno, NV, USA
| | - Ryan Poulsen
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lu Zhao
- Charles River Laboratories, Inc., Reno, NV, USA
| | | | - Scott A Rivkees
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher C Wendler
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Inoue F, Sone K, Toyohara Y, Takahashi Y, Kukita A, Hara A, Taguchi A, Tanikawa M, Tsuruga T, Osuga Y. Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications. Int J Mol Sci 2021; 22:2305. [PMID: 33669072 PMCID: PMC7956745 DOI: 10.3390/ijms22052305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is one of the most frequently diagnosed gynecological malignancies worldwide. However, its prognosis in advanced stages is poor, and there are only few available treatment options when it recurs. Epigenetic changes in gene function, such as DNA methylation, histone modification, and non-coding RNA, have been studied for the last two decades. Epigenetic dysregulation is often reported in the development and progression of various cancers. Recently, epigenetic changes in endometrial cancer have also been discussed. In this review, we give the main points of the role of DNA methylation and histone modification in endometrial cancer, the diagnostic tools to determine these modifications, and inhibitors targeting epigenetic regulators that are currently in preclinical studies and clinical trials.
Collapse
Affiliation(s)
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655, Japan; (F.I.); (Y.T.); (Y.T.); (A.K.); (A.H.); (A.T.); (M.T.); (T.T.); (Y.O.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Chen J, Zhao L, Peng H, Dai S, Quan Y, Wang M, Wang J, Bi Z, Zheng Y, Zhou S, Liu Y, Chen C, Na F. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther 2020; 28:112-125. [PMID: 32632269 DOI: 10.1038/s41417-020-0190-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 02/05/2023]
Abstract
Tumor organoids recapitulate pathological properties and would serve as an excellent ex vivo model for drug discovery. Here, we performed an unbiased drug screening on drivers-defined tumor organoids from mouse endometrial cancer, the most prevalent gynecological malignancy in human, with a small molecule library targeting epigenetic factors. Among them, menin-MLL inhibitors MI-136 and MI-463 scored. The therapeutic capacity of MI-136 was further validated in tumor organoids in vitro and an orthotopic model in vivo. CRISPR/cas9-mediated mutations of major components of the menin-MLL complex, Men1, Kmt2a and Ash2l, inhibited the growth of tumor organoids, suggesting that the complex was the target of MI-136. Transcriptome analysis showed that the hypoxia-inducible factor (HIF) pathway was the most significantly downregulated pathway by MI-136 treatment. Consistently, Men1, Kmt2a, and Ash2l knockout also repressed the expressions of the HIF target genes. Loss of Hif1a or Hif1b partially phenocopied the inhibition of the menin-MLL complex by MI-136 or mutations in term of tumor organoid growth. Further, we found that MEN1 was upregulated in human endometrial cancers, which were tightly correlated with the expression levels of HIF1A, and associated with poor prognosis. Importantly, MI-136 also significantly inhibited the growth of endometrial cancer organoids derived from patients. Thus, our study identified MI-136 as a potential inhibitor for endometrial cancer through regulating the HIF pathway, a novel molecular mechanism distinguished from those in AML and prostate cancer.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Zhao
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongling Peng
- West China Second Hospital, Sichuan University, Chengdu, China
| | - Siqi Dai
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Quan
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Manli Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhanying Bi
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Zheng
- West China Second Hospital, Sichuan University, Chengdu, China
| | - Shengtao Zhou
- West China Second Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Feifei Na
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Machine Learning Supports Long Noncoding RNAs as Expression Markers for Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3968279. [PMID: 32420338 PMCID: PMC7199595 DOI: 10.1155/2020/3968279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is the second most common type of gynecological tumor. Several research studies have recently shown the potential of different ncRNAs as biomarkers for prognostics and diagnosis in different types of cancers, including UCEC. Thus, we hypothesized that long noncoding RNAs (lncRNAs) could serve as efficient factors to discriminate solid primary (TP) and normal adjacent (NT) tissues in UCEC with high accuracy. We performed an in silico differential expression analysis comparing TP and NT from a set of samples downloaded from the Cancer Genome Atlas (TCGA) database, targeting highly differentially expressed lncRNAs that could potentially serve as gene expression markers. All analyses were performed in R software. The receiver operator characteristics (ROC) analyses and both supervised and unsupervised machine learning indicated a set of 14 lncRNAs that may serve as biomarkers for UCEC. Functions and putative pathways were assessed through a coexpression network and target enrichment analysis.
Collapse
|
8
|
Wang X, Chen S, Shen T, Lu H, Xiao D, Zhao M, Yao Y, Li X, Zhang G, Zhou X, Jiang X, Cheng Z. Trichostatin A reverses epithelial-mesenchymal transition and attenuates invasion and migration in MCF-7 breast cancer cells. Exp Ther Med 2020; 19:1687-1694. [PMID: 32104221 PMCID: PMC7027139 DOI: 10.3892/etm.2020.8422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer remains one of the leading causes of mortality in women, and epithelial-mesenchymal transition (EMT) serves an indispensable role in the invasion and migration of breast cancer cells. As a representative of classical histone deacetylase inhibitors (HDACIs), trichostatin A (TSA) has been demonstrated to reverse EMT in certain types of non-tumor cells and tumor cells. In the present study, the invasive and migratory abilities of MCF-7 cells were examined following treatment with TSA. TSA-induced changes in the expression of an epithelial biomarker epithelial cadherin (E-cadherin), a mesenchymal biomarker (vimentin), and a transcription factor [zinc finger protein SNAI2 (SLUG)] were also investigated. Transwell invasion and migration assays, and wound healing assays, revealed that the invasive and migratory abilities of MCF-7 cells were suppressed significantly upon treatment with TSA. Treatment with TSA led to an increased expression level of E-cadherin, and decreased expression of vimentin and, in MCF-7 cells. The overexpression of SLUG decreased the expression level of E-cadherin, but increased vimentin expression, and upon treatment with TSA, these effects were reversed. Additionally, SLUG knockdown also led to upregulation of E-cadherin expression, downregulation of vimentin expression, and suppression of the invasion and migration of MCF-7 cells. Taken together, these results suggest that TSA is able to reverse EMT via suppressing SLUG and attenuate the invasion and migration of MCF-7 cells in vitro, thereby providing a potential avenue for chemotherapeutic intervention in the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Shirong Chen
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Taipeng Shen
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Hao Lu
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Dingqiong Xiao
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Meng Zhao
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Yutang Yao
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Xiuli Li
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Ge Zhang
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Xing Zhou
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Xiao Jiang
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| | - Zhuzhong Cheng
- Positron Emission Tomography/Computed Tomography Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Kumanishi S, Yamanegi K, Nishiura H, Fujihara Y, Kobayashi K, Nakasho K, Futani H, Yoshiya S. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells. Int J Oncol 2019; 55:167-178. [PMID: 31180533 DOI: 10.3892/ijo.2019.4811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/14/2019] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth inhibitor (VEGI; also referred to as TNFSF15 or TL1A) is involved in the modulation of vascular homeostasis. VEGI is known to operate via two receptors: Death receptor‑3 (DR3) and decoy receptor‑3 (DcR3). DR3, which is thus far the only known functional receptor for VEGI, contains a death domain and induces cell apoptosis. DcR3 is secreted as a soluble protein and antagonizes VEGI/DR3 interaction. Overexpression of DcR3 and downregulation of VEGI have been detected in a number of cancers. The aim of the present study was to investigate the effects of sodium valproate (VPA), a histone deacetylase inhibitor, in combination with hydralazine hydrochloride (Hy), a DNA methylation inhibitor, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Combination treatment with Hy and VPA synergistically induced the expression of VEGI and DR3 in both OS and HMVE cells, without inducing DcR3 secretion. In addition, it was observed that the combination of VPA and Hy significantly enhanced the inhibitory effect on vascular tube formation by VEGI/DR3 autocrine and paracrine pathways. Furthermore, the VEGI/VEGF‑A immune complex was pulled down by immunoprecipitation. Taken together, these findings suggest that DNA methyltransferase and histone deacetylase inhibitors not only have the potential to induce the re‑expression of tumor suppressor genes in cancer cells, but also exert anti‑angiogenic effects, via enhancement of the VEGI/DR3 pathway and VEGI/VEGF‑A interference.
Collapse
Affiliation(s)
- Shunsuke Kumanishi
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Koji Yamanegi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Nishiura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuki Fujihara
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kenta Kobayashi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroyuki Futani
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shinichi Yoshiya
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
10
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
11
|
Gao Y, Tollefsbol TO. Combinational Proanthocyanidins and Resveratrol Synergistically Inhibit Human Breast Cancer Cells and Impact Epigenetic⁻Mediating Machinery. Int J Mol Sci 2018; 19:ijms19082204. [PMID: 30060527 PMCID: PMC6121898 DOI: 10.3390/ijms19082204] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the second most common cancer and the second leading cause of death from cancer among women in the United States (US). Cancer prevention and therapy through the use of phytochemicals that have epigenetic properties has gained considerable interest during the past few decades. Such dietary components include, but are not limited to, grape seed proanthocyanidins (GSPs) and resveratrol (Res), both of which are present in red wine. In this study, we report for the first time the synergistic effects of GSPs and Res on inhibiting MDA-MB-231 and MCF-7 human breast cancer cells. Our results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and clonogenic assays indicate that treatments with the combinations of GSPs and Res synergistically decreased cell viability and posttreatment cell proliferation in both cell lines. Additional analyses show that treatments with GSPs and Res in combination synergistically induced apoptosis in MDA-MB-231 cells by upregulating Bax expression and down-regulating Bcl-2 expression. DNA methyltransferase (DNMT) activity and histone deacetylase (HDAC) activity were greatly reduced in MDA-MB-231 and MCF-7 cells after treatments with GSPs and Res in combination. Collectively, our findings suggest that GSPs and Res synergistically inhibit human breast cancer cells through inducing apoptosis, as well as modulating DNA methylation and histone modifications.
Collapse
Affiliation(s)
- Yifeng Gao
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
12
|
Vera O, Jimenez J, Pernia O, Rodriguez-Antolin C, Rodriguez C, Sanchez Cabo F, Soto J, Rosas R, Lopez-Magallon S, Esteban Rodriguez I, Dopazo A, Rojo F, Belda C, Alvarez R, Valentin J, Benitez J, Perona R, De Castro J, Ibanez de Caceres I. DNA Methylation of miR-7 is a Mechanism Involved in Platinum Response through MAFG Overexpression in Cancer Cells. Am J Cancer Res 2017; 7:4118-4134. [PMID: 29158814 PMCID: PMC5695001 DOI: 10.7150/thno.20112] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/04/2017] [Indexed: 11/16/2022] Open
Abstract
One of the major limitations associated with platinum use is the resistance that almost invariably develops in different tumor types. In the current study, we sought to identify epigenetically regulated microRNAs as novel biomarkers of platinum resistance in lung and ovarian cancers, the ones with highest ratios of associated chemo-resistance. Methods: We combined transcriptomic data from microRNA and mRNA under the influence of an epigenetic reactivation treatment in a panel of four paired cisplatin -sensitive and -resistant cell lines, followed by real-time expression and epigenetic validations for accurate candidate selection in 19 human cancer cell lines. To identify specific candidate genes under miRNA regulation, we assembled “in silico” miRNAs and mRNAs sequences by using ten different algorithms followed by qRT-PCR validation. Functional assays of site-directed mutagenesis and luciferase activity, miRNAs precursor overexpression, silencing by antago-miR and cell viability were performed to confirm their specificity in gene regulation. Results were further explored in 187 primary samples obtained from ovarian tumors and controls. Results: We identified 4 candidates, miR-7, miR-132, miR-335 and miR-148a, which deregulation seems to be a common event in the development of resistance to cisplatin in both tumor types. miR-7 presented specific methylation in resistant cell lines, and was associated with poorer prognosis in ovarian cancer patients. Our experimental results strongly support the direct regulation of MAFG through miR-7 and their involvement in the development of CDDP resistance in human tumor cells. Conclusion: The basal methylation status of miR-7 before treatment may be a potential clinical epigenetic biomarker, predictor of the chemotherapy outcome to CDDP in ovarian cancer patients. To the best of our knowledge, this is the first report linking the regulation of MAFG by miRNA-7 and its role in chemotherapy response to CDDP. Furthermore, this data highlights the possible role of MAFG as a novel therapeutic target for platinum resistant tumors.
Collapse
|
13
|
Leng YP, Ma YS, Li XG, Chen RF, Zeng PY, Li XH, Qiu CF, Li YP, Zhang Z, Chen AF. l-Homocysteine-induced cathepsin V mediates the vascular endothelial inflammation in hyperhomocysteinaemia. Br J Pharmacol 2017. [PMID: 28631302 DOI: 10.1111/bph.13920] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Vascular inflammation, including the expression of inflammatory cytokines in endothelial cells, plays a critical role in hyperhomocysteinaemia-associated vascular diseases. Cathepsin V, specifically expressed in humans, is involved in vascular diseases through its elastolytic and collagenolytic activities. The aim of this study was to determine the effects of cathepsin V on l-homocysteine-induced vascular inflammation. EXPERIMENTAL APPROACH A high methionine diet-induced hyperhomocysteinaemic mouse model was used to assess cathepsin V expression and vascular inflammation. Cultures of HUVECs were challenged with l-homocysteine and the cathepsin L/V inhibitor SID to assess the pro-inflammatory effects of cathepsin V. Transfection and antisense techniques were utilized to investigate the effects of cathepsin V on the dual-specificity protein phosphatases (DUSPs) and MAPK pathways. KEY RESULTS Cathepsin L (human cathepsin V homologous) was increased in the thoracic aorta endothelial cells of hyperhomocysteinaemic mice; l-homocysteine promoted cathepsin V expression in HUVECs. SID suppressed the activity of cathepsin V and reversed the up-regulation of inflammatory cytokines (IL-6, IL-8 and TNF-α), adhesion and chemotaxis of leukocytes and vascular inflammation induced by l-homocysteine in vivo and in vitro. Increased cathepsin V promoted the degradation of DUSP6 and DUSP7, phosphorylation and subsequent nuclear translocation of ERK1/2, phosphorylation of STAT1 and expression of IL-6, IL-8 and TNF-α. CONCLUSIONS AND IMPLICATIONS This study has identified a novel mechanism, which shows that l-homocysteine-induced upregulation of cathepsin V mediates vascular endothelial inflammation under high homocysteine condition partly via ERK1/2 /STAT1 pathway. This mechanism could represent a potential therapeutic target in hyperaemia-associated vascular diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yi-Ping Leng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ye-Shuo Ma
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Gang Li
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rui-Fang Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Centre for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ping-Yu Zeng
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Centre for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Hui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Cheng-Feng Qiu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Pei Li
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Zhang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Centre for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Royston KJ, Udayakumar N, Lewis K, Tollefsbol TO. A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18051092. [PMID: 28534825 PMCID: PMC5455001 DOI: 10.3390/ijms18051092] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
With cancer often classified as a disease that has an important epigenetic component, natural compounds that have the ability to regulate the epigenome become ideal candidates for study. Humans have a complex diet, which illustrates the need to elucidate the mechanisms of interaction between these bioactive compounds in combination. The natural compounds withaferin A (WA), from the Indian winter cherry, and sulforaphane (SFN), from cruciferous vegetables, have numerous anti-cancer effects and some report their ability to regulate epigenetic processes. Our study is the first to investigate the combinatorial effects of low physiologically achievable concentrations of WA and SFN on breast cancer cell proliferation, histone deacetylase1 (HDAC1) and DNA methyltransferases (DNMTs). No adverse effects were observed on control cells at optimal concentrations. There was synergistic inhibition of cellular viability in MCF-7 cells and a greater induction of apoptosis with the combinatorial approach than with either compound administered alone in both MDA-MB-231 and MCF-7 cells. HDAC expression was down-regulated at multiple levels. Lastly, we determined the combined effects of these bioactive compounds on the pro-apoptotic BAX and anti-apoptotic BCL-2 and found decreases in BCL-2 and increases in BAX. Taken together, our findings demonstrate the ability of low concentrations of combinatorial WA and SFN to promote cancer cell death and regulate key epigenetic modifiers in human breast cancer cells.
Collapse
Affiliation(s)
- Kendra J Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
| | - Neha Udayakumar
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Kayla Lewis
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 1: DNA methylation. Epigenomics 2017; 9:737-755. [PMID: 28470096 DOI: 10.2217/epi-2016-0166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. The present review is the first part of this work, in which we examined the contribution of DNA methylation alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Fang X, Poulsen RR, Wang-Hu J, Shi O, Calvo NS, Simmons CS, Rivkees SA, Wendler CC. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes. FASEB J 2016; 30:3238-55. [PMID: 27306334 PMCID: PMC5001511 DOI: 10.1096/fj.201600346r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022]
Abstract
We previously found that in utero caffeine exposure causes down-regulation of DNA methyltransferases (DNMTs) in embryonic heart and results in impaired cardiac function in adulthood. To assess the role of DNMTs in these events, we investigated the effects of reduced DNMT expression on embryonic cardiomyocytes. siRNAs were used to knock down individual DNMT expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining was conducted to evaluate cell morphology. A video-based imaging assay and multielectrode array were used to assess cardiomyocyte contractility and electrophysiology, respectively. RNA-Seq and multiplex bisulfite sequencing were performed to examine gene expression and promoter methylation, respectively. At 72 h after transfection, reduced DNMT3a expression, but not DNMT1 or -3b, disrupted sarcomere assembly and decreased beating frequency, contractile movement, amplitude of field action potential, and cytosolic calcium signaling of cardiomyocytes. RNA-Seq analysis revealed that the DNMT3a-deficient cells had deactivated gene networks involved in calcium, endothelin-1, renin-angiotensin, and cardiac β-adrenergic receptor signaling, which were not inhibited by DNMT3b siRNA. Moreover, decreased methylation levels were found in the promoters of Myh7, Myh7b, Tnni3, and Tnnt2, consistent with the up-regulation of these genes by DNMT3a siRNA. These data show that DNMT3a plays an important role in regulating embryonic cardiomyocyte gene expression, morphology and function.-Fang, X., Poulsen, R. R., Wang-Hu, J., Shi, O., Calvo, N. S., Simmons, C. S., Rivkees, S. A., Wendler, C. C. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes.
Collapse
Affiliation(s)
- Xiefan Fang
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Ryan R Poulsen
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - John Wang-Hu
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Olivia Shi
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Nicholas S Calvo
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Scott A Rivkees
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Christopher C Wendler
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| |
Collapse
|
17
|
Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8:57. [PMID: 27222667 PMCID: PMC4877953 DOI: 10.1186/s13148-016-0223-4] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1.
Collapse
Affiliation(s)
- Ludovica Morera
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
18
|
Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L. Epigenetic drugs against cancer: an evolving landscape. Arch Toxicol 2014; 88:1651-68. [DOI: 10.1007/s00204-014-1315-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
|