1
|
Gonzalez-Pujana A, Igartua M, Hernandez RM, Santos-Vizcaino E. Laponite nanoclays for the sustained delivery of therapeutic proteins. Eur J Pharm Sci 2024; 201:106858. [PMID: 39033884 DOI: 10.1016/j.ejps.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Protein therapeutics hold immense promise for treating a wide array of diseases. However, their efficacy is often compromised by rapid degradation and clearance. The synthetic smectite clay Laponite emerges as a promising candidate for their sustained delivery. Despite its unique properties allow to load and release proteins mitigating burst release and extending their effects, precise control over Laponite-protein interactions remains challenging since it depends on a complex interplay of factors whose implication is not fully understood yet. The aim of this review article is to shed light on this issue, providing a comprehensive discussion of the factors influencing protein loading and release, including the physicochemical properties of the nanoclay and proteins, pH, dispersion buffer, clay/protein concentration and Laponite degradation. Furthermore, we thoroughly revise the array of bioactive proteins that have been delivered from formulations containing the nanoclay, highlighting Laponite-polymer nanocomposite hydrogels, a promising avenue currently under extensive investigation.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Zheng Y, Li Z, Li S, Zhao P, Wang X, Lu S, Shi Y, Chang H. Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses. Acta Biomater 2024; 185:203-214. [PMID: 39053817 DOI: 10.1016/j.actbio.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Vaccines play a critical role in combating infectious diseases and cancers, yet improving their efficacy remains challenging. Here, we introduce a separable nanocomposite hydrogel microneedle (NHMN) patch designed for intradermal and sustained delivery of ovalbumin (OVA), a model antigen, to enhance adaptive immune responses. The NHMN patch consists of an array of OVA-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite (LAP), supported by a hyaluronic acid backing. The incorporation of LAP not only enhances the mechanical strength of the pure hydrogel microneedles but also significantly prolongs OVA release. Furthermore, in vitro cell experiments demonstrate that NHMNs effectively activate dendritic cells without compromising cell viability. Upon skin penetration, NHMNs detach from the backing as the hyaluronic acid rapidly dissolves upon contact with the skin interstitial fluid, thereby acting as antigen reservoirs to release antigens to abundant skin dendritic cells. NHMNs containing 0.5% w/v LAP achieved a 15-day OVA release in vivo. Immunization studies demonstrate that the intradermal and sustained release of OVA via NHMNs elicited stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. Given its easy to use, painless and minimally invasive features, the NHMN patch shows promise in improving vaccination accessibility and efficacy against a range of diseases. STATEMENT OF SIGNIFICANCE: The study introduces a separable nanocomposite hydrogel microneedle (NHMN) patch. This patch consists of an array of ovalbumin (OVA, a model antigen)-loaded microneedles made from photo-cross-linked methacrylated hyaluronic acid and laponite, with a hyaluronic acid backing, designed for intradermal and sustained delivery of antigens. This patch addresses several key challenges in traditional vaccination methods, including poor antigen uptake and presentation, and rapid systematic clearance. The incorporation of laponite enhances mechanical strength of microneedles, promotes dendritic cell activation, and significantly slows down antigen release. NHMN-based vaccination elicits stronger and longer-lasting adaptive immune responses compared to conventional bolus injection. This NHMN patch holds great potential for improving the efficacy, accessibility, and patient comfort of vaccinations against a range of diseases.
Collapse
Affiliation(s)
- Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China
| | - Shaohua Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
3
|
Li Y, Hondzo M, Yang JQ. A synthetic and transparent clay removes Microcystis aeruginosa efficiently. HARMFUL ALGAE 2024; 137:102667. [PMID: 39003027 DOI: 10.1016/j.hal.2024.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Clay-algae flocculation is a promising method to remove harmful algal blooms (HABs) in aquatic ecosystems. Many HAB-generating species, such as Microcystis aeruginosa (M. aeruginosa), a common species in lakes, produce toxins and harm the environment, human health, and the economy. Natural clays, such as bentonite and kaolinite, and modification of these clays have been applied to mitigate HABs by forming large aggregates and settling down. In this study, we aim to examine the impact of laponite, a commercially available smectite clay that is synthetic, transparent, compatible with human tissues, and degradable, on removing HABs. We compare the cell removal efficiencies (RE) of laponite, two natural clays, and their polyaluminum chloride (PAC)-modified versions through clay-algae flocculation experiments. Our results show that the optimum concentrations of laponite, bentonite, kaolinite, PAC-modified bentonite, and PAC-modified kaolinite to remove 80 % of the M. aeruginosa cells from the water column are 0.05 g/L, 2 g/L, 4 g/L, 2 g/L and 0.3 g/L respectively. Therefore, to achieve the same cell removal efficiency, the amount of laponite needed is 40 to 80 times less than bentonite and kaolinite, and 6 times less than PAC-modified kaolinite. We demonstrate that the superior performance of laponite clay is because of its smaller particle size, which increases the encounter rate between cells and clay particles. Furthermore, experiments using water samples from Powderhorn Lake confirmed laponite's effectiveness in mitigating HABs. Our price analysis also suggests that this commercially-available clay, laponite, can be used in the field at a relatively low cost.
Collapse
Affiliation(s)
- Yuan Li
- University of Minnesota, Minneapolis, MN, USA; Department of Civil, Environmental, and Geo Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miki Hondzo
- University of Minnesota, Minneapolis, MN, USA; Department of Civil, Environmental, and Geo Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Judy Q Yang
- University of Minnesota, Minneapolis, MN, USA; Department of Civil, Environmental, and Geo Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Multifunctional tannic acid-based nanocomposite methacrylated silk fibroin hydrogel with the ability to scavenge reactive oxygen species and reduce inflammation for bone regeneration. Int J Biol Macromol 2024; 266:131357. [PMID: 38580010 DOI: 10.1016/j.ijbiomac.2024.131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
5
|
Zhao K, Varghese P J G, Chen P, Hu J. Developing a transcatheter injectable nanoclay- alginate gel for minimally invasive procedures. J Mech Behav Biomed Mater 2024; 152:106448. [PMID: 38335649 PMCID: PMC10923083 DOI: 10.1016/j.jmbbm.2024.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Shear-thinning materials have held considerable promise as embolic agents due to their capability of transition between solid and liquid state. In this study, a laponite nanoclay (NC)/alginate gel embolic agent was developed, characterized, and studied for transcatheter based minimally invasive procedures. Both NC and alginate are biocompatible and FDA-approved. Due to electrostatic interactions, the NC/alginate gels exhibit shear-thinning properties that are desirable for transcatheter delivery. The unique shear-thinning nature of the NC/alginate gel allows it to function as a fluid-like substance during transcatheter delivery and as a solid-like embolic agent once deployed. To ensure optimal performance and safety in clinical applications, the rheological characteristics were thoroughly investigated to optimize the mechanical properties of the NC/alginate gel, including storage modulus, yield stress/strain, and thixotropy. To improve physicians' experience and enhance the predictability of gel delivery, a combination of experimental and theoretical approaches was used to assess the injection force required for successful delivery of the gel through clinically employed catheters. Overall, NC/alginate gel exhibited excellent stability and tunable injectability by optimizing the composition of each component. These findings highlight the gel's potential as a robust embolic agent for a wide range of minimally invasive procedures.
Collapse
Affiliation(s)
- Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
6
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
7
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
8
|
Lysenkov E, Klepko V, Bulavin L, Lebovka N. Physico-Chemical Properties of Laponite®/Polyethylene-oxide Based Composites. CHEM REC 2024; 24:e202300166. [PMID: 37387571 DOI: 10.1002/tcr.202300166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Indexed: 07/01/2023]
Abstract
This review aims to provide a literature overview as well as the authors' personal account to the studies of Laponite® (Lap)/Polyethylene-oxide (PEO) based composite materials and their applications. These composites can be prepared over a wide range of their mutual concentrations, they are highly water soluble, and have many useful physico-chemical properties. To the readers' convenience, the contents are subdivided into different sections, related with consideration of PEO properties and its solubility in water, behavior of Lap systems(structure of Lap-platelets, properties of aqueous dispersions of Lap and aging effects in them), analyzing ofproperties LAP/PEO systems, Lap platelets-PEO interactions, adsorption mechanisms, aging effects, aggregation and electrokinetic properties. The different applications of Lap/PEO composites are reviewed. These applications include Lap/PEO based electrolytes for lithium polymer batteries, electrospun nanofibers, environmental, biomedical and biotechnology engineering. Both Lap and PEO are highly biocompatible with living systems and they are non-toxic, non-yellowing, and non-inflammable. Medical applications of Lap/PEO composites in bio-sensing, tissue engineering, drug delivery, cell proliferation, and wound dressings are also discussed.
Collapse
Affiliation(s)
- Eduard Lysenkov
- Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
| | - Valery Klepko
- Institute of Macromolecular Chemistry, Kyiv, Ukraine
| | - Leonid Bulavin
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nikolai Lebovka
- Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, Kyiv, Ukraine
| |
Collapse
|
9
|
Rodrigo MJ, Cardiel MJ, Fraile JM, Mayoral JA, Pablo LE, Garcia-Martin E. Laponite for biomedical applications: An ophthalmological perspective. Mater Today Bio 2024; 24:100935. [PMID: 38239894 PMCID: PMC10794930 DOI: 10.1016/j.mtbio.2023.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
Clay minerals have been applied in biomedicine for thousands of years. Laponite is a nanostructured synthetic clay with the capacity to retain and progressively release drugs. In recent years there has been a resurgence of interest in Laponite application in various biomedical areas. This is the first paper to review the potential biomedical applications of Laponite in ophthalmology. The introduction briefly covers the physical, chemical, rheological, and biocompatibility features of different routes of administration. After that, emphasis is placed on 1) drug delivery for antibiotics, anti-inflammatories, growth factors, other proteins, and cancer treatment; 2) bleeding prevention or treatment; and 3) tissue engineering through regenerative medicine using scaffolds in intraocular and extraocular tissue. Although most scientific research is not performed on the eye, both the findings and the new treatments resulting from that research are potentially applicable in ophthalmology since many of the drugs used are the same, the tissue evaluated in vitro or in vivo is also present in the eye, and the pathologies treated also occur in the eye. Finally, future prospects for this emerging field are discussed.
Collapse
Affiliation(s)
- Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| | - Maria J. Cardiel
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Department of Pathology, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Jose M. Fraile
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jose A. Mayoral
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Biotech Vision SLP (spin-off Company), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| |
Collapse
|
10
|
de Barros NR, Gangrade A, Elsebahy A, Chen R, Zehtabi F, Ermis M, Falcone N, Haghniaz R, Khosravi S, Gomez A, Huang S, Mecwan M, Khorsandi D, Lee J, Zhu Y, Li B, Kim H, Thankam FG, Khademhosseini A. Injectable Nanoengineered Adhesive Hydrogel for Treating Enterocutaneous Fistulas. Acta Biomater 2023; 173:S1742-7061(23)00634-7. [PMID: 39491155 PMCID: PMC10919932 DOI: 10.1016/j.actbio.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 03/12/2024]
Abstract
Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF. STATEMENT OF SIGNIFICANCE: This research manuscript presents a groundbreaking injectable nanoengineered adhesive hydrogel (INAH) for treating Enterocutaneous Fistula (ECF). The INAH, composed of a synthetic nanosilicate and gelatin-dopamine conjugate, offers versatile implications in tissue regeneration and localized drug delivery. Acting as a scaffold, the shear-thinning hydrogel enables easy injection, forming a stable structure that supports tissue regeneration and integrates with surrounding tissues. By incorporating bioactive cues, it guides cell behavior and promotes functional tissue regeneration. The INAH also demonstrates potential for localized drug delivery, releasing therapeutic agents over time to enhance efficacy and minimize side effects. This research showcases INAH as a promising solution for ECF, with applications in tissue engineering and regenerative medicine, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ahmad Elsebahy
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA; College of Pharmacy, Korea University, Sejong, Republic of Korea, 30019
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
11
|
Li C, Hou Y, He M, Lv L, Zhang Y, Sun S, Zhao Y, Liu X, Ma P, Wang X, Zhou Q, Zhan L. Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for An Effective Antiviral CD8 + T-Cell Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303006. [PMID: 37638719 PMCID: PMC10602536 DOI: 10.1002/advs.202303006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.
Collapse
Affiliation(s)
- Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
12
|
Shao Q, Zhang W, Qi J, Liao H, Guo H, Tan X, Chi B. Laponite stabilized endogenous antibacterial hydrogel as wet-tissue adhesive. J Mech Behav Biomed Mater 2023; 145:106009. [PMID: 37423008 DOI: 10.1016/j.jmbbm.2023.106009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Clinical adhesives for suture-less wound closure remain the problem of poor biocompatibility, weak adhesive strength, and no endogenous antibacterial ability. Here, we designed a novel antibacterial hydrogel (CP-Lap hydrogel) consisting of chitosan and ε-polylysine after being modified with gallic acid (pyrogallol structure). The hydrogel was crosslinked by glutaraldehyde and Laponite via Schiff base and dynamic Laponite-pyrogallol interaction, free from heavy metal and oxidants. Given its dual crosslinking feature, the CP-Lap hydrogel exhibited adequate mechanical strength (150-240 kPa) and demonstrated swelling and degradation resistance. For a typical lap shear test with pigskin, the apparent adhesion strength of the CP-Lap hydrogel could be enhanced to ∼30 kPa benefiting from the O2 blocking effect provided by nanoconfinement space between Laponite. In addition, the hydrogel showed effective antibacterial properties and excellent biocompatibility. The results indicated that this hydrogel has great potential for wound-closing bioadhesives to avoid chronic infections and further harm.
Collapse
Affiliation(s)
- Qing Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Jingjie Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Huiyun Liao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, China
| | - Hao Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
13
|
Tang S, Chen J, Cannon J, Chekuri M, Farazuddin M, Baker JR, Wang SH. Delicate Hybrid Laponite-Cyclic Poly(ethylene glycol) Nanoparticles as a Potential Drug Delivery System. Pharmaceutics 2023; 15:1998. [PMID: 37514184 PMCID: PMC10384068 DOI: 10.3390/pharmaceutics15071998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The objective of the study was to explore the feasibility of a new drug delivery system using laponite (LAP) and cyclic poly(ethylene glycol) (cPEG). Variously shaped and flexible hybrid nanocrystals were made by both the covalent and physical attachment of chemically homogeneous cyclized PEG to laponite nanodisc plates. The size of the resulting, nearly spherical particles ranged from 1 to 1.5 µm, while PEGylation with linear methoxy poly (ethylene glycol) (mPEG) resulted in fragile sheets of different shapes and sizes. When infused with 10% doxorubicin (DOX), a drug commonly used in the treatment of various cancers, the LAP-cPEG/DOX formulation was transparent and maintained liquid-like homogeneity without delamination, and the drug loading efficiency of the LAP-cPEG nano system was found to be higher than that of the laponite-poly(ethylene glycol) LAP-mPEG system. Furthermore, the LAP-cPEG/DOX formulation showed relative stability in phosphate-buffered saline (PBS) with only 15% of the drug released. However, in the presence of human plasma, about 90% of the drug was released continuously over a period of 24 h for the LAP-cPEG/DOX, while the LAP-mPEG/DOX formulation released 90% of DOX in a 6 h burst. The results of the cell viability assay indicated that the LAP-cPEG/DOX formulation could effectively inhibit the proliferation of A549 lung carcinoma epithelial cells. With the DOX concentration in the range of 1-2 µM in the LAP-cPEG/DOX formulation, enhanced drug effects in both A549 lung carcinoma epithelial cells and primary lung epithelial cells were observed compared to LAP-mPEG/DOX. The unique properties and effects of cPEG nanoparticles provide a potentially better drug delivery system and generate interest for further targeting studies and applications.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jesse Chen
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mona Chekuri
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohammad Farazuddin
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Allergy, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Zhao W, Hu C, Xu T. In vivo bioprinting: Broadening the therapeutic horizon for tissue injuries. Bioact Mater 2023; 25:201-222. [PMID: 36817820 PMCID: PMC9932583 DOI: 10.1016/j.bioactmat.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Tissue injury is a collective term for various disorders associated with organs and tissues induced by extrinsic or intrinsic factors, which significantly concerns human health. In vivo bioprinting, an emerging tissue engineering approach, allows for the direct deposition of bioink into the defect sites inside the patient's body, effectively addressing the challenges associated with the fabrication and implantation of irregularly shaped scaffolds and enabling the rapid on-site management of tissue injuries. This strategy complements operative therapy as well as pharmacotherapy, and broadens the therapeutic horizon for tissue injuries. The implementation of in vivo bioprinting requires targeted investigations in printing modalities, bioinks, and devices to accommodate the unique intracorporal microenvironment, as well as effective integrations with intraoperative procedures to facilitate its clinical application. In this review, we summarize the developments of in vivo bioprinting from three perspectives: modalities and bioinks, devices, and clinical integrations, and further discuss the current challenges and potential improvements in the future.
Collapse
Affiliation(s)
- Wenxiang Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Chuxiong Hu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Tao Xu
- Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, China
| |
Collapse
|
15
|
Stealey ST, Gaharwar AK, Zustiak SP. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals (Basel) 2023; 16:821. [PMID: 37375768 DOI: 10.3390/ph16060821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels are widely used for therapeutic delivery applications due to their biocompatibility, biodegradability, and ability to control release kinetics by tuning swelling and mechanical properties. However, their clinical utility is hampered by unfavorable pharmacokinetic properties, including high initial burst release and difficulty in achieving prolonged release, especially for small molecules (<500 Da). The incorporation of nanomaterials within hydrogels has emerged as viable option as a method to trap therapeutics within the hydrogel and sustain release kinetics. Specifically, two-dimensional nanosilicate particles offer a plethora of beneficial characteristics, including dually charged surfaces, degradability, and enhanced mechanical properties within hydrogels. The nanosilicate-hydrogel composite system offers benefits not obtainable by just one component, highlighting the need for detail characterization of these nanocomposite hydrogels. This review focuses on Laponite, a disc-shaped nanosilicate with diameter of 30 nm and thickness of 1 nm. The benefits of using Laponite within hydrogels are explored, as well as examples of Laponite-hydrogel composites currently being investigated for their ability to prolong the release of small molecules and macromolecules such as proteins. Future work will further characterize the interplay between nanosilicates, hydrogel polymer, and encapsulated therapeutics, and how each of these components affect release kinetics and mechanical properties.
Collapse
Affiliation(s)
- Samuel T Stealey
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77433, USA
| | | |
Collapse
|
16
|
Pineda-Álvarez RA, Flores-Avila C, Medina-Torres L, Gracia-Mora J, Escobar-Chávez JJ, Leyva-Gómez G, Shahbazi MA, Bernad-Bernad MJ. Laponite Composites: In Situ Films Forming as a Possible Healing Agent. Pharmaceutics 2023; 15:1634. [PMID: 37376082 DOI: 10.3390/pharmaceutics15061634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
A healing material must have desirable characteristics such as maintaining a physiological environment, protective barrier-forming abilities, exudate absorption, easy handling, and non-toxicity. Laponite is a synthetic clay with properties such as swelling, physical crosslinking, rheological stability, and drug entrapment, making it an interesting alternative for developing new dressings. This study evaluated its performance in lecithin/gelatin composites (LGL) as well as with the addition of maltodextrin/sodium ascorbate mixture (LGL MAS). These materials were applied as nanoparticles, dispersed, and prepared by using the gelatin desolvation method-eventually being turned into films via the solvent-casting method. Both types of composites were also studied as dispersions and films. Dynamic Light Scattering (DLS) and rheological techniques were used to characterize the dispersions, while the films' mechanical properties and drug release were determined. Laponite in an amount of 8.8 mg developed the optimal composites, reducing the particulate size and avoiding the agglomeration by its physical crosslinker and amphoteric properties. On the films, it enhanced the swelling and provided stability below 50 °C. Moreover, the study of drug release in maltodextrin and sodium ascorbate from LGL MAS was fitted to first-order and Korsmeyer-Peppas models, respectively. The aforementioned systems represent an interesting, innovative, and promising alternative in the field of healing materials.
Collapse
Affiliation(s)
- Ramón Andrés Pineda-Álvarez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Carolina Flores-Avila
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Jesús Gracia-Mora
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - José Juan Escobar-Chávez
- Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria-L12 (Sistemas Transdérmicos), Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Gerardo Leyva-Gómez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - María Josefa Bernad-Bernad
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
17
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
18
|
Bravo I, Viejo L, de Los Ríos C, García-Frutos EM, Darder M. Cellulose/pectin-based materials incorporating Laponite-indole derivative hybrid for oral administration and controlled delivery of the neuroprotective drug. Int J Biol Macromol 2023; 234:123765. [PMID: 36812973 DOI: 10.1016/j.ijbiomac.2023.123765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Bionanocomposite materials based on clays have been designed for oral administration and controlled release of a neuroprotective drug derivative of 5-methylindole, which had featured an innovative pharmacological mechanism for the treatment of neurodegenerative diseases such as Alzheimer's. This drug was adsorbed in the commercially available Laponite® XLG (Lap). X-ray diffractograms confirmed its intercalation in the interlayer region of the clay. The loaded drug was 62.3 meq/100 g Lap, close to the cation exchange capacity of Lap. Per se toxicity studies and neuroprotective experiments versus the neurotoxin okadaic acid, a potent and selective inhibitor of protein phosphatase 2A (PP2A), confirmed that the clay-intercalated drug did not exert toxicity in cell cultures and provided neuroprotection. Release tests of the hybrid material performed in media mimicking the gastrointestinal tract indicated a drug release in acid medium close to 25 %. The hybrid was encapsulated in a micro/nanocellulose matrix and processed as microbeads, with pectin coating for additional protection, to minimize release under acidic conditions. Alternatively, low density materials based on a microcellulose/pectin matrix were evaluated as orodispersible foams showing fast disintegration times, sufficient mechanical resistance for handling, and release profiles in simulated media that confirmed a controlled release of the encapsulated neuroprotective drug.
Collapse
Affiliation(s)
- Isaac Bravo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid 28006, Spain; Instituto Fundación Teófilo Hernando (IFTH), Madrid 28029, Spain
| | - Lucía Viejo
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid 28006, Spain; Instituto Fundación Teófilo Hernando (IFTH), Madrid 28029, Spain
| | - Cristóbal de Los Ríos
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid 28006, Spain; Instituto Fundación Teófilo Hernando (IFTH), Madrid 28029, Spain
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain.
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain.
| |
Collapse
|
19
|
Liu Z, Tang Q, Liu RT, Yu MZ, Peng H, Zhang CQ, Zhu ZZ, Wei XJ. Laponite intercalated biomimetic multilayer coating prevents glucocorticoids induced orthopedic implant failure. Bioact Mater 2023; 22:60-73. [PMID: 36203962 PMCID: PMC9519439 DOI: 10.1016/j.bioactmat.2022.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
|
20
|
Andrade DB, Soares LLS, Cardoso FLA, Lima IS, Silva JGV, Carvalho MAM, Fonseca MG, Brito GDC, Santos FEP, Osajima JA, Lobo AO, Silva-Filho EC. Hydrogel Based on Nanoclay and Gelatin Methacrylate Polymeric Matrix as a Potential Osteogenic Application. J Funct Biomater 2023; 14:74. [PMID: 36826873 PMCID: PMC9961749 DOI: 10.3390/jfb14020074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
A nanocomposite hydrogel has potentially applicability in the induction of osteogenesis. The hydrogel was synthesized using 1% gelatin methacrylate (GelMA), a biodegradable and bioactive polymer containing the structure of gelatin, denatured collagen derived from the extracellular bone matrix, and 6% laponite (Lap), a synthetic phyllosilicate of nanosized particles. Initially, 0.6 g of Lap was added to deionized water, and then a solution of GelMA/Igarcure was added under stirring and UV light for crosslinking. The spectra in the Fourier-transform infrared region showed bands that indicate the interaction between gelatin and methacrylate anhydride. X-ray diffraction patterns confirmed the presence of Lap and GelMA in the hydrogel. The thermogravimetric analysis suggested an increase in the thermal stability of the hydrogel with the presence of clay mineral. Rheological analysis showed that the hydrogel had a viscosity that allowed its injectability. The hydrogel did not show acute toxicity at any of the concentrations tested according to the Artemia salina lethality test. It showed cell viability more significant than 80% in the MTT test, which makes it suitable for in vivo osteogenic induction tests. The cell differentiation test showed the differentiation of stem cells into osteogenic cells. It indicates a material with the potential for osteogenic induction and possible application in bone tissue engineering.
Collapse
Affiliation(s)
- Danielle B. Andrade
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Leticya L. S. Soares
- NUPCELT, Animal Science Center, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | | | - Idglan S. Lima
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Jhaemely G. V. Silva
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Maria A. M. Carvalho
- NUPCELT, Animal Science Center, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Maria G. Fonseca
- Research Center and Extension Laboratory of Fuels and Materials-NPE/LACOM, Department of Chemistry, Federal University of Paraíba, MGF, João Pessoa 58051-900, PB, Brazil
| | - Guilherme de C. Brito
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Francisco Eroni P. Santos
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Josy A. Osajima
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
- Chemistry Department, Natural Science Center, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Anderson O. Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | - Edson C. Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Technology Center, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
- Chemistry Department, Natural Science Center, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| |
Collapse
|
21
|
Mahdavinia GR, Hoseinzadeh H, Labib P, Jabbari P, Mohebbi A, Barzeger S, Jafari H. (Magnetic laponite/κ-carrageenan)@chitosan core–shell carrier for pH-sensitive release of doxorubicin. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Katti KS, Jasuja H, Jaswandkar SV, Mohanty S, Katti DR. Nanoclays in medicine: a new frontier of an ancient medical practice. MATERIALS ADVANCES 2022; 3:7484-7500. [PMID: 36324871 PMCID: PMC9577303 DOI: 10.1039/d2ma00528j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer.
Collapse
Affiliation(s)
- Kalpana S Katti
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Haneesh Jasuja
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Sharad V Jaswandkar
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Sibanwita Mohanty
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Dinesh R Katti
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| |
Collapse
|
23
|
Howard MT, Wang S, Berger AG, Martin JR, Jalili-Firoozinezhad S, Padera RF, Hammond PT. Sustained release of BMP-2 using self-assembled layer-by-layer film-coated implants enhances bone regeneration over burst release. Biomaterials 2022; 288:121721. [PMID: 35981926 PMCID: PMC10396073 DOI: 10.1016/j.biomaterials.2022.121721] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant. Release kinetics were tuned by incorporating laponite in different film arrangements and with varying deposition techniques to achieve release of BMP-2 over 2 days, 4 days, 14 days, and 30 days. Delivery of a low dose (0.5 μg) of BMP-2 over 2 days and 30 days using these LbL film architectures was then compared in an in vivo rat critical size calvarial defect model to determine the effect of BMP-2 release kinetics on bone regeneration. After 6 weeks, sustained release of BMP-2 over 30 days induced 3.7 times higher bone volume and 7.4 times higher bone mineral density as compared with 2-day release of BMP-2, which did not induce more bone growth than the uncoated scaffold control. These findings represent a crucial step in the understanding of how BMP-2 release kinetics influence treatment efficacy and underscore the necessity to optimize protein delivery methods in clinical formulations for bone regeneration. This work could be applied to the delivery of other therapeutic proteins for which careful tuning of the release rate is a key optimization parameter.
Collapse
Affiliation(s)
- MayLin T Howard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Adam G Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - John R Martin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Robert F Padera
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, United States.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
24
|
Wu Q, Qu M, Kim HJ, Zhou X, Jiang X, Chen Y, Zhu J, Ren L, Wolter T, Kang H, Xu C, Gu Z, Sun W, Khademhosseini A. A Shear-Thinning Biomaterial-Mediated Immune Checkpoint Blockade. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35309-35318. [PMID: 35913267 DOI: 10.1021/acsami.2c06137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systemic administration of immune checkpoint blockade agents can activate the anticancer activity of immune cells; however, the response varies from patient to patient and presents potential off-target toxicities. Local administration of immune checkpoint inhibitors (ICIs) can maximize therapeutic efficacies while reducing side effects. This study demonstrates a minimally invasive strategy to locally deliver anti-programmed cell death protein 1 (anti-PD-1) with shear-thinning biomaterials (STBs). ICI can be injected into tumors when loaded in STBs (STB-ICI) composed of gelatin and silicate nanoplatelets (Laponite). The release of ICI from STB was mainly affected by the Laponite percentage in STBs and pH of the local microenvironment. Low Laponite content and acidic pH can induce ICI release. In a murine melanoma model, the injection of STB-ICI significantly reduced tumor growth and increased CD8+ T cell level in peripheral blood. STB-ICI also induced increased levels of tumor-infiltrating CD4+ helper T cells, CD8+ cytotoxic T cells, and tumor death. The STB-based minimally invasive strategy provides a simple and efficient approach to deliver ICIs locally.
Collapse
Affiliation(s)
- Qingzhi Wu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Moyuan Qu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center of Oral Disease of Zhejiang Province, Zhejiang University, Hangzhou 310006, P.R. China
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Xingwu Zhou
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pharmaceutic Science, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Xing Jiang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yi Chen
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jixiang Zhu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou 511436, P.R. China
| | - Li Ren
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Tyler Wolter
- Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chun Xu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P.R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, P.R. China
- Jinhua Institute of Zhejiang University, Jinhua 321299, P.R. China
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, Department of Chemical and Biomolecular Engineering, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, Department of Chemical and Biomolecular Engineering, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
25
|
Lebovka N, Goncharuk O, Klepko V, Mykhailyk V, Samchenko Y, Kernosenko L, Pasmurtseva N, Poltoratska T, Siryk O, Solovieva O, Tatochenko M. Cross-Linked Hydrogels Based on PolyNIPAAm and Acid-Activated Laponite RD: Swelling and Tunable Thermosensitivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5708-5716. [PMID: 35481382 DOI: 10.1021/acs.langmuir.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The effects of acid activation of Laponite RD (Lap) on the structure and properties of activated Lap nanoparticles (aLap) and the properties of polyNIPAAm hydrogels physically cross-linked by aLap have been studied. The acid activation of Lap by the sulfuric acid was done using the concentration of sulfuric acid within the interval Ca = 0.525-14.58% for 10 h. For slightly activated samples (Ca ≤ 1.25 wt %), the significant increase of the specific surface area (by ≈1.56 times) was accompanied with a significant decrease in both the values of the specific heat of immersion in water and n-decane. However, the hydrophilic properties of all samples S0-S5 were still observed. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) data, Fourier transform infrared (FTIR) spectra, and X-ray diffraction (XRD) patterns demonstrated that the acid activation resulted in the destruction of the crystal lattice of Lap, leaching of magnesium and lithium, and formation of the amorphous phases. Moreover, the acid activation significantly affected aggregation and negative surface charges of the aLap faces in aqueous suspension. The effects of aLap on the swelling properties and cooperativity in the phase transitions of polyNIPAAm hydrogels cross-linked by aLap are also discussed. It was demonstrated that an increase in Ca resulted in a significant increase in the equilibrium degree of swelling of the hydrogels and a decrease in the hydrogel phase-transition temperature from the swollen phase to the shrunken phase.
Collapse
Affiliation(s)
- Nikolai Lebovka
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Olena Goncharuk
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Valeriy Klepko
- Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske road, 02160 Kiev, Ukraine
| | - Viacheslav Mykhailyk
- Institute of Engineering Thermophysics NAS of Ukraine, 2a Zhelyabova Str, Kyiv 03057, Ukraine
| | - Yurii Samchenko
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Lyudmila Kernosenko
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Natalya Pasmurtseva
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Tetiana Poltoratska
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Olena Siryk
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Olena Solovieva
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| | - Mykhailo Tatochenko
- Institute of Biocolloidal Chemistry named after F.D. Ovcharenko NAS of Ukraine, 42 Vernadskogo Blvd., Kyiv 03142, Ukraine
| |
Collapse
|
26
|
Braik S, Amor TB, Michelin L, Rigolet S, Bonne M, Lebeau B, Hafiane A. Natural water defluoridation by adsorption on Laponite clay. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1701-1719. [PMID: 35358066 DOI: 10.2166/wst.2022.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Safe drinking water is a necessity for every human being, but clean water is scarce and not easily available due to natural geochemical factors or industrial pollutant activity. Many issues involving water quality could be greatly improved using clays as adsorbents. We highlight for the first time, the uptake of fluoride from natural water by Laponite, synthetic hectorite clay, in raw and modified state. A series of batch adsorption experiments were carried out to evaluate the adsorption potential of the different parameters. The optimized parameters were: contact time, adsorbent dose and pH. It was found that fluoride uptake from natural water was better using raw Laponite and inorganic-modified Laponite than using organic-modified Laponite clays. Adsorbents were characterized before and after fluoride adsorption by X-ray diffraction, X-ray fluorescence, FTIR, thermo gravimetric analyses and 19F solid state NMR spectroscopy. The experimental data showed that both Langmuir and Freundlich models fitted an adsorption isotherm well. Thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated. These parameters indicated that fluoride adsorption onto Laponite was nonspontaneous and endothermic in temperature range between 25 and 45 °C.
Collapse
Affiliation(s)
- Saber Braik
- Research Laboratory of Environmental Science and Technologies, Borj-Cédria, 2050 Hammam-Lif, Tunisia; Université de Carthage, 1054 Carthage, Tunisia E-mail:
| | - Taissire Ben Amor
- Université de Carthage, 1054 Carthage, Tunisia E-mail: ; Water, Membrane and Environmental Biotechnology Laboratory, CERTE, Technopole of Borj-Cedria, BP 273, Soliman 8020, Tunisia
| | - Laure Michelin
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 731, F-68100 Mulhouse, France; Université de Strasbourg, F-67000 Strasbourg, France
| | - Séverinne Rigolet
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 731, F-68100 Mulhouse, France; Université de Strasbourg, F-67000 Strasbourg, France
| | - Magali Bonne
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 731, F-68100 Mulhouse, France; Université de Strasbourg, F-67000 Strasbourg, France
| | - Bénédicte Lebeau
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 731, F-68100 Mulhouse, France; Université de Strasbourg, F-67000 Strasbourg, France
| | - Amor Hafiane
- Université de Carthage, 1054 Carthage, Tunisia E-mail: ; Water, Membrane and Environmental Biotechnology Laboratory, CERTE, Technopole of Borj-Cedria, BP 273, Soliman 8020, Tunisia
| |
Collapse
|
27
|
Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers (Basel) 2022; 14:polym14040742. [PMID: 35215655 PMCID: PMC8879957 DOI: 10.3390/polym14040742] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/25/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of chemical and physical methods. Various biological resources such as plants and their different parts, bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological resources have been reported. Plant extract contains various biomolecules, including flavonoids, terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents during the biosynthesis process. Similarly, microorganisms produce different primary and secondary metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized AgNPs have gained significant attention from the researchers because of their potential applications in different fields of biomedical science. The widest application of AgNPs is their bactericidal activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous human pathogens. Because of their small size and large surface area, AgNPs have the ability to easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and interfere with DNA replication as well as protein synthesis, and result in cell death. This paper provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms.
Collapse
|
28
|
Stealey S, Khachani M, Zustiak SP. Adsorption and Sustained Delivery of Small Molecules from Nanosilicate Hydrogel Composites. Pharmaceuticals (Basel) 2022; 15:56. [PMID: 35056113 PMCID: PMC8780425 DOI: 10.3390/ph15010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Two-dimensional nanosilicate particles (NS) have shown promise for the prolonged release of small-molecule therapeutics while minimizing burst release. When incorporated in a hydrogel, the high surface area and charge of NS enable electrostatic adsorption and/or intercalation of therapeutics, providing a lever to localize and control release. However, little is known about the physio-chemical interplay between the hydrogel, NS, and encapsulated small molecules. Here, we fabricated polyethylene glycol (PEG)-NS hydrogels for the release of model small molecules such as acridine orange (AO). We then elucidated the effect of NS concentration, NS/AO incubation time, and the ability of NS to freely associate with AO on hydrogel properties and AO release profiles. Overall, NS incorporation increased the hydrogel stiffness and decreased swelling and mesh size. When individual NS particles were embedded within the hydrogel, a 70-fold decrease in AO release was observed compared to PEG-only hydrogels, due to adsorption of AO onto NS surfaces. When NS was pre-incubated and complexed with AO prior to hydrogel encapsulation, a >9000-fold decrease in AO release was observed due to intercalation of AO between NS layers. Similar results were observed for other small molecules. Our results show the potential for use of these nanocomposite hydrogels for the tunable, long-term release of small molecules.
Collapse
Affiliation(s)
| | | | - Silviya Petrova Zustiak
- Biomedical Engineering Program, Parks College of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (S.S.); (M.K.)
| |
Collapse
|
29
|
Abstract
In recent years, nanomaterials have attracted significant research interest for applications in biomedicine. Many kinds of engineered nanomaterials, such as lipid nanoparticles, polymeric nanoparticles, porous nanomaterials, silica, and clay nanoparticles, have been investigated for use in drug delivery systems, regenerative medicine, and scaffolds for tissue engineering. Some of the most attractive nanoparticles for biomedical applications are nanoclays. According to their mineralogical composition, approximately 30 different nanoclays exist, and the more commonly used clays are bentonite, halloysite, kaolinite, laponite, and montmorillonite. For millennia, clay minerals have been extensively investigated for use in antidiarrhea solutions, anti-inflammatory agents, blood purification, reducing infections, and healing of stomach ulcers. This widespread use is due to their high porosity, surface properties, large surface area, excellent biocompatibility, the potential for sustained drug release, thermal and chemical stability. We begin this review by discussing the major nanoclay types and their application in biomedicine, focusing on current research areas for halloysite in biomedicine. Finally, recent trends and future directions in HNT research for biomedical application are explored.
Collapse
|
30
|
Zhang M, Bai Y, Xu C, Lin J, Jin J, Xu A, Lou JN, Qian C, Yu W, Wu Y, Qi Y, Tao H. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv 2021; 28:2548-2561. [PMID: 34854786 PMCID: PMC8648032 DOI: 10.1080/10717544.2021.2009937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Effective and accurate delivery of drugs to tissue with spinal cord injury (SCI) is the key to rehabilitating neurological deficits. Sustained-release microspheres (MS) have excellent degradability and can aid in the long-term release of drugs. However, the burst release phenomenon can cause unexpected side effects. Herein, we developed and optimized an injectable poly(lactic-co-glycolic acid) (PLGA) MS loaded with melatonin(Mel), which were mixed further with Laponite hydrogels (Lap/MS@Mel, a micro-gel compound) in order to reduce the burst release of MS. Thus, these MS were able to achieve stable and prolonged Mel release, as well as synergistic Lap hydrogel in order to repair neural function in SCI by in situ injection. In clinical practice, patients with SCI have complicated conditions and significant inter-individual differences, which means that a single route of administration does not meet actual clinical needs. Thus, the nanospheres are synthesized and subsequently coated with platelet membrane (PM) in order to form PM/MS@Mel (nano-PM compound) for sustained and precision-targeted delivery of Mel intravenously in the SCI. Notably, optimized microsphere delivery systems have improved Mel regulation polarization of spinal microglial/macrophages, which can reduce loss of biomaterials due to macrophage-induced immune response during implantation of spinal cord tissue. These two new delivery systems that are based on MS provide references for the clinical treatment of SCI, according to different requirements.
Collapse
Affiliation(s)
- Man Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Yang Bai
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China
| | - Chang Xu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China
| | - Jinti Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - JiaKang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Ankai Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Jia Nan Lou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Chao Qian
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Wei Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Yulian Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China
| | - Yiying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Huimin Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| |
Collapse
|
31
|
Xu X, Xiao L, Xu Y, Zhuo J, Yang X, Li L, Xiao N, Tao J, Zhong Q, Li Y, Chen Y, Du Z, Luo K. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold. Regen Biomater 2021; 8:rbab061. [PMID: 34858634 PMCID: PMC8633727 DOI: 10.1093/rb/rbab061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Critical oral-maxillofacial bone defects, damaged by trauma and tumors, not only affect the physiological functions and mental health of patients but are also highly challenging to reconstruct. Personalized biomaterials customized by 3D printing technology have the potential to match oral-maxillofacial bone repair and regeneration requirements. Laponite (LAP) nanosilicates have been added to biomaterials to achieve biofunctional modification owing to their excellent biocompatibility and bioactivity. Herein, porous nanosilicate-functionalized polycaprolactone (PCL/LAP) was fabricated by 3D printing technology, and its bioactivities in bone regeneration were investigated in vitro and in vivo. In vitro experiments demonstrated that PCL/LAP exhibited good cytocompatibility and enhanced the viability of bone marrow mesenchymal stem cells (BMSCs). PCL/LAP functioned to stimulate osteogenic differentiation of BMSCs at the mRNA and protein levels and elevated angiogenic gene expression and cytokine secretion. Moreover, BMSCs cultured on PCL/LAP promoted the angiogenesis potential of endothelial cells by angiogenic cytokine secretion. Then, PCL/LAP scaffolds were implanted into the calvarial defect model. Toxicological safety of PCL/LAP was confirmed, and significant enhancement of vascularized bone formation was observed. Taken together, 3D-printed PCL/LAP scaffolds with brilliant osteogenesis to enhance bone regeneration could be envisaged as an outstanding bone substitute for a promising change in oral-maxillofacial bone defect reconstruction.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jin Zhuo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Nianqi Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jing Tao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Zhibin Du
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| |
Collapse
|
32
|
Heragh BK, Javanshir S, Mahdavinia GR, Jamal MRN. Hydroxyapatite grafted chitosan/laponite RD hydrogel: Evaluation of the encapsulation capacity, pH-responsivity, and controlled release behavior. Int J Biol Macromol 2021; 190:351-359. [PMID: 34492248 DOI: 10.1016/j.ijbiomac.2021.08.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
In this study, a pH-responsive drug carrier was developed for the controllable release of drugs in the gastric environment. Chitosan (CS), a pH-sensitive biopolymer, and laponite RD (LAP), a nano-clay with a high drug-loading capability, were used to design the new carrier. Hydroxyapatite (HA) was grafted into CS/LAP matrix through a simple co-precipitation technique to overcome the burst release of the CS/LAP. The structural analysis and swelling tests of products demonstrated that the co-precipitation method has led to the penetration of HA nanoparticles inside the CS/LAP matrix and occupying its hollow pores. Occupation of the empty pores can lead to the entrapment of drug molecules, thereby reducing the release rate. The nanocomposite showed a high loading capacity to ofloxacin as a drug model. The effects of HA content on release behavior of nanocomposite were investigated at simulated gastric (pH 1.2) and intestine (pH 7.4) environments. The results indicated a high pH sensitivity for CS/LAP/HA. HA grafting reduced the release rate remarkably regardless of pH. The release rate of CS/LAP/HA decreased by 44-63% in pH 1.2 and 41-51% in pH 7.4 compared to CS/LAP. Kinetic studies indicated that grafting the HA in CS/LAP has changed the drug release mechanism.
Collapse
Affiliation(s)
- Bagher Kazemi Heragh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114 Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114 Tehran, Iran.
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran.
| | - Mohammad Reza Naimi Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| |
Collapse
|
33
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
34
|
García-Villén F, Ruiz-Alonso S, Lafuente-Merchan M, Gallego I, Sainz-Ramos M, Saenz-del-Burgo L, Pedraz JL. Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:1806. [PMID: 34834221 PMCID: PMC8623235 DOI: 10.3390/pharmaceutics13111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adaptation and progress of 3D printing technology toward 3D bioprinting (specifically adapted to biomedical purposes) has opened the door to a world of new opportunities and possibilities in tissue engineering and regenerative medicine. In this regard, 3D bioprinting allows for the production of tailor-made constructs and organs as well as the production of custom implants and medical devices. As it is a growing field of study, currently, the attention is heeded on the optimization and improvement of the mechanical and biological properties of the so-called bioinks/biomaterial inks. One of the strategies proposed is the use of inorganic ingredients (clays, hydroxyapatite, graphene, carbon nanotubes and other silicate nanoparticles). Clays have proven to be useful as rheological and mechanical reinforcement in a wide range of fields, from the building industry to pharmacy. Moreover, they are naturally occurring materials with recognized biocompatibility and bioactivity, revealing them as optimal candidates for this cutting-edge technology. This review deals with the use of clays (both natural and synthetic) for tissue engineering and regenerative medicine through 3D printing and bioprinting. Despite the limited number of studies, it is possible to conclude that clays play a fundamental role in the formulation and optimization of bioinks and biomaterial inks since they are able to improve their rheology and mechanical properties, thus improving printability and construct resistance. Additionally, they have also proven to be exceptionally functional ingredients (enhancing cellular proliferation, adhesion, differentiation and alignment), controlling biodegradation and carrying/releasing actives with tissue regeneration therapeutic activities.
Collapse
Affiliation(s)
- Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
35
|
Xu X, Zhuo J, Xiao L, Xu Y, Yang X, Li Y, Du Z, Luo K. Nanosilicate-Functionalized Polycaprolactone Orchestrates Osteogenesis and Osteoblast-Induced Multicellular Interactions for Potential Endogenous Vascularized Bone Regeneration. Macromol Biosci 2021; 22:e2100265. [PMID: 34705332 DOI: 10.1002/mabi.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Massive oral and maxillofacial bone defect regeneration remains a major clinical challenge due to the absence of functionalized bone grafts with ideal mechanical and proregeneration properties. In the present study, Laponite (LAP), a synthetic nanosilicate, is incorporated into polycaprolactone (PCL) to develop a biomaterial for bone regeneration. It is explored whether LAP-embedded PCL would accelerate bone regeneration by orchestrating osteoblasts to directly and indirectly induce bone regeneration processes. The results confirmed the presence of LAP in PCL, and LAP is distributed in the exfoliated structure without aggregates. Incorporation of LAP in PCL slightly improved the compressive properties. LAP-embedded PCL is biocompatible and exerts pronounced enhancements in cell viability, osteogenic differentiation, and extracellular matrix formation of osteoblasts. Furthermore, osteoblasts cultured on LAP-embedded PCL facilitate angiogenesis of vessel endothelial cells and alleviate osteoclastogenesis of osteoclasts in a paracrine manner. The addition of LAP to the PCL endows favorable bone formation in vivo. Based upon these results, LAP-embedded PCL shows great potential as an ideal bone graft that exerts both space-maintaining and vascularized bone regeneration synergistic effects and can be envisioned for oral and maxillofacial bone defect regeneration.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jin Zhuo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zhibin Du
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, 4059, Australia
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
36
|
Liu J, Chavez SE, Ding H, Farooqui MM, Hou Z, Lin S, D'Auria TD, Kennedy JM, LaChance AM, Sun L. Ultra-transparent nanostructured coatings via flow-induced one-step coassembly. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Haider MS, Ahmad T, Yang M, Hu C, Hahn L, Stahlhut P, Groll J, Luxenhofer R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021; 7:78. [PMID: 34202652 PMCID: PMC8293086 DOI: 10.3390/gels7030078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Mengshi Yang
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Chen Hu
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB 55, 00014 Helsinki, Finland
| |
Collapse
|
38
|
Wan CR, Muya L, Kansara V, Ciulla TA. Suprachoroidal Delivery of Small Molecules, Nanoparticles, Gene and Cell Therapies for Ocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13020288. [PMID: 33671815 PMCID: PMC7926337 DOI: 10.3390/pharmaceutics13020288] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Suprachoroidal drug delivery technology has advanced rapidly and emerged as a promising administration route for a variety of therapeutic candidates, in order to target multiple ocular diseases, ranging from neovascular age-related macular degeneration to choroidal melanoma. This review summarizes the latest preclinical and clinical progress in suprachoroidal delivery of therapeutic agents, including small molecule suspensions, polymeric entrapped small molecules, gene therapy (viral and nonviral nanoparticles), viral nanoparticle conjugates (VNCs), and cell therapy. Formulation customization is critical in achieving favorable pharmacokinetics, and sustained drug release profiles have been repeatedly observed for multiple small molecule suspensions and polymeric formulations. Novel therapeutic agents such as viral and nonviral gene therapy, as well as VNCs, have demonstrated promise in animal studies. Several of these suprachoroidally-administered therapies have been assessed in clinical trials, including small molecule suspensions of triamcinolone acetonide and axitinib, viral vector RGX-314 for gene therapy, and VNC AU-011. With continued drug delivery research and optimization, coupled with customized drug formulations, suprachoroidal drug delivery may address large unmet therapeutic needs in ophthalmology, targeting affected tissues with novel therapies for efficacy benefits, compartmentalizing therapies away from unaffected tissues for safety benefits, and achieving durability to relieve the treatment burden noted with current agents.
Collapse
|
39
|
Cai FF, Heid S, Boccaccini AR. Potential of Laponite® incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing. J Biomed Mater Res B Appl Biomater 2020; 109:1090-1104. [PMID: 33277973 DOI: 10.1002/jbm.b.34771] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The concept of adding inorganic fillers into hydrogels to form hydrogel nanocomposites often provides advantageous properties which can be exploited for successful 3D biofabrication. In this study, a new composite hydrogel combining oxidized alginate-gelatin (ADA-GEL) hydrogel and Laponite® nanoclay as inorganic nanofiller was successfully developed and characterized. The results showed that the addition of 0.5% (wt/vol) Laponite® nanoplatelets improved the printability of ADA-GEL hydrogels enabling the fabrication of detailed structures since a low effect of material spreading and reduced tendency to pore closure appeared. Furthermore, a comparison of different needle types (cylindrical and conical; same inner diameter of 250 μm) in filament fusion test showed that the pattern dispensed by cylindrical tip has enhanced printing accuracy and pattern fidelity when compared with the pattern from conical tip. A glass flip test determined a processing window of 1-2 h after composite ink preparation. Overall, Laponite® /ADA-GEL hydrogel composites are confirmed as promising inks for 3D bioprinting.
Collapse
Affiliation(s)
- Fei-Fan Cai
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Susanne Heid
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
40
|
Lapasin R, Grassi M, Abrami M, Šebenik U. Structural evolution of salt-free aqueous Laponite dispersions: A study based on low-field NMR relaxometry and rheological investigations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
42
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
43
|
Jiang T, Zhang C, Sun W, Cao X, Choi G, Choy J, Shi X, Guo R. Doxorubicin Encapsulated in TPGS‐Modified 2D‐Nanodisks Overcomes Multidrug Resistance. Chemistry 2020; 26:2470-2477. [DOI: 10.1002/chem.201905097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsInternational Joint Laboratory for Advanced Fiber and Low-Dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsInternational Joint Laboratory for Advanced Fiber and Low-Dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsInternational Joint Laboratory for Advanced Fiber and Low-Dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsInternational Joint Laboratory for Advanced Fiber and Low-Dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML)Institute of Tissue Regeneration Engineering (ITREN)Dankook University Cheonan 31116 Republic of Korea
| | - Jin‐Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML)Institute of Tissue Regeneration Engineering (ITREN)Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI)Institute of Innovative ResearchTokyo Institute of Technology Yokohama 226-8503 Japan
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsInternational Joint Laboratory for Advanced Fiber and Low-Dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsInternational Joint Laboratory for Advanced Fiber and Low-Dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
44
|
Kim GJ, Kim D, Lee KJ, Kim D, Chung KH, Choi JW, An JH. Effect of Nano-Montmorillonite on Osteoblast Differentiation, Mineral Density, and Osteoclast Differentiation in Bone Formation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E230. [PMID: 32013042 PMCID: PMC7075198 DOI: 10.3390/nano10020230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
Calcium-type montmorillonite, a phyllosilicate mineral, has diverse health benefits when introduced into the gastrointestinal tract or applied to the skin. However, the predominant use of this layered material has thus far been in traditional industries, despite its potential application in the pharmaceutical industry. We investigated the effects and mechanism of nano-montmorillonite (NM) on osteoblast and osteoclast differentiation in vivo and in vitro. We examined the osteogenic effects of NM with high calcium content (3.66 wt%) on alkaline phosphatase (ALP) activity, mineralization, bone microarchitecture, and expression level of osteoblast and osteoclast related genes in Ca-deficient ovariectomized (OVX) rats. Micro-computed tomography of OVX rats revealed that NM attenuated the low-Ca-associated changes in trabecular and cortical bone mineral density. It improved ALP activity and mineralization, as well as the expression of osteoblast and osteoclast differentiation associated genes. NM also activated the expression of runt-related transcription factor 2, osteocalcin, bone morphogenetic protein 2, and type 1 collagen via phosphorylated small mothers against decapentaplegic homolog 1/5/8 signaling. Further, NM repressed the expression of receptor activator for cathepsin K, nuclear factor kappa-B ligand and tartrate-resistant acid phosphatase. Therefore, NM inhibits osteoclastogenesis, stimulates osteoblastogenesis, and alleviates osteoporosis.
Collapse
Affiliation(s)
- Gyeong-Ji Kim
- Department of Food and Nutrition, KC University, Seoul 07661, Korea;
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Daniel Kim
- Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea;
| | - Kwon-Jai Lee
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea;
| | - Daeyoung Kim
- Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Korea;
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea;
| | - Jeong Woo Choi
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107l, Korea
| | - Jeung Hee An
- Department of Food and Nutrition, KC University, Seoul 07661, Korea;
| |
Collapse
|
45
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|